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Annals of Mathematics, 149 (1999), 691-703 

An analytic solution 
to the Busemann-Petty problem 

on sections of convex bodies 
By R. J. GARDNER, A. KOLDOBSKY, and T. SCHLUMPRECHT* 

Abstract 

We derive a formula connecting the derivatives of parallel section functions 

of an origin-symmetric star body in iR with the Fourier transform of powers 

of the radial function of the body. A parallel section function (or (n -1)- 

dimensional X-ray) gives the ((n - 1)-dimensional) volumes of all hyperplane 

sections of the body orthogonal to a given direction. This formula provides 

a new characterization of intersection bodies in Rn and leads to a unified an- 

alytic solution to the Busemann-Petty problem: Suppose that K and L are 

two origin-symmetric convex bodies in in such that the ((n - 1)-dimensional) 

volume of each central hyperplane section of K is smaller than the volume of 

the corresponding section of L; is the (n-dimensional) volume of K smaller 

than the volume of L? In conjunction with earlier established connections be- 

tween the Busemann-Petty problem, intersection bodies, and positive definite 

distributions, our formula shows that the answer to the problem depends on 

the behavior of the (n - 2)-nd derivative of the parallel section functions. The 

affirmative answer to the Busemann-Petty problem for n < 4 and the negative 

answer for n > 5 now follow from the fact that convexity controls the second 

derivatives, but does not control the derivatives of higher orders. 

1. Introduction 

The 1956 Busemann-Petty problem (see [BP]) asks the following question. 

Suppose that K and L are origin-symmetric convex bodies in Rn such that 

Vol n_1 (K nH) < voln-l(L nH) 

*This work was partly carried out when the second author participated in the Workshop in 

Linear Analysis and Probability Theory at Texas A&M University, 1997. First author supported in 

part by NSF Grant DMS-9501289; second author supported in part by NSF Grant DMS-9531594 and 

the UTSA Faculty Research Award; third author supported in part by NSF Grants DMS-9501243 

and DMS-9706828 and by the Texas Advanced Research Program Grant 160766. 

1991 Mathematics Subject Classificatiorn. Primary: 52A20; secondary: 46B07, 42B10. 
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692 R. J. GARDNER, A. KOLDOBSKY, AND T. SCHLUMPRECHT 

for every hyperplane H containing the origin; does it follow that 

vol n (K) < vol n (L)? 

The concept of an intersection body of a star body was introduced by 

Lutwak [Lu] in 1988 and played a crucial role in the solution to the Busemann- 

Petty problem. A slightly more general notion was defined in [GLW], as follows. 

An origin-symmetric star body K in JRn is said to be an intersection body if 

there exists a finite (non-negative) Borel measure y on the (n-1)-dimensional 

sphere sn-l so that the radial function PK of K equals the spherical Radon 

transform of ,u (all necessary definitions will be given in §3). If the measure ,u 

has a continuous positive density on sn-l, then there exists another star body 

L so that the radial function of K at every point ( E Sn-1 is equal to the 

(n-1)-dimensional volume of the section of L by the hyperplane (l = {x E 

JRn: (xv () = O} (see [Ga3, Ch. 8] for details). In this case K is said to be the 

intersection body of a star body. 

A connection between the Busemann-Petty problem and intersection bod- 

ies was established by Lutwak [Lu], and slightly modified in [Ga2] and [Z1], 

[Z2]. In particular, [Z1, Th. 2.22] is as follows. 

THEOREM A. The Busemann-Petty problem has an agrmative answer 

in in if and only if every origin-symmetric convex body in JRn is an intersection 

body. 
However, it turned out to be quite difficult to calculate the inverse spher- 

ical Radon transform of a radial function in order to check if a given body is 

an intersection body. 
The Busemann-Petty problem has a long history. A negative answer to 

the problem for n > 5 was established in a sequence of papers by Larman 

and Rogers [LR] (for n > 12), Ball [Ba] (n > 10), Giannopoulos [Gi] and 

Bourgain [Bo] (n > 7), Papadimitrakis [P], Gardner [Gal] and Zhang [Z2, 

Th. 6.1] (n > 5). A little later, it was proved in [Ga2] that every origin- 

symmetric convex body in 23 iS an intersection body and, therefore, that the 

answer to the Busemann-Petty problem is affirmative when n = 3 (note that 

the answer is trivially affirmative when n = 2). The result followed from the 

fact that, when n = 3, the inverse spherical Radon transform R-1PK of the 

radial function of an origin-symmetric strictly convex body with C°° boundary 

satisfies 
R-1PK(() =- 12 1; (( ) dz 

for all ( E Sn-1, where 

A(z) = voln-l(Kn {x E in: (xv() = z}) 

is the parallel section function of K in the direction (. 
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BUSEMANN-PETTY PROBLEM 693 

In 1997, it was shown by the second named author [K4] that an origin- 
symmetric cube in R4 is an intersection body. The result in [K4] was a conse- 
quence of the following connection between intersection bodies and the Fourier 
transform, established in [K3]. 

THEOREM B. An origin-symmetric star body K in in is an intersection 
body if and only if the radial function PK is a positive definite distribution 
on in. 

Theorem B has other applications. For example, it was shown in [K3] 
that the unit ball of every finite-dimensional subspace of Lp, 0 < p < 2, is 
an intersection body, which, in particular, confirms the conjecture of Meyer 
[M] that the answer to the Busemann-Petty problem is affirmative if the body 
K is a polar projection body (unit ball of a subspace of L1). The paper [K5] 
presents a variety of examples of origin-symmetric convex bodies in in, n > 5, 
that are not intersection bodies. Theorem B provides an effective method for 
determining whether a given star body is an intersection body; in fact it follows 
from [K2, Lemma 1], that 

2n~rn-1R-1PK = PK 

when the Fourier transform jj1 of PK is a continuous function on Sn-1. 

After learning the results of [K3], [K4], Zhang [Z3] proved that every 
origin-symmetric convex body in R4 is an intersection body, which implies an 
affirmative answer to the Busemann-Petty problem when n = 4. The proof is 
based on a geometric argument, similar to that of [Ga2], which shows. that if 
K is an origin-symmetric convex body with C2 boundary, then 

R- 'PK(( =-167r2 Af() 

for all ( E Sn-1. It is then an immediate consequence of the Brunn-Minkowski 
theorem that the inverse spherical Radon transform is non-negative. 

In this article, we establish the following formula. 

THEOREM 1. Let K be an origin-symmetric star body in Rn with C' 
boundary, and let k E N U {0}, k = n- 1. Suppose that E Sn-1, and let Af 
be the corresponding parallel section function of K. 

(a) If k is even, then 

(pn-k-T)A(6) = (_ l)k/2ir(n - k - 1)A(k) (O); 

(b) if k is odd, then 

(Pr-k-l)A(() =Ck 1; Ajz() A (O) A- (0) -_ . - A~kl)(O) d 
(PK C~J zk+1 
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694 R. J. GARDNER, A. KOLDOBSKY, AND T. SCHLUMPRECHT 

where ck = (-1) (k+l)/2 2(n-1-k)k!, A(k) (O) is the derivative of order k of 

the function z A(z) at zero, and (pnK-k-l)A is the Fourier transform in the 

sense of distributions. 

Note that in Theorem l(b) all the derivatives of Ae of odd order vanish, 
since A( ) is even. In particular, A(O) = O; using this, integration by parts, 
and the above equation relating R-1PK and PK, we see that the formula of 
[Ga2] given above is just the case n = 3, k = 1 of Theorem l(b). Further- 
more, the formula of [Z3] is the special case n = 4, k = 2 of Theorem l(a). 
The theorem therefore represents a generalization of these earlier formulas to 
arbitrary dimensions. 

We apply Theorem l(a? to confirm that the answer to the Busemann- 
Petty problem is affirmative when n = 4, and use Theorem l(b) with n = 5 
and k = 3 to present a simple example that confirms the negative answer 
when n > 5 (see §2). Therefore, Theorem 1, in conjunction with Theorems A 
and B, provides a unified analytic solution to the Busemann-Petty problem. 
Moreover, Theorems 1 and B give a characterization of intersection bodies in 
higher dimensions. For example, if n is even, then an origin-symmetric star 
body K in Rn with C°° boundary is an intersection body if and only if the 
(n-2)-nd derivative of the function (-l)(n-2)/2Ae at zero is non-negative for 
every ( E Sn-1. Note that Theorem 1 with k = O gives the Fourier transform 
formula for the volume of central hyperplane sections of K, which was used 
in [K2] to confirm the conjecture of Meyer and Pajor on the minimal sections 
of tp-balls with O < p < 2. Putting k = n and using the fact that an origin- 
symmetric convex body K is a zonoid if and only if llxll is a negative definite 
function (see [Le, pp. 219-223]), one gets a new characterization of zonoids. 

The proof of Theorem 1 will be given in §4. We shall first use the concept 
of fractional derivatives to extend the mapping 

k <tkA(t) , k E , 

to an analytic function 

q | > A(q)(O), where q E fiS, Req >-1, q 7& n-1, 

and show that this extension satisfies the following formula. 

THEOREM 2. Let K be an origin-symmetric star body in Din with C°° 
boundary and Minkowski functional 11 * 11 Suppose that ( E srl-l, and let Ae be 
the corresponding parallel section function of K. For q E (S with Req >-1, 
q 7& n-1, 

A (O) = ( 2 ) (llXlI-n+q+l)A(() 
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695 BUSEMANN-PETTY PROBLEM 

The construction of A(q) together with necessary definitions and properties 
of distributions will be given in §3. 

We conclude the introduction by formulating the isomorphic Busemann- 
Petty problem: Does there exist an absolute (not depending on the dimen- 
sion) constant c such that vol n (K) < c vol n(L) whenever vol n-1 (K n H) < 

vol n-l (L n H) for every hyperplane H containing the origin? This question is 
equivalent to the famous hyperplane (or slicing) problem, which remains one 
of the most important unsolved mysteries of the local theory of Banach spaces 
(see [MP]). 

The results of this paper were announced in [GKS]. 

2. Applications of Theorem 1 to intersection bodies 
and the Busemann-Petty problem 

We first prove that the answer to the Busemann-Petty problem is affir- 
mative when n < 4. In view of Theorem A, it is enough to show that every 
origin-symmetric convex body in in, n < 4 is an intersection body. Also, since 
the intersection of an intersection body with a hyperplane H containing the 
origin is also an intersection body in H (see [FGW], [GW], or [Z4, Lemma 3]; 
one can also deduce it from Theorem B), it is enough to consider the case 
n = 4. The following theorem was first proved by Zhang [Z3]. 

THEOREM 3. Every orzgin-symmetrzc convex body K in Et4 is an inter- 
section body. 

Proof. A result of Zhang [Z1, Th. 2.13] implies that an origin-symmetric 
convex body that is not an intersection body can be approximated arbitrarily 
closely in the Hausdorff metric by origin-symmetric convex bodies with C°° 
boundaries that are also not intersection bodies. Therefore we can assume 
that K has C boundary. Put n = 4 and k = 2 in Theorem 1. We get 
PK(() =-7rA(O) for every ( E Et4 \ {O}. By the Brunn-Minkowski theorem 
(see, forexample, [S, Th. 6.1.1]), thefunctionAe islogconcave, and, since 
A(s) is even, we see that Ae (O) < O for every (. Thus, PK is a positive definite 
distribution. The result follows from Theorem B. [1 

In view of Theorem A and the remark at the beginning of this section, the 
following theorem confirms the result of [P], [Gal], and [Z2, Th. 6.1] that the 
answer to the Busemann-Petty problem is negative when n > 5. Note that the 
proofs in [Gal] and [Z2, Th. 6.1] were based on the fact that certain special 
origin-symmetric bodies in Et5 are not intersection bodies. The simple proof 
given here follows quickly from the case n = 5 and k = 3 of Theorem l(b). 
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696 R. J. GARDNER, A. KOLDOBSKY, AND T. SCHLUMPRECHT 

THEOREM 4. There is an origin-symmetric convex body K in 25 that is 
not an intersection body. 

Proof. Put n = 5 and k = 3 in Theorem 1. By Theorem B, it is enough 
to make sure that there exists a ( E S4 such that the parallel section function 
Ae of K satisfies 

1; 4 (A((z)-A((0)-A(O) 2 ) dz < O 

To this end, let E E (O? 1)v define f(x) = (l-X2 _ EX4)1/4, and let ae > O be 
such that f(a) = O and 1-X2-EX4 > 0 on (O, a). 

The function f, has its maximum at O and 

fe (x) =-(2 + 3sx )(1-X2-EX4) 3/4-3(--X gX3)2(l _ s2 _ gX4)-7/4 

SO ge is strictly concave on [O, a]. It follows that 

K = {(xl,... ,X5) E 25 X5 E [-ae,aE] and (,x2) < g(lx5l)} 

is a strictly convex body. Since for O < z < ae, 

Kn{(xl,...,x5)Er5:z5=z} 

is a 4-dimensional Euclidean ball of radius f(z), we deduce that when ( = 
(0,0,0,0, 1), 

A((Z) = 2 ge(z) = 2 (1 _ Z2 _ EZ4) 

for O < z < a,. This implies that the above integral equals-sae1r2/2 < O. O 

Putting k = n-2 in Theorem 1 and using Theorem B, we get a char- 
acterization of intersection bodies in Rn in terms of the derivatives of parallel 
section functions. In particular, if n is even, a star body with C°° bound- 
ary is an intersection body if and only if (-l)(n-2)/2A(n 2)(0) > 0 for every 
( E Sn-1. This observation yields an informal explanation of the answer to the 
Busemann-Petty problem: Convexity implies that the parallel section func- 
tions are log concave (a property involving the first and second derivative), 
but does not provide any control over the third and higher derivatives. 

3. Notation and auxiliary facts 

The spherical Radon transfortn is the bounded linear operator on C(Sn-l) 
defined by 

Rf (() = A f (x) dx, f E c(sn-l) ( E 5n- 

Sn-lnel 
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BUSEMANN-PETTY PROBLEM 697 

(Here and throughout, differentials such as dx denote integration with respect 
to the Hausdorff measure of the appropriate dimension.) If ,a is a finite Borel 
measure on S'1, then the spherical Radon transform of pu is defined as a 
measure R~a on S'-1 such that, for every f E C(S'-), 

(RIt, f) = (/[, Rf) = j Rf(,) d/l(t). 
Sn -1 

Let q be an integrable function on Rn also integrable on hyperplanes, let 
E Sna, and let t E JR. Then 

lzo(,; t)= / (x) dx 
J x,(=t 

is the Radon transform of q in the direction ( at the point t. Now for arbitrary 
C ERn \ {O}, the Radon transform in the direction of ( at t is defined by 

7z1 ((;tt)_N; 

where 1L 112 is the Euclidean norm. By the well-known connection between the 
Fourier transform and the Radon transform (see [H, p. 4], where the notation 
is different), it follows that for every C E zRn \ {0} and s E IR, 

(1) k(s() = (1Zq$Q;t))A(s), 

where on the right-hand side we have the Fourier transform of the function 
to Roz(,; t). 

Let K be a body that is star-shaped with respect to the origin. The radial 
function of K is given by 

PK(x) =max{a > 0: ax E K}, x E RnI\{O}. 

We call K a star body if PK is continuous and positive on Sn-1 (there are 
different definitions of this term in the literature; in particular, it is often not 
assumed that K contains the origin in its interior). 

Let K be an origin-symmetric star body. We denote by IIxIIK = 

min{a > 0 x E aK} the Minkowski functional on Rn -generated by K. 
Clearly, PK(x) = IIXII4j. In the sequel, 11 * = 11 IIK will always denote the 
Minkowski norm of K. 

For every c E Sn-, we define the parallel section function z |-+ A&), 
z E JR of K by 

A (z) = Volni (KI n + z)) = j x(IxII) dx = Zx(IxII)((; z), 

where X is the indicator function of [-1, 1]. (The function A(z) is sometimes 
called the (n - 1)-dimensional X-ray orthogonal to (; see [Ga3, Ch. 2].) For 

This content downloaded from 140.160.178.72 on Fri, 7 Nov 2014 13:32:12 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp
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an arbitrary ( E D{n \ {O}) we put 

A(z) = 11(11 Rx(lixil) (1lfil; 11411 ) 

Then, by (1), for every fixed ( E lkn\{0}, the Fourier transform of the function 
z X > A(z) is equal to 
(2) A(t)= (X(llXll)) (t() 

The main tool of this paper is the Fourier transform of distributions. We 
use the notation from [GS]. As usual, we denote by S the space of rapidly 
decreasing infinitely differentiable functions on Rn with values in C. By S' we 
signify the space of distributions over S. The Fourier transfortn of a distribu- 
tion f is defined by (f,) = (21r)n(f,) for every test function . If a test 
function f is even, 

(f) =(2er) f and (f,9) = (f,9) 
for every f E S'. If q is not an integer, then the Fourier transform of the 
function Izlq, z E Dt, is equal to (see [GS, p. 173]) 
(3) (lzlq)t(t) =-2r(1 + q) sinq2 gtl-q-1, t E R. 

A distribution f is called positive definite if, for every test function , 

(f,'#*'#(-x))>O. 
A distribution is positive definite if and only if its Fourier transform is a positive 
distribution (in the sense that (f, ) > O for every non-negative test function 
; see, for example, [GV, p. 152]). 

For t E X, let t+ = max{O, t}. If f E S vanishes on a neighborhood of 0, 
the integral 

roo 
(t+) (#(t)) = j t>9(t) dt 

o 

exists for all A E C, and, moreover, the function 
roo 

A1 >g t>cp(t)dt 
o 

is complex differentiable on ¢, and thus an analytic function. We now regular- 

ize the functional f (t+, ), in order to define it on all of S, in the following 

way (cf. [GS, Ch. I, § 3]). For A E tS and m E N such that -m-1 < ReS, 
A +-1,-2,...,-m, and for every 97 E S, we put 
(4) 1 tm - 1 

o(t))=,l; tA(,C7(t)-so(°)-t,cz'(o)- -(m l)!iO ( ) 

+ ) t>f(t)dt + E (k 1)!( ( ) k) 
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BUSEMANN-PETTY PROBLEM 699 

If-m-1 < ReS <-m, we have 

°° tm-1 

A (t)) ; tA(io(t)-i°(0)-ti°/(0)- .......................................... -(m_l)!io ........... ()) 

since in this case roo 1 
j t>+k-ldt=-\+kv 

for k = 1, . . . ,m. The family {t+: A E ¢ \ {-1,-2, . . . }} forms an analytic 
distribution ([GS, p. 48]); that is, for any f E S, the function A | > (t>+, (t)) is 
analytic on A E ¢ \ {-1,-2, . . . }. F5urthermore, (t+, (t)) has, for each k E , 
a simple pole at A =-k with residue (k-1)(0)/(k-1)! (see [GS, p. 49]). The 
function A | > r(S + 1) = 10°°tAe-t dt also has, for each k E , a simple pole at 
A =-k with residue (-l)k-1/(k-1)!. We conclude that 

{r(02 + 1) A E ¢ \ {-1,-2) . . . }} 

can be extended to an analytic distribution on ¢, still denoted by {t>+/r(S + 1) 
: A E ¢}; and for A =-k and f E S, 

( ( + )>iD(t)) = ( l)k-liO(k-l)(0) 

(see [GS, p. 56]). Outside any neighborhood of 0 the functional t>+/r(S + 1) 
acts like a finite measure, so that we can actually apply t+/r(S + 1) to any 
continuous function that is infinitely differentiable on a neighborhood of 0, 
deducing the same conclusions as for functions in S. 

Such a function is the parallel section function z | > A(z) of any origin- 
symmetric star body K with C°° boundary. For q E ¢ and ( E D{n\{0}, we 
define 

(6) A(q) (0) = ( r( ), A((t) ) . 

If m E N and Re q < m, q + 0, 1, 2, . . ., m-1, then 

A(g) (o) 1 j l t-q-l 

(A((t)-A(0)-tA(0) _ * . ( t A(m-1)(0)) dt 

+ r( ) X t q A((t)dt + r(_ q) E k!(k-q) ' 
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and if m - 1 < Re q < m, then 

A(q) 1O = /t-- A~~(O F(-q) f 

(A (t) - A (0) - tA (0) t A(m-1) (0)) dt. 

Furthermore, we deduce that q A-g A () is an analytic function on C with 

A(k)(O) = (-1)k ,A (t) for k = 0 1, 2,... 
t=o 

Since K is symmetric, the function t F-* A~ (t) is even, and for every even m, 

(8) A~q)(O)) =; F-q-) (A((t) - 
3 

A(2J)(0)) dt, 
(8) A 1 tf~ tA 0)d 

whenever m -2 < Re q < m. 
We remark that (7) (and so also (8)) was deduced from (4) and (5), and 

the fact that A(q) (0) is an analytic function in q was deduced from the fact that 

(t\ /r(A + 1), ) is an analytic distribution. We could also have used (7) as the 

definition of A(q)(0), q 4 1,2, .. ., from which it is easily seen that A(q)(O) can 
be extended analytically to all of C. 

4. Proof of Theorems 1 and 2 

Theorem 1 will be an easy consequence of Theorem 2. To prove the latter, 
we shall need the following lemma from [K1]. For the sake of completeness we 
include a proof. 

LEMMA 5. For every even test function fo E S. , E Sn1, and -1 < q < 0, 

|n(,~ 
ql~~x 2r(l+ q) sinf qwo I ( 

Proof. Using (1) and (3), we deduce that 

j (4x) I -q-lo(x) dx = j ItI-q-1 j t o(x) dx dt 
Rn D(x ,0)=t 

=(Itj-q-171Zf((; t)) 

- 2r(1 + q) sin qt 

2F(1+q)sin (q () c 
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Proof of Theorern 2. Suppose that-1 < q < O. The function A(z) _ 

(X (>Z X(lix!l) dx is even. Applying kbini's theorem and passing to spherical 

coordinates, we get 

Ae (O) = 2r(_ q) X lzl q-lA4(z)dz 

= 2r(_ q) | I(z74)l q 1%(llxll)dx 

1 r roo 

J 1(0 4)t-q-lJ rn-q-2X(rilall)drdH 

2(n-q-l)r(-q) Jsn l 1(0 4)1 q l||0ll-n+q+l dA 

We now consider A(q)(O) as a function of ( E Dtn \ {0} By Lemma 5, for every 

even test function f E S, 

(9) 

( 2(n-q-l)r(-q) Jsn l vAn 

4(n-q l)r(-q)r(q + 1) sin q2 JSn-l llSll q+ J Itlqin(t0) dt dS 

= ( 2 1) ((llXll-n+g+l)t((),9(())v 

where the last equation follows from the property of the gamma function that 

r(-q)r(q + 1) =-7r/sin(q7r) and a simple calculation 

-n+q+l ) A (() q° (() ) = A l i x i l -n+s+ l A (x) dx 
Drn 

r roo 

= y ggHIl-n+q+l j tq(tH)dtdH 
Sn-1 

0 

(note that the function llxll-n+q+l is locally integrable on Dtn because 

-1 <q<O). 
Since (9) holds for every even test function , Theorem 2 is proved when 

-1 < q < O. 
In order to prove the theorem for other values of q, we first observe 

that (llxll-n+q+l)t is an analytic distribution (with respect to q) on 

{q E ¢: Req > -1}. It follows that for every even test function f E S, 

the functions q (Aeq(O), ) (see §33 and 

(lr(n-q-1) 
) 
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are analytic on the connected region {q E C: Req > -1, q n- 1}. 
These functions coincide on the interval -1 < q < 0, so they coincide on 
{q E C: Req > -1, q n- 1}. Since fo is an arbitrary even test function, we 
have proved Theorem 2. 

Proof of Theorem 1. If k is even, the theorem follows immediately from 
Theorem 2 (with q = k) and the equation sin (k+1)7r = (_1)k/2. 

If k is odd, both sides of the equation in Theorem 2 vanish. Assuming 
that q $& 0, 1, 2, ... in this equation, multiply both sides of the equation by 
r(-q), and then take the limit as q - k. 

By (8) with m= k+ 1, 

lim r(-q)A~g()/ t-- (A((t) - A (2j! i(0)) dt. 
q--+k j=(A(t (2j) 

We also observe, using r(A + 1) = Ar(A), that 

lim r(-q) sin 2 r ((q 2 k (1)sk+ 

- lim r(-q + k + 1) sin 2 )7 
q-k (-q)(1 -q) *@(k - q) sn 2 (-(k)/ 

7r 7~1 r 
=_f(-l)(k+l)/2(_lik- 1 (_ 1) (k+l)/2_ 

- =! 2 1 kV 

The statement of Theorem 1(b) follows. 
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