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Figure 7. Two rock–ice avalanches from Mt Steller region running out on the Bagley Ice Field.
View is towards southeast. Photo taken by C. Larsen on 24 July 2008.

(a) (b)

Figure 8. (a) Three-dimensional view based on a high-resolution satellite image of the source area
of the 2008 Mt Steller rock–ice avalanche taken on 21 June 2008 (retrieved from GoogleEarth),
showing a precursory rock slide. (b) The main failure (24 July 2008, photo by C. Larsen).

bedrock that failed is difficult to assess, but a rough estimate can be derived
from the avalanche deposit volume, which is about 1 × 106 m3. Deposits showed
predominantly shattered rock with single large blocks of several metres in
diameter.

A second landslide occurred at about 1950 m a.s.l., about 80 m below the crest
of a rock ridge on the northeast-facing flank of Mt Steller and less than 2 km from
the first landslide. It overrode the distal part of deposits of the first avalanche.
The rock slope failed in two stages: a larger failure occurred before 9 July and
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Figure 9. Air-temperature record for the period between 10 May and 10 August 2008, based on
radiosonde data from Yakutat, extrapolated to 2000 m a.s.l., the approximate elevation of the failure
zones of the Mt Steller north and Mt Miller landslides. The Mt Miller slide was on 6 August 2008,
while the exact day of failure of the Mt Steller north landslides is unknown.

involved the upper part of the failure zone; a smaller one involved detachment
of a rock mass from the lower part of the failure zone and occurred between 20
and 24 July. The maximum runout of the landslide is 2.2 km, and its deposit
area is about 0.45 km2. The estimated volume is 1–1.5 × 106 m3, based on field
observations of deposit thickness of 1–3 and 3–5 m, respectively, in the lower and
middle parts of the deposit. Only small amounts of glacier ice were involved in
this landslide.

Mean annual rock surface temperatures at the 2008 failure sites on the north
flank of Mt Steller can be estimated using the thermal approach of Huggel et al.
(2008a). MAAT derived from troposphere temperature data provided by the
Yakutat radiosonde, 220 km southeast of the landslides, was used, together with
a vertical gradient of 0.0065◦C m−1 (Huggel et al. 2008a), to calculate MAGST.
MAAT derived from the radiosonde data was increased by 1◦C for northern
aspects and by 3◦C for southern aspects (Haeberli et al. 2003; Gruber et al. 2004b;
Huggel et al. 2008a). The analysis yields MAGST of −2.5◦C at 2000 m a.s.l. on
the north-facing slope at the location of the first landslide (figure 10). Exposed
bedrock surface temperatures at the location of the first slide may have been in
the range of −1.5 to −3.5◦C. However, the failure zone was largely covered by
glacier ice, which was likely polythermal given the prevailing air temperatures.
Thus, at least some parts of the failure area were close to the freezing point.
Modelling studies have shown that the thermal effect of polythermal glaciers
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Figure 10. Mean annual ground surface temperatures (MAGST), estimated for the six rock and
ice avalanches presented in this study. The initiation zones of the landslides ranged from 2000
to 4000 m a.s.l. The thermal range for the Mt Steller south landslide is extended to temperatures
up to −2◦C, considering the influence of its polythermal summit glacier. The grey horizontal bar
indicates MAGST of −2 to 0◦C, a thermal zone thought to be especially susceptible to slope failure.

on the underlying bedrock can be complex (Haeberli et al. 1997; Wegmann
et al. 1998; Huggel et al. 2008a,b), but water was probably present at the base
of the glacier, and possibly within fractures in the underlying rock. Close-up
photographs of the failure zone, a few days after the avalanche show extensive
water flowing on the scarp that, in part, probably was produced by melting of
ice and snow, but may to a lesser extent have its origin in rock fractures. Liquid
water has similarly been observed on exposed detachment surfaces of landslides
at high elevations in the Alps (Gruber & Haeberli 2007; Huggel 2009; Fischer
et al. submitted a).

The inferred thermal conditions at the site of the second landslide are different.
The upper end of the failure zone is some 300 m lower than that at the first site,
and the site has a northeast aspect. Based on the analysis outlined above, MAGST
of the failure zone of this landslide may be between −1 and −2◦C, with warm
permafrost close to thawing. Here, bedrock is largely exposed rather than covered
by glacier ice, although the thermal effect of the snow cover must also be taken
into account. As in the case of the first landslide, water was visible on the exposed
scar and may have flown from rock fractures.

To assess the thermal effects of weather conditions days and weeks before
the Mt Steller avalanches, we extrapolated 700 hPa level temperatures (approx.
3000 m a.s.l.) of the Yakutat radiosonde to a 2000 m a.s.l. level, which is the height
of the failure zones of the two landslides. The record shows an approximate
10 day period of very warm temperature (up to 8◦C) at the end of May (figure 9),
temperature fluctuations around the freezing point in June, pronounced warming
at the beginning of July with a maximum temperature greater than 8◦C on 4 July,
and a sudden drop in temperature, culminating in temperatures below 0◦C 5 days
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(a) (b)

Figure 11. (a) The large rock–ice avalanche from the Mt Miller region on the Bagley Ice Field.
(b) Close-up view of the failure zone showing the thickness of glacier ice involved in the rock–ice
avalanche.

later. Only 2 days later, on 11 July, temperatures were again up to approximately
8◦C (figure 9). If our analysis of the date of the landslide is correct (i.e. one to a
few days before 9 July), failure occurred either during the very warm period with
temperatures far above freezing, or during the sudden temperature drop at the
end of the first week of July. The pattern is similar to that at Aoraki/Mt Cook
leading up to the 1991 landslide.

(iii) Mount Miller 2008

A large rock–ice avalanche occurred on the north slope of a ridge near Mt
Miller within 1 month of the 2008 Mt Steller failures (figure 6). The summit
ridge elevation at the site of the landslilde is about 2400 m, and the failure zone
extends from about 2200 m to 1600 m. The avalanche ran out 4.5 km onto the
Bagley Ice Field, coming to rest at an elevation of as low as 1290 m (figure 11).
The Fahrböschung (ratio of horizontal runout to vertical drop; H/L) is 0.2, which
is low but within the range of similarly sized ice and rock avalanches (Legros 2002;
Huggel et al. 2007). The landslide was recorded at about 20.25 UTC (11.25 local
time) on 6 August 2008, at a seismic station 10 km to the east of the slide. The site
was visited a few days after the landslide, and photos of the failure and deposit
were taken from the ground and air. The deposit had a mean thickness of 3–5 m,
which yields a total volume of 16–28 × 106 m3.

Inspection of the scarp confirmed that large amounts of glacier ice and bedrock
were involved in the landslide, with initial failure probably being in bedrock. The
steepest section of the scarp flank revealed 50–80 m of glacier ice overlying the
exposed bedrock. The scarp extends several tens of metres into the bedrock that
consists of relatively intact basalt.
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MAGST was estimated in the same way as for the Mt Steller landslides
using the Yakutat radiosonde data, 180 km to the southeast of the landslide
site. The failure zone is north–northwest-facing and therefore the MAGST of
−2.5◦C at 2000 m a.s.l. determined for north-facing slope at Mt Steller should be
applicable to Mt Miller. The range of MAGST of the failure zone (ca 2200–
1800 m a.s.l.) is −3.7 to −1.3◦C, suggesting that relatively warm permafrost
conditions existed in the lower part of the zone. However, the exact elevation
range of the failure zone is difficult to determine because significant snow and
ice was entrained along the path. Even more difficult is the identification of the
precise area where the failure initiated. Notwithstanding these difficulties, it is
likely that areas at the transition of frozen to non-frozen bedrock were involved in
the failure.

No liquid water was observed on the exposed bedrock of the Mt Miller landslide
scarp at the time of the field visit, during which air temperatures were around
the freezing point at the elevation of the scarp. Photographs taken 4 days after
the landslide suggested that the upper end of the failure zone was frozen to the
glacier bed.

We based our analysis of meteorological conditions days and weeks prior to
the Mt Miller failure on an extrapolation of the 700 hPa level temperatures
from the Yakutat radiosonde to an elevation of 2000 m, which we consider to
represent thermal conditions in the middle to the upper part of the failure zone.
Temperature increased from −2.5◦C on 27 July to over 11◦C on 2 August 2008
(figure 9). This very warm period was maintained until the day of the failure on
6 August, but then dropped to freezing. The air-temperature data thus indicate
that the entire slope where the landslide occurred was in a melting state for
several days before failure.

The long-term effect of the glacier on the underlying bedrock must also
be considered. Based on the long-term radiosonde record, MAAT at the
elevation of the failed glacier is about −5◦C, and accordingly firn temperatures
should be temperate. These are conditions where seasonal melting is possible
and latent-heat effects from refreezing of melt water can significantly warm
the ice (Suter et al. 2001). Thermal modelling studies have shown that the
thermal anomaly produced by freezing of water at the base of a glacier
can penetrate tens of metres into underlying bedrock (Wegmann et al. 1998;
Huggel et al. 2008a).

(c) Monte Rosa, Alps

The east face of Monte Rosa extends from about 2200 m to over 4600 m a.s.l.,
and was the site of two spectacular avalanches in 2005 and 2007 (Fischer et al.
2006). The slope increases upward, reaching greater than 55◦ in the exposed
gneissic bedrock sections and greater than 40◦ in the sections with glaciers
(figure 12). Studies based on sequential historical photographs have shown that
the ice cover on the east face of the mountain changed a little during the twentieth
century until about 1980, when it began to rapidly decrease (Haeberli et al. 2002;
Fischer et al. submitted b). Slope instability involving both ice and rock increased
around 1990 and has continued to the present (Fischer et al. 2006). Instability
culminated in two large avalanches, one on 25 August 2005, and the other on
27 April 2007.
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Figure 12. Monte Rosa east face, indicating the sources of the 2005 ice avalanche and the 2007 rock
avalanche. The inset close-up photo shows the scar of the 2007 failure 3 months after the event,
with layering parallel to the slope (photos taken by L. Fischer & C. Huggel).

The 2005 event was a large ice avalanche (1.1 × 106 m3) that initiated from
a steep glacier terminating at 3500 m a.s.l. and reached the foot of the face,
where a large supraglacial lake had formed in 2002, but had drained in 2003
(figure 12). Had the lake still existed, the avalanche would have generated
a displacement wave with catastrophic consequences for the downstream
community of Macugnaga. The avalanche occurred at night, which probably
prevented injuries to tourists who often spend daylight hours on the pasture
that was affected.

The 2007 event was a rock avalanche that detached from the exposed bedrock
at approximately 4000 m a.s.l. near the top of the east face of Monte Rosa
(figure 12). It involved about 0.3 × 106 m3 of rock that fell to the base of the
slope, again impacting the area of the former supraglacial lake.

Two meteorological stations at elevations greater than 3000 m are near Monte
Rosa—a station at Testa Grigia, Italy (3488 m a.s.l.), 15 km to the west; and
the Swiss station at Gornergrat (3130 m a.s.l.), 9 km to the northwest. The
Testa Grigia station has a temperature record for 1951–2000, but measurements
unfortunately were not continued after 2000, while the station at Gonergrat came
into operation only in 1994 and has been working properly since then. Based on
these data, temperature extrapolations yield a MAAT of −5 to −6◦C at the lower
end of the ice avalanche failure zone, suggesting a cold glacier front, but probably
polythermal to temperate conditions at some distance behind the front. Previous

Phil. Trans. R. Soc. A (2010)

 on April 19, 2010rsta.royalsocietypublishing.orgDownloaded from 

http://rsta.royalsocietypublishing.org/


Recent and future extreme events 2449

0–10–20–30–40
–30

–20

–10

0

10

20

+5
days before/after slope failure

ai
r 

te
m

pe
ra

tu
re

 (
°C

)
Aoraki/Mt Cook 1991
Mt Miller 2008
Monte Rosa 2005
Mt Steller north 2008

Monte Rosa 2007
1994–2009 average
1994–2009 s.d.

failure

Figure 13. Summary of air temperatures up to 40 days prior to the failures. All temperatures
are extrapolated to the elevation of the respective failure zone, using regional lapse rates (0.55–
0.65◦C 100 m−1). Air temperatures for all landslides except the April 2007 Monte Rosa slide
fluctuated around the freezing point, with extended warm periods. Several of the slides show a
rapid drop in temperature after a warm period and immediately before failure. The 2007 Monte
Rosa slide occurred under considerably lower temperatures than the other slides. However, the last
approximately 10 days before this failure are over 1 s.d. above the 1994–2009 mean.

studies show that the lower limit of permafrost is at about 3000 m a.s.l. on
north- to northeast-facing slopes, and up to 500 m higher on east-facing sections
(Zgraggen 2005; Fischer et al. 2006; Huggel 2009).

Estimates of MAGST for the 2007 rock-slope failure, based on data from the
aforementioned meteorological stations and rock temperature loggers deployed
on the east face (Zgraggen 2005) suggest temperatures of about −6◦C. These
conditions compare with those on Mt Steller south, but unlike Mt Steller, the
Monte Rosa site was not thermally perturbed by the overlying glacier ice. A
more likely destabilization factor is the enormous loss of ice at the base of the
failure zone over the past 20 years with a volume of more than 20 × 106 m3, which
probably caused significant changes to the stress and temperature fields (Fischer
et al. submitted b). In addition, the dip of the foliation in the gneissic bedrock is
parallel to the surface slope, adversely affecting slope stability.

Weather in the days and weeks prior to the landslides was very different for
the 2005 and 2007 slides. Several warm periods of 5–10 days duration occurred in
June and July 2005. Temperatures rose to 5◦C above the 1994–2009 average
(of the Gornergrat station record). The warm periods were interrupted by
temperature drops, with several freeze–thaw cycles during the 20 days before
the failure (figure 13). After the last freezing event 4 days before the landslide,
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Figure 14. Frequency distribution of daily mean temperatures for April 1958–2007, Jungfraujoch
station (3580 m a.s.l.). The mean temperature for April 2007 was 5◦C warmer than that of the
previous 49 years. The temperature of −3.5◦C (black arrow) for 20 April 2007 (1 day before
failure) plots in the 98th–99th percentile of the long-term record.

temperatures again increased to 5◦C on the day of failure. Much melt water was
produced during the warm periods and possibly penetrated to the base of the
steep glacier, lowering the strength at its contact with the underlying bedrock.
The repeated cycles of melt and refreezing may have also destabilized the bedrock.

Temperatures in April 2007 were extraordinarily warm in central Europe,
producing a spring heat wave. April temperatures at Jungfraujoch at 3580 m a.s.l.
were 5◦C warmer than the mean of the previous 49 years. The temperature of
−3.5◦C, 1 day before the landslide, is in the 98th–99th percentile of the long-term
April record (for Jungfraujoch available since 1958; figure 14). The Jungfraujoch
climate record is highly correlated to the record at the Gornergrat station, which
is the nearest station above 3000 m a.s.l. to the failure site, and which reveals
interesting thermal patterns during the weeks before the failure. Exactly 1 month
prior to the landslide, temperatures dropped to an estimated −24◦C at the failure
site, which is about 10◦C lower than the long-term average (figure 13). After this
unusually cold period, temperature rose steadily to approximately −5◦C near the
date of the failure. However, radiation on the east face of Monte Rosa in April is
high and cloud cover was generally low in April 2007. We thus infer that snow and
ice melted at the surface in spite of the subfreezing air temperature. In addition,
it is possible that thermal energy during particularly warm summer months in
2003 and 2006, when the 0◦C isotherm was above 4000 m a.s.l., penetrated into
bedrock some metres deep at the level of the rock-slope failure.

3. Future trends based on regional climate model (RCM) simulations

Several studies indicate that warm extremes increased during the twentieth
century (Alexander et al. 2006), and are likely to further increase during the
twenty-first century (Beniston et al. 2007). The Intergovernmental Panel on
Climate Change defines an ‘extreme weather event’ as a rare event lying outside
the 90th, 95th or 99th (or 10th, 5th and 1st, respectively) percentile of a
statistical reference distribution (Trenberth et al. 2007). Extreme events can also
be defined in terms of their intensity or severity of damage (Beniston et al. 2007).
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In terms of temperature, analyses of trends often use indices such as the number
of daily maximum or minimum temperature, or monthly to seasonal maximum
temperatures (Schär et al. 2004; Aguilar et al. 2005).

Here, we consider whether unusually warm periods of a few days to a couple
of weeks might increase in the future. We explore this issue using the results
from the most recent RCM simulations. RCMs are currently among the most
comprehensive tools to project climate on regional scales. The recently completed
European Union programme ENSEMBLES (van der Linden & Mitchell 2009) ran
a large number of RCMs over Europe to provide the climate-impacts community
with an ensemble of state-of-the-art regional climate simulations. To evaluate
and express uncertainty, the ENSEMBLES simulations include a large number
of RCMs, driven by different general circulation models (GCMs) with identical
boundary settings. The RCMs were run with 25 or 50 km horizontal resolution
for the period 1951–2050 (some until 2100). The Special Report on Emission
Scenarios (SRES) Scenario A1B (Nakicenovic & Swart 2000) was applied for all
model runs. Scenario A1B represents future conditions of rapid economic growth
and introduction of more efficient technologies, with a balance between fossil and
non-fossil energy production.

For the present study, we analysed results for air temperature 2 m above the
ground from eight ENSEMBLES RCM simulations. We chose a mix of different
RCMs, driven with different GCMs, to provide a representative selection.

— HIRHAM_ARPEGE (from Danish Meteorological Institute; DMI),
— HIRHAM_ECHAM5 (from Danish Meteorological Institute; DMI),
— ETHZ-CLM_HADCM3Q (from Swiss Federal Institute of Technology;

ETHZ),
— HIRHAM_HADCM3Q (from Norwegian Meteorological Institute;

METNO),
— HIRHAM_BCM (from Norwegian Meteorological Institute; METNO),
— HIRAC_BCM (from Swedish Meteorological Institute; SMHI), and
— HIRHAM_HADCM3Q (from Swedish Meteorological Institute; SMHI).

The first part of each acronym represents the RCM, while the second part refers
to the driving GCM.

Mean daily temperature results were analysed for anomalously warm
temperature events both in the past and the future. The analysis is based on
one grid box that represents the longitudes and latitudes of the Jungfrau region.
The Jungfrau region was chosen based on the availability of long-term high-
elevation observational time series (since 1958) from the Swiss Federal Institute of
Meteorology and Climatology (MeteoSwiss), which enables performance analysis
and de-biasing of the RCM simulations. Typically, measured air temperatures at
high-altitude climate stations are highly correlated. The temperature records at
the Jungfraujoch and Gornergrat stations have a correlation coefficient of 0.98
for the common period of record. Therefore, we assume that the Jungfraujoch
data are representative also for conditions at or near Gornergrat (including
Monte Rosa).

A horizontal resolution of 25 km, which is now the standard for many RCM
simulations, is too coarse to represent the topography of a high-mountain
region realistically. The selected grid box is referenced to an elevation of
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Table 1. Summary of changes (expressed as factor) in warm air-temperature anomalies between
1951–2000 and 2001–2050, based on eight RCMs. A factor of 1 means no change is projected
between the two time periods, a factor of 10 foresees a 10 times increase for the future 2001–2050
period. The column ‘bias’ refers to the difference between the observed mean annual temperature
of Jungfraujoch for the available time period 1960–2000 and the respective temperature of the
RCM time series.

RCM D30 day events D10 day events D5 day events bias (◦C)

DMI-HIRHAM5_ARPEGE 5.5 1 0.9 −5.5
DMI-HIRHAM_ECHAM5 a a a −3
ETHZ-CLM_HADCM3Q 10 2.2 1.5 −3
METNO-HIRHAM_HADCM3Q a 2.5 1.2 −4.5
METNO-HIRHAM_BCM a a a −1
SMH-HIRAC_BCM 8 3.7 2.1 −2.5
SMH-HIRHAM_HADCM3Q a 1.7 3.7 −6.5
MPI-REMO_ECHAM5 a 8.3 2.2 −5
aNo event indicated either in the past or in the future.

2244 m a.s.l., and therefore needed to be adjusted to the level of Jungfraujoch
at 3580 m a.s.l., applying a basic lapse-rate correction of 0.6◦C 100 m−1 (as an
average over the year; Rolland 2003) to adjust the air temperature of the RCM
grid box with an elevation of 2244–3580 m, the elevation of the Jungfraujoch
climate station.

In addition to the elevation adjustment, we applied a bias correction to each
RCM time series (Salzmann et al. 2007a,b). The bias relates to the difference
between the mean annual air temperature observed at Jungfraujoch for the
available time period 1960–2000 and the respective temperature of the RCM
time series (table 1). The bias correction involves only one temperature value per
RCM; different values for different seasons or months were not used.

The following analyses are based on the RCM time series with elevation
adjustment and bias correction as described above. We studied eight RCM time
series to identify periods with air temperature continuously exceeding a threshold
of +5◦C for periods of 5, 10 and 30 days, thus representing significant melting
conditions. These thresholds are based on the case studies described above, where
warm air-temperature anomalies of many days duration were observed prior to
each failure. We analysed the change in frequency of these events for the period
2001–2050 when compared with the reference period 1951–2000. The results are
shown in table 1.

Results from the eight models show a clear increase in the frequency of warm
air-temperature events in the next several decades compared with the second
half of the twentieth century (table 1). For a matrix comprising eight models
and three event types, only one model (DMI-HIRHAM5_ARPEGE) produces
a slight decrease (approx. 10%) of the 5 day events. The differences among the
model outputs are large, but most models show increases in frequency of extreme
events of about 1.5–4 times. Large increases in the frequency of warm extremes,
by a factor of 8–10, are projected by three models. In two of these three cases,
the increase is for 30 day events. On the other hand, five models show no 30 day
extreme warm events, either for the past or the future.
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4. Discussion and conclusions

Our analysis of temperature records days and weeks before several large
high-mountain rock and ice avalanches is a start in documenting this little-
investigated aspect of slope instability. A clear predictive thermal trigger is
scarcely discernable for all events. However, examination of the ensemble of
temperature conditions prior to failure for our case studies suggests that some
thermal patterns are repeated at locations as different and distant from one
another as Alaska, New Zealand and the European Alps: (i) unusually warm
temperatures over several days during the weeks or days before failure and (ii)
sudden drops of temperatures, typically below freezing, after warm periods and
hours to days before failure.

All the studied events had warm temperatures, far above freezing prior to
failure, except the 2007 Monte Rosa landslide. In most of the cases, temperatures
above freezing during summer months are not exceptional, although the observed
temperatures were far above normal. At Mt Cook, for example, the peak
temperature 3 days before failure was 8.5◦C above the long-term average.
Temperatures in the days before the April 2007 Monte Rosa rock slide were up to
4–5◦C above 1 s.d. of the long-term record. Such unusually warm periods enhance
melt of surface snow and ice. The water generated by melting can infiltrate rock
slopes via fractures and joints, increasing hydrostatic pressures and thus reducing
shear strength (Huggel et al. 2008a). Photographs taken after the 2008 Mt Steller
north slides show large amounts of water on the landslide scar, and some of the
water appears to have seeped from bedrock discontinuities. Melt water can also
penetrate to the base of steep glaciers and reduce their resistance to failure.

Temperature pattern (ii) has been inferred at the sites of the Mt Cook and
the 2005 and 2008 Mt Steller events (Huggel 2009), as well as at the site of
a rock slide in permafrost in the eastern Swiss Alps, not discussed here further
(Fischer et al. submitted a). It did not occur, however, at the 2005 Monte Rosa ice
avalanche and the 2007 Monte Rosa landslide. A sudden lowering of temperature
may favour slope failure by refreezing the surface following infiltration of melt
water into bedrock during the preceding warm period. Such ‘lock-off’ situations
are difficult to quantify owing to a lack of on-site measurements with piezometers
and other instruments (Watson et al. 2004; Willenberg et al. 2008), but have been
invoked in similar conditions (Fischer et al. submitted a,b). In this context, we
should also consider the importance of rainfall or melt of fresh snow as potential
sources of infiltrating water and slope destabilization. Accurate measurements
of precipitation at sites of high-mountain slope failures are rare and difficult
to acquire because of the large spatial variation in precipitation in areas of
high relief. The Gornergrat meteorological station is less than 10 km from
Monte Rosa, but we did not use its precipitation data for this study because
precipitation is highly variable in this region (Machguth et al. 2006). There
is more certainty at Mt Cook, where total precipitation of 48 and 11 mm,
respectively, was measured windward and leeward of Mt Cook in the week prior
to failure; this amount is not significant in a region with common, much larger
daily precipitation.

Another climate variable that was not examined in this study, but may have
an important effect on surface warming and melting, is radiation. Short-wave
radiation constitutes a major portion of the energy available for melt during
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Figure 15. A hypothetical sketch of two slope histories, shown over a relevant period of time prior
to slope failure. The dashed line indicates the critical shear strength threshold below which the
slope is unstable and failure would occur. Both slope histories are characterized by processes that
produce a gradual decrease in shear strength over long periods of time (e.g. warming at the close of
the Pleistocene) and abrupt reductions in shear strength (e.g. 1a, d, e; 2a, c, d) due, for example,
to seismic activity. Slope 2 has a lower initial shear strength due, for example, to rock type or
structure. Processes that can cause abrupt reductions in shear strength, including warm extremes
or high-intensity rainfall, only act as slope failure triggers if the shear strength is sufficiently low.

summer and may be close to 200 Wm−2 in alpine conditions (Oerlemans 2001).
In several of the cases presented here, short-wave radiation may have played a role
in melting snow and ice. For instance, air temperatures reached only −5◦C before
the failure at the site of the 2007 Monte Rosa landslide, but clear-sky conditions
resulted in high short-wave radiation that may have melted surface snow, with
possible infiltration of water into the highly fractured bedrock. Radiation may
also have played a role in the 2008 Steller and Miller landslides.

Our analysis concentrated on temperature aspects of large high-mountain
slope failures, but this is only one component of a highly complex physical
system that, in response to gradual and sudden changes in external and internal
controls, produces a slope failure. Several geological factors, including structure
and rock type, glaciation, permafrost, topography and seismicity, are important
determinants of slope stability in this environment. It is fundamental in this
context to consider the time scales involved in causative and trigger factors.
Figure 15 shows two hypothetical histories of slopes prior to failure. Slope 1 has a
higher initial shear strength corresponding, for example, to more stable geological
or topographic conditions. Geology and topography are typical predisposing
factors. The histories of both slopes are characterized by processes that gradually
reduce their shear strength over periods of decades to millennia. Short-term
events, operating over days to weeks, such as warm extremes, high-intensity
rainfall or earthquakes, can rapidly reduce the strength of the slope. However,
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these events may not necessarily trigger failure, depending on their impact and
the shear strength of the slope when they occur. Slope failure only occurs if the
potential triggering event reduces the shear strength below a critical threshold.
These events will trigger a landslide only if slope stability is already low and near
the threshold of failure.

The concept of effective time scales is particularly important when considering
bedrock permafrost and slope stability. Thermal perturbations resulting from
twentieth century warming, for instance, has now penetrated to depths of a few
decametres in high-rock slopes (Haeberli et al. 1997; Noetzli et al. 2007), whereas
short warm extremes may have an effect at a few metres depth only one or several
years later. Open fractures, however, can facilitate infiltration of water into rock
slopes and thus contribute to a much more immediate effect on slope stability.

Based on an analysis of the ENSEMBLE RCM simulations, we have found
that short periods with very high temperatures may increase 1.5–4 times in
the next several decades compared with the 1951–2000 reference period. Short-
duration warm periods may produce a critical input of water into slopes. The
projected increase in extended warm periods of up to 1 month is also of
concern because such events can lead to substantial thermal perturbation of
subsurface hydrology.

The large range in the RCM results suggests that it is difficult to provide
accurate regional climate projections, even when using the same SRES scenario
and the most advanced RCMs. Nevertheless, the projected increase in the
frequency of short-term temperature extremes is consistent with earlier findings
on heat waves on the global (Meehl et al. 2007) and European scales at the end of
the twenty-first century based on the earlier generation of Prediction of Regional
Scenarios and Uncertainties for Defining European Climate Change Risks and
Effects (PRUDENCE) RCMs (Beniston et al. 2007). Although not investigated
here, several studies have documented an increase in warm extremes, including
summer heat waves, during the twentieth century on global and regional scales
(Alexander et al. 2006; Hegerl et al. 2007). However, the limited availability of
high-quality and homogenized climate station data is an important constraint on
a more detailed analyses of extreme events (Hegerl et al. 2007).

We have performed the analysis of future warm extremes for the Alps,
motivated by the recent completion of the ENSEMBLES project that made RCM
data available for a range of models and thus allows for a better consideration of
uncertainties involved. Results found for Europe cannot directly be transformed
to our other study regions in Alaska and New Zealand. However, global
assessments show similar tendencies (Meehl et al. 2007), and we therefore assume
that our conclusions are broadly valid for these regions as well. Furthermore,
similar RCM programmes like ENSEMBLES are currently ongoing in other parts
of the world (North American Regional Climate Change Assessment Program,
NARCCAP (Mearns et al. 2009); Regional Climate Change Scenarios for South
America, CREAS (Marengo & Ambrizzi 2006)). In addition, with the World
Climate Research Programme’s Coordinated Regional Climate Downscaling
Experiment (CORDEX) initiative, RCM simulations will be available for all
continents and allow regional-scale scenario analysis worldwide.

Several aspects of the role of warm extremes in high-mountain slope stability
remain unresolved, but this study hopefully will stimulate further discussion
and research. As argued in figure 15, not every warm extreme will trigger a
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large slope failure. However, we think that large slope failures will increase
in temperature-sensitive, high-mountain areas as the number of warm extreme
events increases.

The landslides described in the case studies did not cause any major damage to
people or infrastructure, partly owing to fortunate circumstances, partly owing
to the remote location of the landslides. In densely populated and developed
mountain regions such as the European Alps, however, serious consequences have
to be considered from large slope failures. Cascading processes (e.g. landslides
impacting natural or artificial lakes producing outburst floods) are of particular
concern. With the Monte Rosa case study, it has been indicated that similar
landslides as in 2005/2007 would probably have resulted in a major disaster had
they occurred during the existence of a large glacier lake in 2002/2003.

We gratefully acknowledge photographs and satellite images provided by Manuela Uhlmann, Bruce
Molnia, Ruedi Homberger, Isabelle Gärtner-Roer, of the Earth Resources Observation and Science
Center, US Geological Survey, and further information by Gianni Mortara. Very useful comments
by John Clague and an anonymous reviewer, as well as by the editor Bill McGuire, are highly
appreciated.
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