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GAUSSIAN BRUNN-MINKOWSKI INEQUALITIES 
 

RICHARD J. GARDNER AND ARTEM ZVAVITCH 
 

Abstract. A detailed investigation is undertaken into Brunn-Minkowski-type 
inequalities for Gauss measure. A Gaussian dual Brunn-Minkowski inequality, 
the first of its type, is proved, together with precise equality conditions, and 
is shown to be the best possible from several points of view. A new Gaussian 
Brunn-Minkowski inequality is proposed and proved to be true in some signif- 
icant special cases. Throughout the study attention is paid to precise equality 
conditions and conditions  on the  coefficients of dilatation.  Interesting  links 
are found to the S-inequality and the (B) conjecture. An example is given to 
show that convexity is needed in the (B) conjecture. 

 
 
 

1. Introduction 

This paper focuses on two fundamental ingredients of mathematics: Gauss mea- 
sure, the most important probability measure in Rn, and the Brunn-Minkowski 
inequality, one of the most powerful inequalities in analysis and geometry. 

The Brunn-Minkowski inequality for convex bodies K and L in Rn states that 
(1) Vn(K + L)1/n  ≥ Vn(K)1/n  + Vn(L)1/n, 

where K + L is the Minkowski or vector sum of K and L, Vn denotes n-dimensional 
Lebesgue measure, and equality holds if and only if K is homothetic to L. (See 
Section 2 for unexplained notation and terminology.) By the homogeneity of Vn, 
this is equivalent to 

(2) Vn (sK + tL)1/n ≥ sVn(K)1/n + tVn(L)1/n, 

where s, t ≥ 0. 
It is known that (1) and (2) still hold when the sets concerned are Lebesgue mea- 

surable, and indeed the Brunn-Minkowski inequality reaches far beyond geometry. 
No less than three recent surveys cover its extensive generalizations, variations, 
connections, and applications in probability and statistics, information theory, Ba- 
nach space theory, algebraic geometry, geometric tomography, interacting gases, 
and crystallography; see [1], [14], and [28]. 

The Brunn-Minkowski inequality (1) is a cornerstone of the vast Brunn-Minkow- 
ski theory, expounded in [29]. This harbors the tools, such as Minkowksi sum, for 
metrical problems on convex bodies and their projections onto subspaces. Around 
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1975, Lutwak [27] observed that when the Minkowski sum of two sets is replaced by 
an operation he called radial sum, in which only sums of parallel vectors are taken 
into account, a theory arises that is ideal for treating metrical problems about sets 
star-shaped with respect to the origin, and their intersections with subspaces. This 
newer theory, now called the dual Brunn-Minkowski theory, has attracted much 
attention and counts among its successes the solution of the 1956 Busemann-Petty 
problem on volumes of central sections of o-symmetric convex bodies; see [15], [16], 
[17], [26], [30], and [31]. 

Corresponding in the dual theory to the Brunn-Minkowski inequality (1) is the 
dual Brunn-Minkowski inequality for bounded Borel star sets C and D in Rn, which 
states that 
(3) Vn(C+� D)1/n ≤ Vn(C)1/n + Vn(D)1/n, 
where +� denotes radial sum, with equality if and only if C is a dilatate of D. See, 
for example, [13, (B.30)] and [18, Section 3]. This is equivalent to 

1/n 
(4) Vn 

(
sC+� tD

)
 ≤ sVn(C)1/n + tVn(D)1/n, 

where s, t ≥ 0. The reversal of the inequality sign in the passage from (1) to (3) is 
a standard, but not yet fully understood, feature of the duality at play. 

Here we are interested in inequalities of the Brunn-Minkowski type for Gauss 
measure γn in Rn. Despite the fact that γn is not translation invariant, such 
inequalities have been found and in fact have generated substantial literature. The 
most powerful, due to Ehrhard [11], [12], states that for 0 < t < 1 and closed convex 
sets K and L in Rn, we have 
(5) Φ−1 (γn ((1 − t)K + tL)) ≥ (1 − t)Φ−1 (γn(K)) + tΦ−1 (γn(L)) , 
where Φ(x) = γ1((−∞, x)). By [12, p. 154], equality holds when γn(K)γn(L) > 0 
if and only if K = Rn, L = Rn, K = L, or both K and L are half-spaces, one 
contained in the other. Since the function Φ is (strictly) log concave (i.e., log Φ is 
(strictly) concave), Ehrhard’s inequality and its equality condition imply that for 
0 < t < 1 and closed convex sets K and L in Rn, 

(6) γn ((1 − t)K + tL) ≥ γn(K)1−tγn(L)t, 

with equality when γn(K)γn(L) > 0 if and only if K = L. Inequality (6), proved 
independently by Borell [3], [4] and Brascamp and Lieb [9], is also an easy conse- 
quence of the Prékopa-Leindler inequality and the fact that the density function of 
γn is log concave, and moreover (6) holds when the sets concerned are Borel sets 
(see, for example, [14, p. 378]). On the other hand it was only recently that Borell 
[6] proved that (5) also holds for Borel sets. (Note that what Borell in [5] calls the 
Brunn-Minkowski inequality for Gauss measure is none of the above inequalities 
but is rather an isoperimetric inequality that follows from (5); see [22].) 

One of our main results, and the original motivation for the paper, is the following 
new inequality for Borel star sets C and D in Rn and s, t ≥ 1: 

1/n 
γn 

(
sC+� tD

)
 ≤ sγn(C)1/n + tγn(D)1/n. 

See Theorem 4.2, which also gives precise equality conditions. What is remarkable 
about this Gaussian dual Brunn-Minkowski inequality (compare (4)) is not its proof, 
which does not require innovative techniques, but that it exists. The discussion 
after Theorem 4.2 shows that the inequality is the best possible from several points 
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of view.  In particular, the restriction s, t ≥ 1 on the coefficients of dilatation 
is necessary.  This may seem strange at first, since (4) has no such restriction. 
However, γn is not homogeneous, and the restriction s, t ≥ 1 becomes natural when 
we see that it also applies to (4) when the exponent 1/n is replaced by 0 < p < 1/n. 
See Section 3, where we examine the role of the coefficients of dilatation in several 
inequalities, including, for the first time as far as we know, those for (6). 

Also in Section 3 we find that when the exponent 1/n in (4) is replaced by 
p > 1/n, the appropriate condition on the coefficients is s + t ≤ 1, which includes 
the important special case of the convex combination where s = 1 − t. This raises 
the question (see Question 6.1) as to whether there is a Gaussian dual Brunn- 
Minkowski inequality that holds when s + t ≤ 1.  Our investigation in Section 6 
turns up an interesting connection with the so-called S-inequality of Lata�la 
and Oleszkiewicz [24], but our results suggest that there may be no satisfactory 
answer to this question. 

In the course of our detailed investigation into Gaussian dual Brunn-Minkowski 
inequalities, we were led to the following intriguing question (see Question 7.1): If 
0 < t < 1 and K and L are closed convex sets containing the origin in Rn, is it true 
that 

γn ((1 − t)K + tL)1/n
 ≥ (1 − t)γn(K)1/n + tγn(L)1/n? 

In Section 7, we note that the restriction on the position of K and L is necessary, 
but in view of the direct analogy with (2), it is amazing that the inequality seems to 
have been overlooked. It does not follow from Ehrhard’s inequality (5), and if true it 
would be stronger than (6) when K and L contain the origin. We provide evidence in 
its favor by showing that it is true when K and L are coordinate boxes, when either 
K or L is a slab, and when K and L are both dilatates of the same o-symmetric 
closed convex set. Even the latter special case is not at all easy. We establish it 
by means of a fascinating link (see Theorem 7.6) with Banaszczyk’s conjecture— 
the (B) conjecture—that γn(etK0) is log concave in t when K0 is an o-symmetric 
convex body, recently proved by Cordero-Erasquin, Fradelizi, and Maurey [10]. It 
is not known if the symmetry is necessary for the truth of the (B) conjecture, but 
we give an example to show that the convexity is necessary. In Theorem 8.1 we 
prove a Gaussian Prékopa-Leindler inequality that follows from earlier results. 

We are very grateful to Franck Barthe for his helpful suggestions and comments, 
in particular the contribution given in detail at the end of Section 7. 

 
2. Definitions, notation, and preliminaries 

As usual, Sn−1  denotes the unit sphere, B the unit ball, o the origin, and I · I  
the norm in Euclidean n-space Rn. If x, y ∈ Rn, then x · y is the inner product of 
x and y and [x, y] denotes the line segment with endpoints x and y. 

If X is a set, dim X is its dimension, that is, the dimension of its affine hull, and 
∂X is its boundary. A set is o-symmetric if it is centrally symmetric, with center 
at the origin. If r ∈ R, the set rX = {rx : x ∈ X} is called a dilatate of X. If X 
and Y are sets in Rn, then 

X + Y = {x + y : x ∈ X, y ∈ Y } 

is the Minkowski or vector sum of X and Y . 
A body is a compact set equal to the closure of its interior. 
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We write Vk for k-dimensional Lebesgue measure in Rn, where k = 1 , . . .  ,n and 
where we identify Vk with k-dimensional Hausdorff measure. If K is a k-dimensional 
body in Rn, then we refer to Vk (K) as its volume. Define κn = Vn(B). The notation 
dz will always mean dVk (z) for the appropriate k = 1 , . . .  , n. 

A set in Rn is called a convex body if it is convex and compact with nonempty 
interior. The treatise of Schneider [29] is an excellent general reference for convex 
sets. 

A (possibly unbounded) set C is star shaped at the origin if every line through 
the origin that meets C does so in a (possibly degenerate) closed line segment, a 
closed half-infinite ray, or in the line itself. If C is a set that is star shaped at the 
origin, its radial function ρC is defined, for all u ∈ Sn−1 such that the line through 
the origin parallel to u intersects C, by 

ρC (u) = sup{c ∈ R : cu ∈ C} . 
Note that C may not contain the origin and that ρC may take negative or infinite 
values. In this paper, a Borel star set is a Borel set that contains the origin and is 
star shaped at the origin. 

By a star body in Rn we mean a body L star shaped at the origin such that 
ρL, restricted to its support, is continuous. This definition, introduced in [19] 
(see also [13, Section 0.7]), allows bodies not containing the origin, unlike previous 
definitions; in particular, every convex body is a star body in this sense. 

If x, y ∈ Rn, then the radial sum x+� y of x and y is defined to be the usual vector 
sum x + y if x and y are contained in a line through o, and o otherwise. If C and 
D are Borel star sets in Rn and s, t ∈ R, then 

sC+� tD = {sx+� ty : x ∈ C, y ∈ D} 
and 
(7) ρsC+� tD = sρC + tρD. 

The standard Gauss measure γn is defined for measurable subsets E of Rn by 
r 

(8) γn(E) = cn 
E 

e− x   /2 dx, 

where dx denotes integration with respect to Vn and 
(9) cn   = (2π)−n/2. 

For n ∈ N and r ∈ R, define 
(10) Ψn(r) = γn(rB). 
From (8) it follows by substitution that if E is a measurable subset of Rn, then 
(11) γn(sE)1/n ≥ sγn(E)1/n if 0 ≤ s ≤ 1 and γn(sE)1/n ≤ sγn(E)1/n  if s ≥ 1. 

Equality holds in each inequality if and only if s = 1 or γn(E) = 0. 
Let 

(12) Φ(x) =    1   √
2π 

and note that Φ(x) = γ1((−∞, x)). 

r 
e−t2 /2 

−∞ 
dt, 

It will be convenient to define, for a ≥ 0, 
 

(13) φn(a) =  
 r a 
 

0 

e−t /2tn−1 dt 
 1/n 

. 

Licensed to Western Washington Univ. Prepared on Mon Nov 10 10:35:08 EST 2014 for download from IP 140.160.178.72. 

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use 
 

http://www.ams.org/journal-terms-of-use


2 

2 

√ 

 
GAUSSIAN BRUNN-MINKOWSKI INEQUALITIES 5337 

 

Then if C is a Borel star set in Rn, n ≥ 2, a change to polar coordinates yields 

(14) γn(C) = cn 
r 
 

Sn−1 

r ρC (u) 

 
0 

e−r /2rn−1 dr du = cn 
r 
 

Sn−1 
φn (ρC (u))n  du, 

where cn is given by (9), an analog of the familiar polar coordinate expression for 
the Vn-measure of a Borel star set. 

If C is a Borel set contained in the ball εB for ε > 0, it follows from (8) that 

(15) cne−ε /2Vn(C) ≤ γn(C) ≤ cnVn(C). 

3. Coefficients of dilatation in known inequalities 

Since γn is not homogeneous, it makes sense to carefully examine the precise 
conditions on the coefficients of dilatation in inequalities involving Gauss measure. 

In [7] (see also [2]), Borell resolved this issue for Ehrhard’s inequality (5) by 
showing that 

Φ−1 (γn (sK + tL)) ≥ sΦ−1 (γn(K)) + tΦ−1 (γn(L)) , 
where Φ is defined by (12), holds for s, t ≥ 0, even for Borel sets, when s + t ≥ 1 
and |s − t| ≤ 1, and not generally unless these conditions are satisfied.  In [8], 
Borell shows that, remarkably, the corresponding condition for convex K and L is 
different; here only s + t ≥ 1 is required. 

The corresponding analysis for the weaker inequality (6) does not appear in the 
literature as far as we know. We claim that the inequality 
(16) γn (sK + tL) ≥ γn(K)sγn(L)t 

holds generally for Borel star sets K and L and s, t ≥ 0 if and only if s + t ≥ 1. To 
see this, note first that if s + t < 1 and K = L, (16) implies that 

γn(K) > γn ((s + t)K) ≥ γn(K)s+t, 
a contradiction since γn(K) ≤ 1. Suppose, then, that s + t ≥ 1. Let 

f (s, t) = log (γn (sK + tL)) − s log (γn(K)) − t log (γn(L)) . 
Clearly γn (sK + tL) increases with s and t, log (γn(K)) ≤ 0, and log (γn(L)) ≤ 0, 
so ∂f/∂s ≥ 0 and ∂f/∂t ≥ 0. If s, t ≥ 1, this yields f (s, t) ≥ f (0, 1) = 0, as 
required.  On the other hand if t  < 1, say, then f (s, t) ≥ f (1 − t, t) ≥ 0 by (6), 
completing the proof of the claim. 

Note, however, that for convex K and L, (16) holds generally for s, t ≥ 0 if and 
only if s = 1 − t. In view of the previous paragraph, we need only consider the case 
when s + t > 1. Let n = 1, let K = L = [x, x + 1], x > 0, and let s + t = a > 1. 
Then (16) and crude estimates give 

a 2 1 
2         

a               −(ax) /2 √
2π 

or 
> γ1([ax, ax + a]) ≥ γ1([x, x + 1])a >             e−(x+1)  /2 

2π 
a 2   2 1 2 

√ e−a x /2 > 
2π (2π)a/2 

e−a(x+1) /2. 

Since a2 > a, this is clearly false for sufficiently large x. 
In view of the connection (15) between Gauss and Lebesgue measure, we revisit 

the classical and dual Brunn-Minkowski inequality for exponents p > 0. 
To deal with this, first note that if p  > 0 and a, b, s, t ≥ 0, the weighted pth 

means (sap + tbp)1/p  increase with p for all a, b ≥ 0 if and only if s + t ≤ 1 and 

e 
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decrease with p for all a, b ≥ 0 if and only if s, t ≥ 1.  (The cases s = 1 − t and 
s = t = 1 are usually called the pth mean and pth sum of a and b, respectively.) 
See [20, (2.10.4) and (2.10.5), p. 29]. In particular, the inequality 

(17) (sa + tb)p ≥ sap + tbp 

is true for all a, b ≥ 0 when p = 1, when p < 1 and s + t ≤ 1, and when p > 1 and 
s, t ≥ 1, and it is false for all a, b > 0 when p > 1 and s + t ≤ 1, and when p < 1 
and s, t ≥ 1. Moreover, it does not generally hold otherwise. To see this, it suffices 
to check that when s < 1 and t > 1, (17) is false for p < 1 and sufficiently small a 
and for p > 1 and sufficiently small b. 

The above monotonicity properties of the weighted means and (2) imply that 

(18) Vn (sK + tL)p ≥ sVn(K)p + tVn(L)p 

holds for s, t ≥ 0 and all convex bodies K and L in Rn when p = 1/n, when 
0 < p < 1/n and s + t ≤ 1, and when p > 1/n and s, t ≥ 1.  By using the 
homogeneity of volume and the remarks above concerning the inequality (17), we 
see that (18) is otherwise generally false for K = aB, L = bB and small a, b ≥ 0, 
and it is always false for K = aB, L = bB, a, b > 0, when p > 1/n and s + t ≤ 1, 
and when 0 < p < 1/n and s, t ≥ 1. 

In a similar fashion, it can be seen that 
p 

(19) Vn 
(
sC+� tD

)
 ≤ sVn(C)p + tVn(D)p 

holds for s, t ≥ 0 and all bounded Borel star sets C and D in Rn when p = 1/n, 
when p > 1/n and s + t ≤ 1, and when 0 < p < 1/n and s, t ≥ 1. It is otherwise 
generally false for C = aB, D = bB and small a, b ≥ 0, and it is always false for 
C = aB, D = bB, a, b > 0, when 0 < p < 1/n and s + t ≤ 1, and when p > 1/n 
and s, t ≥ 1. 

4. A Gaussian dual Brunn-Minkowski inequality 

Lemma 4.1. The function φn defined by (13) is sublinear, i.e., 

φn(a + b) ≤ φn(a) + φn(b), 

for a, b ≥ 0, with equality if and only if a = 0 or b = 0. 

Proof. For fixed b > 0 and all a ≥ 0, define 

f (a) = φn(a + b) − φn(a) − φn(b). 
Then f (0) = 0, and it suffices to show that ft(a) < 0 for all a ≥ 0. In view of (13), 
we have 

2 2 

nft(a) = (a + b)n−1e−(a+b) /2φn(a + b)1−n − an−1e−a /2φn(a)1−n. 
If n = 1, it is clear from this that ft(a) < 0 for a ≥ 0. Suppose that n ≥ 2. Using 
(13) again, we see that ft(a) < 0 is equivalent to 

2 
r a+b

 2
 2 

r a
 2 

(a + b)−nen(a+b) /(2(n−1)) 
0 

or 

e−t /2tn−1 dt > a−nena /(2(n−1)) e−t /2tn−1 dt 
0 

2 
r 1

 2 2 
r 1

 2 

en(a+b) /(2(n−1)) e−(s(a+b))  /2sn−1 ds > ena  /(2(n−1)) 

0 
e−(sa)  /2sn−1 ds. 

0 
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Rearranging, we obtain 
r 1 

2 2 
r 1 

2   2 

e(n/(n−1)−s )(a+b) /2sn−1 ds > 
0 

e(n/(n−1)−s  )a  /2sn−1 ds. 
0 

The previous inequality holds since s2 ≤ 1 < n/(n − 1), and this proves the lemma. 
D 

Theorem 4.2. Let C and D be Borel star sets in Rn, and let s, t ≥ 1. Then 
1/n 

(20) γn 
(
sC+� tD

)
 ≤ sγn(C)1/n + tγn(D)1/n. 

Suppose that C and D are properly contained in Rn. Equality holds when s = t = 1 
if and only if γn(C)  = 0, γn(D)  = 0, or n =  1 and both C and D are (possibly 
degenerate or infinite) intervals with one endpoint at the origin, each on opposite 
sides of the origin. Equality holds when s > 1 and t = 1 (or s = 1 and t > 1, or 
s > 1 and t > 1) if and only if γn(C) = 0 (or if and only if γn(D) = 0, or if and 
only if γn(C) = 0 and γn(D) = 0, respectively). 

Proof. Suppose first that s = t = 1. 
If n = 1 and C and D are bounded, then C = [−a1, b1] and D = [−a2, b2] for 

nonnegative a1, a2, b1, and b2, and (20) is equivalent to 

φ1(a1 + a2) + φ1(b1 + b2) ≤ (φ1(a1) + φ1(b1)) + (φ1(a2) + φ1(b2)) . 

This follows immediately from Lemma 4.1, and its equality condition shows that 
either a1 = 0 or a2 = 0 and either b1 = 0 or b2 = 0. The same conclusion is reached 
if C or D is unbounded. This yields the required equality condition when n = 1. 

Suppose that n ≥ 2.  By (14), (7), Lemma 4.1, and Minkowski’s inequality for 
integrals, we have 

 
1/n 

γn  C+� D 
  

= cn 

  

r 
 

Sn−1 

r 

 
n φn   ρ (u) 

� 

 1/n 

du 
 
 
  1/n 

= cn 

  
≤ cn 

 
Sn−1 

r 
 

Sn−1 

φn (ρC (u) + ρD (u))n du 
 
(φn (ρC (u)) + φn (ρD (u)))n

 

 
 1/n 

du 

  
≤ cn 

r 
 

Sn−1 
φn (ρC (u))n

 

 1/n 

du 
  

+  cn 

r 
 

Sn−1 
φn (ρD (u))n

 

 1/n 

du 

= γn(C)1/n + γn(D)1/n. 
 

Suppose, in addition to our assumption that s = t = 1, that equality holds in 
(20). Then for almost all u ∈ Sn−1, equality holds in Lemma 4.1 when a = ρC (u) 
and b = ρD (u), and hence for almost all u ∈ Sn−1  we have either ρC (u) = 0 or 
ρD (u) = 0. But equality also holds in Minkowski’s inequality for integrals, so there 
is a constant c such that φn(ρC (u)) = cφn(ρD (u)) for almost all u ∈ Sn−1. It 
follows that either ρC (u) = 0 for almost all u ∈ Sn−1 or ρD (u) = 0 for almost all 
u ∈ Sn−1, and therefore either γn(C) = 0 or γn(D) = 0. 
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We have proved (20) and its equality conditions when s = t = 1. Using this and 
(11), for general s, t ≥ 1 we obtain 

1/n 
γn 

(
sC+� tD

)
 ≤ γn(sC)1/n + γn(tD)1/n ≤ sγn(C)1/n + tγn(D)1/n, 

as required. The equality conditions for s > 1 or t > 1 follow from those of (11).   D 

Inequality (20) does not hold generally when either s < 1 or t < 1.  Indeed, if 
s < 1, (20) is false when D = εB and ε > 0 is sufficiently small, in view of (11). 

Inequality (20) is false for arbitrary Borel sets star shaped at the origin. To see 
this, let s = t = 1, and for each m ∈ N, let Cm = {(r, θ) ∈ R2 : m ≤ r ≤ m + 1, 0 ≤ 
θ ≤ π/2} and Dm = −Cm. Then Cm+� Dm = C0 ∪ (−C0), so γ2(Cm+� Dm) is 
positive and independent of m while γ2(Cm) = γ2(Dm) → 0 as m → ∞. Note that 
Cm and Dm are actually star bodies. 

The monotonicity properties of the weighted pth means (sap+tbp)1/p summarized 
at the end of Section 2 imply that Theorem 4.2 holds for s, t ≥ 1 and 0 < p ≤ 1/n. 
However, the exponent 1/n in (20) is the best possible; it does not hold when 1/n is 
replaced by p > 1/n, as can be seen by taking C = aB and D = bB for sufficiently 
small positive a and b, and using (15) and the remarks concerning (19). Similarly, 
using the remarks concerning (18) instead, we see that it is also not true that (20) 
holds when 1/n is replaced by p > 1/n and the inequality is reversed. 

When C and D are convex bodies containing the origin, we have sC+� tD ⊂ 
sC + tD, so in this case the inequality γn(sC + tD)1/n ≤ sγn(C)1/n + tγn(D)1/n 

would be stronger than (20). However, by (2), its equality condition, and (15), 
this is false in general when C and D are sufficiently small nonhomothetic convex 
bodies containing the origin. 

As a final remark in this section, we consider the possibility that 
(21) Θ−1  

(
γn  

(
sC+� tD

)) 
≤ sΘ−1  (γn(C)) + tΘ−1  (γn(D)) n n n 

holds for Borel star sets C and D in Rn and s, t ≥ 1, where Θn is some standard 
function related to Gauss measure. Certainly (21) is not generally true when s = 
t =  1 and Θn = Ψn, the function defined by (10). To see this, let C and D be 
half-spaces in Rn bounded by a common hyperplane through the origin, so that 
C+� D = Rn  and γn(C)  = γn(D)  = 1/2.  Then the left-hand side of (21) with 
s = t = 1 and Θn = Ψn is infinite, while the right-hand side is bounded. Of course 
the same argument shows that (21) is not generally true when Θn = Ψ1 or Θn = Φ 
(defined by (12)). 

 

5. Gaussian Brunn-Minkowski inequalities for o-symmetric balls 

In view of Theorem 4.2 and the dual Brunn-Minkowski inequality in the form 
(19), it is natural to ask whether there is a p > 0 such that 

p 
(22) γn 

(
sC+� tD

)
 ≤ sγn(C)p + tγn(D)p 

holds for s, t ≥ 0, s + t ≤ 1, and Borel star sets C and D in Rn. We shall see that 
the answer is negative for s, t > 0, even for o-symmetric balls.  To this end, the 
following lemma will be useful. 

Lemma 5.1. The function 
 

(23) Fn(r) =  
 r r 
 

0 

 p 

e−t /2tn−1 dt 
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is strictly concave when (i) 0 < p < 1 and r ≥ 
√

n − 1, (ii) p ≥ 1 and r > 
√

np − 1, 
and (iii) 0 < p ≤ 1/n and r > 0. 

Proof.  Let 
r r 

(24) In(r) =  
0 

e−t  /2tn−1 dt, 

so that Fn(r) = In(r)p. A straightforward calculation yields 
(25) F tt(r) = pIn(r)p−2e−r /2rn−2 

( 
p − 1)e−r /2rn + In(r)(n − 1 − r2)  . 

2 2 

n ( 

Note that a trivial estimate gives In(r) > e−r  /2rn/n for r > 0, so if r ≥ 
√

n — 1, we 
2 tt −   − 

n 
2n−2 (np−1−r2)/n. From this we see that F tt (r) < 0 

when, in addition, p < 1, establishing (i), and (ii) also follows immediately. 
In proving (iii) we may suppose that p = 1/n, since pth means increase with p. 

Substituting p = 1/n into (25), we see that it suffices to show that 
Gn(r) = −(n − 1)e−r  /2rn + nIn(r)(n − 1 − r2) < 0 

for r > 0. Now Gn(0) = 0, and 
Gt −r  /2 

n(r) = −e rn+1 − 2nrI(r) < 0 
for r > 0. It follows that Gn(r) < 0 for r > 0, as required. D 

No attempt was made to obtain best possible estimates in cases (i) and (ii) of 
the previous lemma, since those found are sufficient for our purposes. Case (iii) of 
the previous lemma is equivalent to the concavity of φn(r) for r  > 0, and this is 
also implied by a result of Koenig and Tomczak-Jaegermann [21, p. 1218]. 

Corollary 5.2. Let s, t ≥ 0, s + t ≤ 1, and let C and D be o-symmetric balls in 
Rn. Then 
(26) γn 

(
sC+� tD

)
 ≥ sγn(C)p + tγn(D)p 

holds for 0 < p ≤ 1/n. Equality holds for s, t > 0 if and only if C = D. 
Proof. Note that when n = 1, γ1(rB) = γ1([−r, r]) = 2c1I1(r), where In(r) is given 
by (24). If n ≥ 2, by (14), we have 

r 
γn(rB) = cn  

Sn−1 
φn(r)n du = nκncnIn(r) 

for r > 0. Thus if the function Fn(r) given by (23) is concave for 0 < a < r < b, 
then 

(27) γn 
(
(1 − t)C+� tD

)
 ≥ (1 − t)γn(C)p + tγn(D)p 

holds when C = r0B, D = r1B, and 0 < a < r0, r1 < b. By Lemma 5.1(iii), Fn(r) 
is actually strictly concave for 0 < p ≤ 1/n, and this yields the corollary together 
with the equality condition when s = 1 − t. 

For general s, t ≥ 0 with s + t ≤ 1, let α = s/(1 − t) ≤ 1 and note that by (27) 
and (11), for 0 < p ≤ 1/n, we have 

γn 
(
sC+� tD

)
 = γn 

(
(1 − t)(αC)+� tD

)
 ≥   (1 − t)γn(αC)p + tγn(D)p 

≥   (1 − t)αpnγn(C)p + tγn(D)p 

≥   (1 − t)αγn(C)p + tγn(D)p 

= sγn(C)p + tγn(D)p, 
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as required. If equality holds, then equality holds in (11), implying that α = 1, and 
then C = D from the equality condition for (27). D 

Corollary 5.3. For given s, t > 0, s + t ≤ 1, and p > 0, inequality (22) is false in 
general, even for o-symmetric balls. 

Proof. Corollary 5.2 and its equality condition yield the result for 0 < p ≤ 1/n. 
Suppose that p  > 1/n.  By Lemma 5.1(i) and (ii) we can choose the radii of 

o-symmetric balls C and D in Rn so that with s = 1 − t, 
p 

(28) γn 
(
sC+� tD

)
 > sγn(C)p + tγn(D)p, 

and therefore so that (22) is false. It remains to consider the case when s + t < 1. 
Let C = aB and D = aB for a > 0. Then (28) is equivalent to 

γn((s + t)aB)p > (s + t)γn(aB)p. 

As a → ∞, the left-hand side approaches 1, while the right-hand side approaches 
s + t < 1. It follows that (28) holds for sufficiently large a. D 

Note that Corollary 5.2 holds even for p  < 0, at least when s = 1 − t.  This 
is because pth means increase with real p; see [20, Section 2.9].  Consequently 
Corollary 5.3 also holds when s = 1 − t and p < 0. 

Corollary 5.2 does not hold in general, even when both C and D are dilatates of 
a fixed o-symmetric Borel star set E. To see this, let E1 = {(x, y) ∈ R2 : x, y ≥ 0}, 
E2(a)  = {(r, θ) ∈ R2 :  0 ≤ r ≤ a, π/2 ≤ θ ≤ π}, and let E(a) = E1 ∪ (−E1) ∪ 
E2(a) ∪ (−E2(a)).  Letting   

1 1 ( 
2  2 

1/2 

f (t) = γ2(tE(a))1/2 = 

say, we obtain 

+ 1 e−t a /2
  

2 2 
= I(t)1/2, 

a2e−t a /2 ( 2 2 

f tt(t) =  16I(t)3/2 
−t2a2e−t  a  /2 + 4I(t)(1 − t2a2)   . 

Using the inequalities 1 − x ≤ e−x ≤ 1 − x + x2/2 for x ≥ 0, we have 
2  2 2  2 2  2 

−t2a2e−t  a  /2 + 4I(t)(1 − t2a2)    = 4 − 4t2a2 − 2e−t  a  /2 + t2a2e−t  a  /2
 1 ( 2   2 4  4

) 
≥ 4  8 − 8t a — 3t a . 

The latter quantity is positive for 0 ≤ t ≤ 1, and hence f (t) is convex there, when 
a ≤ a0  = ((2 10 − 4)/3)1/2 = 0.8802 . . . .  It follows that if 0 < a1 < a2 < a0, 
C = E(a1), and D = E(a2), then (26) is false for 0 < s = 1 − t < 1 when n = 2  
and p = 1/2. By replacing E1 with Et = {(r, θ) ∈ R2 :  0 ≤ r ≤ b, 0 ≤ θ ≤ π/2} 
for sufficiently large b and then approximating, we can clearly also find sets C and 
D in R2, each dilatates of a fixed o-symmetric star body, such that (26) is false for 
0 < s = 1 − t < 1 when n = 2 and p = 1/2. 

 
6. More on Gaussian dual Brunn-Minkowski inequalities 

The results of the previous section and the existence of Ehrhard’s inequality (5) 
raise the following question. 
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Question 6.1. Let n ∈ N. Is there a natural nonconstant function Θn such that 
for 0 < t < 1 and Borel star sets C and D in Rn, 
(29) Θ−1 

(
γn 

(
(1 − t)C+� tD

)) 
≤ (1 − t)Θ−1 (γn(C)) + tΘ−1 (γn(D))? 

n n n 

For n = 1, we can take Θ1 = 1 − Φ, for then, noting that 1 − Φ(x) = Φ(−x), 
we have Θ−1 = −Φ−1, and since the radial sum equals the Minkowski sum when 
n = 1, (29) becomes Ehrhard’s inequality (5)! However, we cannot take Θn = 1 − Φ 
when n ≥ 2. To see this, note that this would imply that Ehrhard’s inequality (5) is 
true when n ≥ 2, K and L are Borel star sets, and the Minkowski sum is replaced 
by the radial sum.  But this is false.  Indeed, recall that since Φ is log concave, 
this would imply that (6) also holds when n ≥ 2, K and L are Borel star sets, 
and the Minkowski sum is replaced by the radial sum. Moreover, from the equality 
conditions for (5) we can conclude that the radial sum version of (6) would hold 
with strict inequality when K and L are dilatates with K /= L. By (15), we would 
then have 

Vn((1 − t)K+� tL) > Vn(K)1−tVn(L)t 

for sufficiently small nonequal dilatates K and L.  By a standard argument (see, 
for example, [14, p. 362]), this would contradict (4). 

Any Θn for which (29) holds for o-symmetric Borel star sets must be decreasing. 
To see this, let C and D be o-symmetric infinite double cones such that C∩D = {o}. 
Then (1−t)C = C , tD = D, and (1−t)C+� tD = C∪D. If γn(C) = a and γn(D) = b, 
then (29) yields 

Θ−1 −1 −1 

n  (a + b) ≤ (1 − t)Θn  (a) + tΘn  (b). 
As t → 0, we obtain Θ−1(a + b) ≤ Θ−1(a). Therefore Θ−1 is decreasing on [0, 1] 

n n n is also decreasing. In particular, we cannot take Θ = Φ, Ψ , or Ψ 
and hence Θn 

(see (10)). 
n 1 n 

Despite all this, we claim that for all n ∈ N, (29) is true when Θn = Ψ1, C = {o}, 
and D is o-symmetric and convex.  To see this, let 0 < t < 1 and consider an o- 
symmetric slab (the closed region between two parallel hyperplanes) P of half-width 
a, and note that γn(P ) = γ1([−a, a]) = Ψ1(a), or a = Ψ−1(γn(P )). Suppose that 

(P )  = γ (D).  Then P has half-width Ψ (γ (D)), so tP 
1 

has half-width tΨ−1(γn(D)) and γn(tP )  = Ψ1 

(
tΨ−1(γn(D))

)
.  By the so-called 

1 1 

S-inequality (see [22] and [24]), we have 

γn(tD) ≤ γn(tP ) = Ψ1 

(
tΨ−1(γn(D))

) 
, 

which is (29) for the special case under consideration. 
The previous observation suggests that Question 6.1 should be revisited under 

the restriction that the sets C and D are o-symmetric closed convex sets. In fact, 
it turns out that we still cannot take Θn = Φ, Ψ1, or Ψn, but different arguments 
are required. 

To see that it is still not possible to take Θn = Φ, let C and D be different parallel 
o-symmetric slabs. Then (1 − t)C+� tD = (1 − t)C + tD, so (29) with Θn = Φ would 
contradict (5) and its equality conditions. 

Next, note that if Question 6.1 has a positive answer for o-symmetric closed 
convex sets, then Θ−1(Ψ1(x)) must be convex.  Indeed, let C and D be parallel 
o-symmetric slabs of half-widths x and y, respectively, so that (1 − t)C+� tD is an 
o-symmetric slab of half-width (1 − t)x + ty. Then γn(C) = Ψ1(x), γn(D) = Ψ1(y), 
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and γn((1 − t)C+� tD) = Ψ1((1 − t)x + ty), so (29) becomes 
 

Θ−1 −1 −1 

n   (Ψ1 ((1 − t)x + ty)) ≤ (1 − t)Θn   (Ψ1(x)) + tΘn   (Ψ1(y)) , 

which holds for all x, y ≥ 0 if and only if Θ−1(Ψ1(x)) is convex. 
Let f (x) = Ψ−1

 (Ψ1 (x)), n ≥ 2. Using (14) and differentiating Ψn (f (x)) = Ψ1(x) 
with respect to x, we obtain 

   
2 2 2 

cnnκne−f (x) /2f (x)n−1ft(x) =  
 

or 

e−x /2 

π 

 2 2 

e(f (x)−x )/2 

ft(x) = dn f (x)n−1 
,
 

 

for some constant dn. It follows that 
 

2 2 
e(f (x)−x )/2

 2
 

f tt(x) = −dn 

(
xf (x) + (n 1 f (x) )ft(x)

) 
. 

f (x)n 

As x → 0+, we have f (x) → 0 and ft(x) → ∞. Therefore f tt(x) must be negative 
for small x, so f (x) is not convex. By the previous paragraph, we still cannot take 
Θn = Ψn for n ≥ 2. 

The previous argument does not eliminate the possibility Θn = Ψ1. To deal 
with this we first observe by taking C and D to be o-symmetric balls of radius 
x and y, respectively, that if Question 6.1 has a positive answer for o-symmetric 
closed convex sets, then Θ−1(Ψn(x)) must be convex.  We shall show that g(x) =  

1   (Ψn(x)) is not convex for n = 2. 
2 2  To this end, note first that Ψ2(x) = 1 − e−x /2, Ψt (x) = xe−x /2, and Ψt (x) =  

2 1 /
2/π e−x2 /2. By differentiating Ψ (g(x)) = Ψ (x), we obtain 

1 2 

  
π 2 2 

gt(x) =  xe(g −x )/2, 
2 

and hence   
π 2  2 

gtt(x) =  e(g −x )/2 (1 + x(gtg x)) . 
2 

So it suffices to study the sign of 

   
π

 (g2 −x2 )/2 

(30) h(x) = 1 + x(gtg − x) = 1 + x xge 
2 — x  . 

From Ψ1(g(x)) = Ψ2(x) we also obtain 
  

2 
r g 

2 2 

e−t /2 dt = 1 e−x /2, 
π  0 
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which yields  
 

   
π

 
e−x /2 = 

2 

r ∞ 

(1/t)te−t /2 dt 
g 

(31) = 1 e−g  /2 − r ∞ 1 
e−t /2dt 

g g t2 

1 2 1 2 

r ∞ 1 2 

(32) = e−g /2 

g e−g /2 + 3  
g3 g 

e−t /2 dt 
t4 

1 2 1 2 
r ∞  t 2 

< e−g /2 

g e−g /2 + 3  
g3 g 

e−t /2 dt 
g5 

2 1 1 3 
 

 
(33) = e−g /2    . g g g 
From (30) and (33), we have 

1 
(34) h(x) < 

 
g2 − x2 + 3x . 

 
Now (31) gives 

g2 g2 

  
π 2 2 1 

and hence 

e(g −x )/2 < , 
2 g 

(35) g2 − x2 < − ln(πg2/2).  
Similarly (32) yields 

(36) g2 − x2 > − ln 
  

πg6
 . 

2(g2 − 1)2 

By (34), (35), and (36), we conclude that 
1 

h(x) < 
g2 

ln(πg2/2) + 3 + 
3

 
g2 

  
πg6

 ln , 
2(g2 − 1)2 

which is negative for sufficiently large x, since g(x) → ∞ as x → ∞. 

7. A possible Gaussian Brunn-Minkowski inequality 

Question 7.1.  Let 0 < t < 1 and let K and L be closed convex sets containing 
the origin in Rn. Is it true that 
(37) γn ((1 − t)K + tL)1/n

 ≥ (1 − t)γn(K)1/n + tγn(L)1/n? 

The exponent 1/n is the best possible. Indeed, by the relation (15) and the 
remarks after (18) concerning the classical Brunn-Minkowski inequality with expo- 
nent p, we see that (37) does not hold in general when 1/n is replaced by p > 1/n. 
On the other hand, if (37) is true, then the remarks in Section 2 about the weighted 
pth means ensure that (37) remains true when 1/n is replaced by 0 < p ≤ 1/n. 

A positive answer to Question 7.1 would imply that (37) remains true when 
(1 − t) is replaced by s > 0, under the condition s + t ≤ 1, as can be verified by the 
same argument used at the end of the proof of Corollary 5.2. 

We gave an example after Corollary 5.3 showing that the stronger inequality 
1/n 

γn 
(
(1 − t)K+� tL

)
 ≥ (1 − t)γn(K)1/n + tγn(L)1/n 

− 

− 

− 
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is false in general for K and L which are both dilatates of the same o-symmetric 
star body. It is also false for sufficiently small star bodies K and L containing the 
origin that are not dilatates, by (4), its equality condition, and (15). 

Some restriction on the position of the sets is necessary. To see this, let 0 < t < 1, 
K = B, and L = B + x1e1, where x1 > 0 and e1 is a unit vector in the direction of 
the positive first coordinate axis. Then (1 − t)K + tL = B + tx1e1, so the left-hand 
side of (37) approaches zero as x1 → ∞, while the right-hand side remains bounded 
away from zero. 

If it is true, (37) would be stronger than (6) for closed convex sets containing 
the origin, and it does not follow from Ehrhard’s inequality (5). Indeed, we claim 
that this is even the case when K and L are o-symmetric balls. To prove this, for 
fixed 0 < t < 1 and r0 > 0, consider the function 

f (r) = Φ 
(
(1−t)Φ−1 (γn(r0B)) + tΦ−1 (γn(rB))

)
 

−  (1 − t)γn(r0B)1/n + tγn(rB)1/n       . 

If r0 is chosen so that γn(r0B) = 1/2, then Φ−1 (γn(r0B)) = 0 and we have f (r) < 0 
if and only if 

Φ 
(
tΦ−1 (γn(rB))

) 
< 

(
 

or 

− t)2−1/n + tγn(rB)1/n
 
 

n 

tΦ−1 (γn(rB)) < Φ−1 
((

(1 − t)2−1/n + tγn(rB)1/n        . 
Now as r → 0+, the left-hand side of the previous inequality approaches −∞, while 
the right-hand approaches Φ−1 ((1 − t)n/2).  Therefore f (r) < 0 for sufficiently 
small r > 0, proving the claim. 

Corollary 5.2 shows that the answer to Question 7.1 is positive if K and L are 
o-symmetric balls, since in this case the radial sum and Minkowski sum coincide. 

Theorem 7.2. Question 7.1 has a positive answer when n = 1. 
Proof. Let 0 < t < 1 and let K = [−a, b] and L = [−c, d] for nonnegative reals a, b, 
c, and d. Note that since n = 1, radial and Minkowski addition coincide. Then, by 
the first statement of Corollary 5.2 with n = 1, we have 

γ1 ((1 − t)K + tL)  =  γ1 ((1 − t)[−a, b] + t[−c, d]) 
=   γ1 ([−(1 − t)a − tc, 0]) + γ1 ([0, (1 − t)b + td]) 

1 
= 2 γ1 ((1 − t)[−a, a] + t[−c, c]) 

1 
+ 2 γ1 ((1 − t)[−b, b] + t[−d, d]) 

1 
≥ ((1 − t)γ1 ([−a, a]) + tγ1 ([−c, c])) 

1 
+ 2 ((1 − t)γ1 ([−b, b]) + tγ1 ([−d, d])) 

=  (1 − t)γ1 ([−a, 0]) + tγ1 ([−c, 0]) 
+(1 − t)γ1 ([0, b]) + tγ1 ([0, d]) 

=  (1 − t)γ1 ([−a, b]) + tγ1 ([−c, d]) 

=   (1 − t)γ1(K) + tγ1(L), 
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as required.  The argument still applies if one or both of K and L is an infinite 
interval. D 

The following theorem generalizes the previous result. A different generalization 
is given in Theorem 8.2. 

Theorem 7.3. Question 7.1 has a positive answer when K and L are coordinate 
boxes containing the origin in Rn. 

Proof. Let 0 < t < 1, and let K = 
nn

 Ii and L = 
nn

 Ji for closed (possibly 
unbounded) intervals Ii and Ji in R containing the origin, 1 ≤ i ≤ n. Then 

n 

(1 − t)K + tL = 
n 

((1 − t)Ii + tJi) . 
i=1 

 

An inequality of Minkowski (see [20, (2.13.8), p. 35]) states that for nonnegative 
reals xi and yi, 1 ≤ i ≤ n, 

 
(38) 

I n 
n

(xi + yi) 
i=1 

\1/n I n 

≥ 
n 

xi 

i=1 

\1/n I n 

+ 
n 

yi 

i=1 

\1/n 

. 

Using the fact that Gauss measure is a product measure, Theorem 7.2, and (38), 
we obtain 

γn ((1 − t)K + tL) 
 
1/n 

I n 

= 
n 
i=1 

I n 
n 

γ1 ((1 − t)Ii + tJi) 
\1/n  

 
\1/n 

≥ 
i=1 

((1 − t)γ1(Ii) + tγ1(Ji)) 
I n n 

≥ 
i=1 

\1/n 

((1 − t)γ1(Ii)) 

I n 

+ 
n 
i=1 

\1/n 

(tγ1(Ji)) 

= (1 − t)γn(K)1/n + tγn(L)1/n. D 
Corollary 7.4. Question 7.1 has a positive answer when one set is a slab contain- 
ing the origin in Rn. 
Proof. Without loss of generality, let L = [−a, b] × Rn−1, a, b ≥ 0, be a slab, and 
let KS = [−c, d] × Rn−1, c, d ≥ 0, be a parallel slab such that the hyperplanes 
x1 = −c and x1 = d support K. Then K ⊂ KS and (1 −t)K + tL = (1 −t)KS + tL. 
Therefore, by Theorem 7.3, 

γn ((1 − t)K + tL)1/n
 =  γn ((1 − t)KS + tL) 

1/n 

≥  (1 − t)γn(KS )1/n + tγn(L)1/n 

≥   (1 − t)γn(K)1/n + tγn(L)1/n. 
D 

Our next result is related to the so-called (B) conjecture proposed by W. Ba- 
naszczyk, which asks whether the function γn(etK) is log concave in t when K 
is an o-symmetric closed convex set in Rn. This was proved by Cordero-Erasquin, 
Fradelizi, and Maurey [10]. The following lemma merely rephrases the log concavity 
and is essentially part of the proof in [10] (see inequality (4) in that paper). 
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Lemma 7.5.  Let K be a closed convex set in Rn  such that γn(K) > 0.  Then 
γn(etK) is log concave in t if and only if 

 ( 
4  − x   /2 

I( 2 − x   /2 
\2 ( 2  − x   /2 

(39) K IxI e dx K IxI e dx 
2  K IxI e dx 

0.
 

γn(K) 
− γn(K) 

— 
γn(K) 

≤ 
 

Theorem 7.6. Let K0 be a closed convex set containing the origin in Rn such that 
γn(K0) > 0, and suppose that γn(etK0) is log concave in t. Then Question 7.1 has 
a positive answer when K and L are both dilatates of K0. 

 
Proof. Let K0 satisfy the hypotheses of the theorem and define 

 

f (t) = c−1/nγn(tK0)1/n. 

For m = 0, 1, 2 , . . .  , let 
r 

IK0 ,m(t)=  
K0 

IxI 
 

e−t2 x  /2 

 

dx = t 
−(m+n)

r
 
 

 
tK0 

IxI 
 

e− x   /2 

 

dx = t 
 
−(m+n) 

 

IL,m(1), 
 

where L = tK0. Then 

 
f (t) =  

 
 r 
 

tK0 

 
 
e− x   /2 dx 

 
  1/n 

 
 
= tIK ,0(t)1/n. 

 

Note that 
 

(40) It (t) = −tIK0 ,m+2(t). 
 

To prove the theorem, it suffices to show that f (t) is concave for 0 < t < 1. By 
direct calculation, using (40), we find 

 

 

ft(t) =  
IK0 ,0(t) 

n 

1/n   
n − t2 

IK0 ,2(t) 
 

 
IK0 ,0(t) 

 

and 
 

f tt(t)  = 

 
 

tIK0 ,0(t) 
n2 

 

1/n 
I 

t2 

 

n IK0 ,4(t) 
IK0 ,0(t) 

 

− (n − 1) 
  
IK  ,2(t) 

 2
\

 
IK0 ,0(t) 

 

— 3n 

 
 
IK0 ,2(t) 
IK0 ,0(t) 

IL,0(1)1/n 
I
 

= n2t2 
n 

IL,4(1) 
IL,0(1) 

− (n − 1) 
  
IL,2(1) 

 2
 

IL,0(1) 
— 3n IL,2(1)

\
 

IL,0(1) 
 

(41) 
IL,0(1)1/n    

= n2t2 
nJL + 

 
 IL,2(1) 

 
 

IL,0(1)2 

  
(IL,2(1) − nIL,0(1))    , 

 

where  

IL,4(1) 
   

IL,2(1)   2 

 

IL,2(1) 
JL = I 

 
L,0 (1) 

− IL,0 (1) — 2 I 
 
L,0 

. 
(1) 

\ 
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Now r 
2  − x   /2 

IL,2(1)  = 
 

= 

IxI e L 
r r ρL (u) 

dx 
 
e−r /2rn+1 dr du 

Sn−1    0 

r 2 
r r ρL (u)

 2
 

= − 
Sn−1 

ρL(u)ne−ρL (u) /2 du + n 
Sn−1    0 e−r  /2rn−1 dr du 

(42) 
r 

≤ n 
Sn−1 

r ρL (u) 

 
0 

e−r /2rn−1 dr du = nIL,0(1). 

By (41) and (42), it suffices to show that JL  ≤ 0.  But this is precisely (39) with 
K replaced by L = tK0.  Our assumption that g(t) = log γn(etK0) concave in t 
implies that for any s > 0, g(t + log s) = log γn(et(sK0)) is concave, so (39) also 

holds when K is replaced by any dilatate of K0. This completes the proof. D 

As was mentioned above, the (B) conjecture was proved by Cordero-Erasquin, 
Fradelizi, and Maurey [10]. The same authors state that they do not know if the 
o-symmetry is needed, and they show that in some cases it is not. Specifically, they 
define G(K) to be the group of isometries φ of Rn such that φK = K, and they 
define 

Fix(K) = {x ∈ Rn : φx = x for all φ ∈ G(K)}. 
Then, in [10, Section 3], it is proved that γn(etK) is log concave in t when Fix(K) =  
{o}; for example, when K is a regular simplex with centroid at the origin. 

Corollary 7.7. Question 7.1 has a positive answer when K and L are both dilatates 
of the same o-symmetric closed convex set, or more generally, of the same closed 
convex set K0  with Fix(K0) = {o}. 

We remark that calculations very similar to those in the example given just before 
Question 6.1 show that the function γn(etK) is not log concave in general when K 
is an o-symmetric star body. Indeed, let E1 = {(x, y) ∈ R2 : x, y ≥ 0}, E2(a) =   
{(r, θ) ∈ R2 : 0 ≤ r ≤ a, π/2 ≤ θ ≤ π}, and E(a) = E1 ∪ (−E1) ∪ E2(a) ∪ (−E2(a)). 
Define   

1 1 (  
2t  2 

f (t) = log(γ2(etE(a))) = log 

say. Then 

+ 1 e−e 
2 2 

a /2
  = log I(t), 

2t  2 

e2ta2e−e a /2 ( 2t  2 

f tt(t) =  2I(t)2 
2 − e2ta2 − e−e a /2   . 

Using the inequality e−x ≤ 1 − x + x2/2 for x = e2ta2/2 ≥ 0, we have 
2t  2 1 

2 − e2ta2 − e−e 
a /2 

≥ 
(
8 − 4e2ta2 − e4ta4

) 
. 

The latter quantity is positive for 0 ≤ t ≤ 1, and hence f (t) is convex there, when 
√  

a ≤ a0 = (2 3 − 2)1/2e−1 = 0.4451 . . . . 
If we replace E1  with Et  = {(r, θ) ∈ R2 :  0 ≤ r ≤ b, 0 ≤ θ ≤ π/2} for sufficiently 
large b and approximate, we can find an o-symmetric star body E such that γn 

is not log concave. 
(etE) 
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For some time we considered the possibility that if 0 < t < 1 and K and L are 
o-symmetric closed convex sets in Rn, then 
(43) Ψ−1 (γn ((1 − t)K + tL)) ≥ (1 − t)Ψ−1 (γn(K)) + tΨ−1 (γn(L)) , 

n n n 

where Ψn is defined by (10), with equality if and only if K and L are o-symmetric 
balls. The motivation was the fact that for arbitrary convex sets K and L, (43) 
implies (37). Indeed, using (43) and the fact that by the first statement of Corol- 
lary 5.2 the function Ψn(r)1/n is concave for r > 0, we obtain 
γn ((1 − t)K + tL)1/n

 ≥  Ψn 
(
(1 − t)Ψ−1 (γn(K)) + tΨ−1 (γn(L))

)
 

n n 
1/n 

 
1/n 

≥   (1 − t)Ψn 
(
Ψ−1 (γn(K))

)
 + tΨn 

(
Ψ−1 (γn(L))

)
 

 
which is (37). 

=   (1 − t)γn(K)1/n + tγn(L)1/n, 

However, inequality (43) is false in general for arbitrary o-symmetric convex sets. 
We are grateful to Franck Barthe for the following proof of this fact. (A similar 
argument is used by Lata�la [22, p. 816].) 

Let K and L be o-symmetric convex sets in Rn, let 0 < t < 1, and let h > 0. 
In (43), replace K by (1 − t)−1K and let L = (h/t)B. Then, on letting t → 0, we 
obtain from (43) the inequality 
(44) Ψ−1 (γn(K + hB)) ≥ Ψ−1 (γn(K)) + h. 

n n 

Choose r > 0 so that γn(rB) = γn(K). Then (44) yields 

γn(K + hB) ≥ Ψn 
(
Ψ−1 (γn(rB)) + h

) 
= Ψn(r + h) = γn(rB + hB). 

Therefore  
 

lim 
h→0+ 

 

γn (K + hB) − γn (K ) 
h 

 
≥ lim 

h→0+ 

 

γn (rB + hB) − γn (rB) . 
h 

However, by [25, Lemma 3], the previous inequality is false when n = 2, K = 
{(x, y) ∈ R2 : y ∈ [−a, a]} is a slab, and a > 0 is sufficiently large. 

Indeed, it can be seen by direct calculation that (43) is false when K = {(x, y) ∈ 
R2 : y ∈ [−1/(1 − t), 1/(1 − t)]}, L = (1/t)B, and 0 < t < 0.04.  It is interesting 
to note that by Corollary 7.4, sets of this form cannot supply a negative answer to 
Question 7.1. 

 

8. A Gaussian Prékopa-Leindler inequality 

If f is a nonnegative measurable function on Rn and s ≥ 0, the superlevel set 
L(f, s) is defined by 

 
Note that 

L(f, s) = {x : f (x) ≥ s}. 

r r 
cn f (x)e− x  /2 dx  =  cn 

Rn Rn 

r f (x) 

 
0 

e− x   /2 ds dx 

(45) =  cn 
r ∞ r 

e− x   /2 dx ds = r ∞ 
γn(L(f, s)) ds. 

0 L(f,s) 0 

The standard Prékopa-Leindler inequality (see, for example, [14, Theorem 7.1]) 
holds when Lebesgue measure is replaced by any log concave measure, in particular, 
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by γn. Theorem 7.2 yields the following stronger inequality when n = 1, for a 
restricted class of functions. 

Theorem 8.1. Let 0 < t < 1 and let f, g, and h be nonnegative integrable functions 
on R such that superlevel sets of f and g are either empty or intervals containing 
the origin. If 

for all x, y ∈ R, then 
h((1 − t)x + ty) ≥ (1 − t)f (x) + tg(y), 

r r 
h(x)e− x  /2 dx ≥ (1 − t) 

R R 

r 
f (x)e− x  /2 dx + t 

R 
g(x)e− x  /2 dx. 

Proof. If s ≥ 0, f (x) ≥ s, and g(y) ≥ s, then h((1 − t)x + ty) ≥ s. Therefore, 

L(h, s) ⊇ (1 − t)L(f, s) + tL(g, s). 

Then, by (45), the fact that L(f, s) and L(g, s) are intervals containing the origin, 
and Theorem 7.2, we obtain 

r 
h(x)e− x  /2 dx = 1 r ∞ 

 
γ1(L(h, s)) ds 

R c1    0 

1 r ∞ γ1((1 − t)L(f, s) + tL(g, s)) ds ≥ 
c1    0 1 − t r ∞ 

γ (L(f, s)) ds + 
t
 r ∞ γ (L(g, s)) ds ≥  

c1
 1 

r 
c1    0 

2 
r

 2 

= (1 − t) f (x)e− x  /2 dx + t 
R 

g(x)e− x   /2 dx. D 
R 

We do not know whether the assumption on the superlevel sets of f and g is nec- 
essary. It could be removed if Theorem 7.2 holds when K and L are arbitrary Borel 
sets containing the origin. In this direction, we have the following generalization of 
Theorem 7.2, inspired by work of Latal�a [23]. 

Theorem 8.2. Question 7.1 has a positive answer when n = 1, K is an interval 
containing the origin, and L is any Borel set containing the origin. 
Proof. Let K = [a, b] and L = 

ln
 
− [xi, yi], where 

x−m ≤ y−m < x−m−1  ≤ y−m−1  < · · · < xn ≤ yn, 

o ∈ [a, b], and o ∈ [x0, y0]. Then 

(1 − t)K + tL = 
n 
I 

 

i=−m 

[(1 − t)a + txi, (1 − t)b + tyi]. 

We claim that we may assume that the intervals in this union are disjoint. Other- 
wise, for some −m ≤ i ≤ n, since xi < xi+1 and yi < yi+1, we have 

∅  /=  [(1 − t)a + txi, (1 − t)b + tyi] ∩ [(1 − t)a + txi+1, (1 − t)b + tyi+1] 

=  [(1 − t)a + txi, (1 − t)b + tyi+1] = (1 − t)[a, b] + t[xi, yi+1]. 
Let  

Lt = 

 n 
I 

[xk, yk ] ∪ [xi, yi+1]. 
k=−m, k/=i,i+1 

1 

Licensed to Western Washington Univ. Prepared on Mon Nov 10 10:35:08 EST 2014 for download from IP 140.160.178.72. 

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use 
 

http://www.ams.org/journal-terms-of-use


 
5352 RICHARD J. GARDNER AND ARTEM ZVAVITCH 

 
Then (1 − t)K + tL = (1 − t)K + tLt and γ1(Lt) ≥ γ1(L), the set Lt  consists of 
fewer intervals than L, and o ∈ Lt. So we may replace L by Lt. We can repeat the 
argument, if necessary, until all the intervals in the union are disjoint. 

Since o ∈ [a, b], we have 
n 
I 

[(1 −t)a + txi, (1 −t)b + tyi] ⊇ [(1 −t)a + tx0, (1 −t)b + ty0] ∪ 
n 
I 

[txi, tyi]. 
i=−m 

Now we can use Theorem 7.2 and (11) to obtain 
⎛ 

i=−m, i/=0 

n 
⎞ 

γ1((1 − t)K + tL)   ≥  γ1 ⎝[(1 − t)a + tx0, (1 − t)b + ty0] ∪ 
I 

[txi, tyi]⎠ 
 

=  γ1 ([(1 − t)a + tx0, (1 − t)b + ty0]) + 

n 

i=−m, 
i/=0 

n 
'\" 

 

i=−m, 
i/=0 

 

γ1 (t[xi, yi]) 

≥  (1 − t)γ1(K) + tγ1([x0, y0]) + t 

=   (1 − t)γ1(K) + tγ1(L). 

'\" 
 

i=−m, 
i/=0 

γ1 ([xi, yi]) 

Therefore the result holds when L is a finite union of intervals, and the theorem is 
then proved by a standard approximation argument. D 

Of course, the previous result allows the assumptions in Theorem 8.1 to be 
weakened. 
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[11] A.  Ehrhard,  Symétrisation  dans  l’espace  de  Gauss,  Math.  Scand. 53  (1983),  281–301. 
MR745081  (85f:60058) 
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