2009

Local Well-posedness of Nonlinear Dispersive Equations on Modulation Spaces

Árpád Bényi
Western Washington University, arpad.benyi@wwu.edu

Kasso A. Okoudjou
University of Maryland

Follow this and additional works at: https://cedar.wwu.edu/math_facpubs

Part of the Mathematics Commons

Recommended Citation
https://cedar.wwu.edu/math_facpubs/51

This Article is brought to you for free and open access by the College of Science and Engineering at Western CEDAR. It has been accepted for inclusion in Mathematics by an authorized administrator of Western CEDAR. For more information, please contact westerncedar@wwu.edu.
LOCAL WELL-POSEDNESS OF NONLINEAR DISPERSIVE EQUATIONS ON MODULATION SPACES

ÁRPÁD BÉNYI AND KASSO A. OKOUDJOU

Abstract

By using tools of time-frequency analysis, we obtain some improved local well-posedness results for the NLS, NLW and NLKG equations with Cauchy data in modulation spaces \(\mathcal{M}^{0,1}_{p,s} \).

1. Introduction and statement of results

The theory of nonlinear dispersive equations (local and global existence, regularity, scattering theory) is vast and has been studied extensively by many authors. Almost exclusively, the techniques developed so far restrict to Cauchy problems with initial data in a Sobolev space, mainly because of the crucial role played by the Fourier transform in the analysis of partial differential operators. For a sample of results and a nice introduction to the field, we refer the reader to Tao's monograph \[13\] and the references therein.

In this note, we focus on the Cauchy problem for the nonlinear Schrödinger equation (NLS), the nonlinear wave equation (NLW), and the nonlinear Klein-Gordon equation (NLKG) in the realm of modulation spaces. Generally speaking, a Cauchy data in a modulation space is rougher than any given one in a fractional Bessel potential space and this low-regularity is desirable in many situations. Modulation spaces were introduced by Feichtinger in the 80s \[6\] and have asserted themselves lately as the “right” spaces in time-frequency analysis. Furthermore, they provide an excellent substitute in estimates that are known to fail on Lebesgue spaces. This is not entirely surprising, if we consider their analogy with Besov spaces, since modulation spaces arise essentially replacing dilation by modulation.

The equations that we will investigate are:

\[
\begin{align*}
(NLS) \quad & i \frac{\partial u}{\partial t} + \Delta_x u + f(u) = 0, \quad u(x, 0) = u_0(x), \quad (1.1) \\
(NLW) \quad & \frac{\partial^2 u}{\partial t^2} - \Delta_x u + f(u) = 0, \quad u(x, 0) = u_0(x), \quad \frac{\partial u}{\partial t}(x, 0) = u_1(x), \quad (1.2) \\
(NLKG) \quad & \frac{\partial^2 u}{\partial t^2} + (I - \Delta_x) u + f(u) = 0, \quad u(x, 0) = u_0(x), \quad \frac{\partial u}{\partial t}(x, 0) = u_1(x), \quad (1.3)
\end{align*}
\]

where \(u(x, t) \) is a complex valued function on \(\mathbb{R}^d \times \mathbb{R} \), \(f(u) \) (the nonlinearity) is some scalar function of \(u \), and \(u_0, u_1 \) are complex valued functions on \(\mathbb{R}^d \).

The nonlinearities considered in this paper have the generic form

\[
f(u) = g(|u|^2)u, \quad (1.4)
\]

where \(g \in \mathbb{A}_+(\mathbb{C}) \); here, we denoted by \(\mathbb{A}_+(\mathbb{C}) \) the set of entire functions \(g(z) \) with expansions of the form

\[
g(z) = \sum_{k=1}^{\infty} c_k z^k, \quad c_k \geq 0.
\]
As important special cases, we highlight nonlinearities that are either power-like
\[p_k(u) = \lambda |u|^{2k} u, \quad k \in \mathbb{N}, \lambda \in \mathbb{R}, \quad (1.5) \]
or exponential-like
\[e_\rho(u) = \lambda (e^{\rho |u|^2} - 1) u, \quad \lambda, \rho \in \mathbb{R}. \quad (1.6) \]
The nonlinearities (1.4) considered have the advantage of being smooth. The corresponding
equations having power-like nonlinearities \(p_k \) are sometimes referred to as algebraic nonlinear
(Schrödinger, wave, Klein-Gordon) equations. The sign of the coefficient \(\lambda \) determines the
defocusing, absent, or focusing character of the nonlinearity, but, as we shall see, this character
will play no role in our analysis on modulation spaces.

The classical definition of (weighted) modulation spaces that will be used throughout this
work is based on the notion of short-time Fourier transform (STFT). For \(z = (x, \omega) \in \mathbb{R}^{2d} \),
we let \(M_z \) and \(T_x \) denote the operators of modulation and translation, and \(\pi(z) = M_z T_x \)
the general time-frequency shift. Then, the STFT of \(f \) with respect to a window \(g \) is
\[V_g f(z) = \langle f, \pi(z)g \rangle. \]
Modulation spaces provide an effective way to measure the time-frequency concentration of a
distribution through size and integrability conditions on its STFT. For
\[\langle x \rangle = (1 + |x|^2)^{1/2}. \]
\[\|f\|_{\mathcal{M}^{p,q}_{s,t}} = \left(\int_{\mathbb{R}^d} \left(\int_{\mathbb{R}^d} |V_g f(x, \omega)|^p \langle x \rangle^s \langle \omega \rangle^q \, dx \right)^{q/p} \, d\omega \right)^{1/q} < \infty. \]
Here, we use the notation
\[\langle x \rangle = (1 + |x|^2)^{1/2}. \]
This definition is independent of the choice of the window, in the sense that different window
functions yield equivalent modulation-space norms. When both \(s = t = 0 \), we will simply
write \(\mathcal{M}^{p,q} = \mathcal{M}^{p,q}_{0,0} \). It is well-known that the dual of a modulation space is also a modulation
space, \((\mathcal{M}^{p,q}_{s,t})' = \mathcal{M}^{p',q'}_{-s,-t} \), where \(p', q' \) denote the dual exponents of \(p \) and \(q \), respectively. The
definition above can be appropriately extended to exponents \(0 < p, q \leq \infty \) as in the works of
Kobayashi \([9], [10] \). More specifically, let \(\beta > 0 \) and \(\chi \in \mathcal{S} \) be such that \(\text{supp} \chi \subset \{ |\xi| \leq 1 \} \) and
\[\sum_{k \in \mathbb{Z}} \hat{\chi}(\xi - \beta k) = 1, \quad \forall \xi \in \mathbb{R}^d. \]
For \(0 < p, q \leq \infty \) and \(s > 0 \), the modulation space \(\mathcal{M}^{p,q}_{0,s} \) is the set of all tempered distributions \(f \) such that
\[\left(\sum_{k \in \mathbb{Z}} \left(\int_{\mathbb{R}^d} |f \ast (M_{\beta k}\chi)(x)|^p \, dx \right)^{\frac{q}{p}} \langle \beta k \rangle^{sq} \right)^{\frac{1}{q}} < \infty. \]
When, \(1 \leq p, q \leq \infty \) this is an equivalent norm on \(\mathcal{M}^{p,q}_{0,s} \), but when \(0 < p, q < 1 \) this is just a
quasi-norm. We refer to \([9] \) for more details. For another definition of the modulation spaces
for all \(0 < p, q \leq \infty \) we refer to \([5], [16] \). For a discussion of the cases when \(p \) and/or \(q = 0 \), see \([4] \). These extensions of modulation spaces have recently been rediscovered and many of
their known properties reproved via different methods by Baoxiang et al \([1], [2] \). There exist several embedding results between Lebesgue, Sobolev, or Besov spaces and modulation spaces,
see for example \([11], [12], [14] \); also \([1], [2] \). We note, in particular, that the Sobolev space
\(H^2 \) coincides with \(\mathcal{M}^{2,2}_{1,2} \). For further properties and uses of modulation spaces, the interested
reader is referred to Gröchenig’s book \([8] \).

The goal of this note is two fold: \textit{to improve} some recent results of Baoxiang, Lifeng and
Boling \([1] \) on the local well-posedness of nonlinear equations stated above, by allowing the
Cauchy data to lie in any modulation space \(\mathcal{M}^{p,1}_{0,s}, p \geq 1, s \geq 0 \), and \textit{to simplify} the methods of
proof by employing well-established tools from time-frequency analysis; see Remark 2 below. Ideally, one would like to adapt these methods to deal with global well-posedness as well. We plan to address these issues in a future work.

For the remainder of this section, we assume that $d \geq 1, k \in \mathbb{N}, 1 \leq p \leq \infty$, and $s \geq 0$ are given. Our main results are the following.

Theorem 1.1. Assume that $u_0 \in \mathcal{M}^{p,1}_{0,s}(\mathbb{R}^d)$, and the nonlinearity f has the form (1.4). Then, there exists $T^* = T^*(\|u_0\|_{\mathcal{M}^{p,1}_{0,s}})$ such that (1.1) has a unique solution $u \in C([0,T^*], \mathcal{M}^{p,1}_{0,s}(\mathbb{R}^d))$. Moreover, if $T^* < \infty$, then $\limsup_{t \to T^*} \|u(\cdot, t)\|_{\mathcal{M}^{p,1}_{0,s}} = \infty$.

Theorem 1.2. Assume that $u_0, u_1 \in \mathcal{M}^{p,1}_{0,s}(\mathbb{R}^d)$, and the nonlinearity f has the form (1.4). Then, there exists $T^* = T^*(\|u_0\|_{\mathcal{M}^{p,1}_{0,s}}, \|u_1\|_{\mathcal{M}^{p,1}_{0,s}})$ such that (1.2) has a unique solution $u \in C([0,T^*], \mathcal{M}^{p,1}_{0,s}(\mathbb{R}^d))$. Moreover, if $T^* < \infty$, then $\limsup_{t \to T^*} \|u(\cdot, t)\|_{\mathcal{M}^{p,1}_{0,s}} = \infty$.

Theorem 1.3. Assume that $u_0, u_1 \in \mathcal{M}^{p,1}_{0,s}(\mathbb{R}^d)$, and the nonlinearity f has the form (1.4). Then, there exists $T^* = T^*(\|u_0\|_{\mathcal{M}^{p,1}_{0,s}}, \|u_1\|_{\mathcal{M}^{p,1}_{0,s}})$ such that (1.3) has a unique solution $u \in C([0,T^*], \mathcal{M}^{p,1}_{0,s}(\mathbb{R}^d))$. Moreover, if $T^* < \infty$, then $\limsup_{t \to T^*} \|u(\cdot, t)\|_{\mathcal{M}^{p,1}_{0,s}} = \infty$.

Remark 2. Theorems 1.1 and 1.2 of [1] are particular cases of Theorem 1.1 with $p = 2$ and $s = 0$.

2. **Fourier multipliers and multilinear estimates**

The generic scheme in the local existence theory is to establish linear and nonlinear estimates on appropriate spaces that contain the solution u. As indicated by the main theorems above, the spaces we consider here are $\mathcal{M}^{p,1}_{0,s}$, and we present the appropriate estimates in the lemmas below. In fact, we will need estimates on Fourier multipliers on modulation spaces. As proved in [3] and [7], a function $\sigma(\xi)$ is a symbol of a bounded Fourier multiplier on $\mathcal{M}^{p,q}$ for $1 \leq p, q \leq \infty$ if $\sigma \in W(\mathcal{F}L^1, \ell^\infty)$ (see the proof of the following lemma for a definition of this space). As we shall indicate below, this condition can be naturally extended to give a sufficient criterion for the boundedness of the Fourier multiplier operator on $\mathcal{M}^{p,q}_{0,s}$ for $0 < p, q \leq \infty$ and $s \geq 0$.

Lemma 2.1. Let σ be a function defined on \mathbb{R}^d and consider the Fourier multiplier operator H_σ defined by

$$ H_\sigma f(x) = \int_{\mathbb{R}^d} \sigma(\xi) \hat{f}(\xi) e^{2\pi i \xi \cdot x} d\xi. $$

Let $\chi \in \mathcal{S}$ such that $\text{supp} \hat{\chi} \subset \{ |\xi| \leq 1 \}$. Let $d \geq 1$, $s \geq 0$, $0 < q \leq \infty$, and $0 < p < 1$. If $\sigma \in W(\mathcal{F}L^p, \ell^\infty)(\mathbb{R}^d)$, i.e.,

$$ \|\sigma\|_{W(\mathcal{F}L^p, \ell^\infty)} = \sup_{n \in \mathbb{Z}^d} \|\sigma \cdot T_{\beta n} \chi\|_{\mathcal{F}L^p} < \infty $$

then $\|\sigma\|_{\mathcal{M}^{p,q}_{0,s}} < \infty$. Theorem 1.3.
for $\beta > 0$, then H_σ extends to a bounded operator on $\mathcal{M}^{p,q}_{0,s}(\mathbb{R}^d)$.

Proof. We use the definition of the modulation spaces given by (1.7) (see also [9]). In particular, let $\chi \in \mathcal{S}$ such that $\text{supp} \hat{\chi} \subset \{|\xi| \leq 1\}$, and define $g \in \mathcal{S}$ by $\hat{g} = \hat{\chi}^2$. Denote $\tilde{g}(x) = g(-x)$. For $f \in \mathcal{S}$, $\beta > 0$, $k \in \mathbb{Z}^d$ and $x \in \mathbb{R}^d$ we have:

$$|H_\sigma f \ast (M_{\beta k}\hat{g})(x)| = |V_g H_\sigma f(x,\beta k)|$$

$$= |\langle \hat{f}, M_{-\beta k} \hat{\chi} \rangle|$$

$$= |\langle \hat{f}, M_{-\beta k} \hat{\chi}^2 \rangle|$$

$$= |\mathcal{F}^{-1}(\sigma \cdot T_{\beta k} \hat{\chi}) \ast \mathcal{F}^{-1}(\hat{f} \cdot T_{\beta k} \hat{\chi})(x)|$$

$$\leq |\mathcal{F}^{-1}(\sigma \cdot T_{\beta k} \hat{\chi})| \ast |\mathcal{F}^{-1}(\hat{f} \cdot T_{\beta k} \hat{\chi})|(x)|$$

$$\leq |\mathcal{F}^{-1}(\sigma \cdot T_{\beta k} \hat{\chi})| \ast |f \ast (M_{\beta k} \hat{\chi})(x)|.$$

Now, observe that $\text{supp}(\sigma \cdot T_{\beta k} \hat{\chi}) \subset \beta k + \{|\xi| \leq 1\}$ and $\text{supp}(\hat{f} \cdot T_{\beta k} \hat{\chi}) \subset \beta k + \{|\xi| \leq 1\}$. Moreover, by assumption we know that $\sigma \in W(\mathcal{F}L^p, L^\infty)$ and so $\mathcal{F}^{-1}(\sigma \cdot T_{\beta k} \hat{\chi}) \in L^p$ and $f \ast (M_{\beta k} \hat{\chi}) \in L^p$. Consequently, by [9, Lemma 2.6] we have the following estimate

$$\|H_\sigma f \ast (M_{\beta k}\hat{g})\|_{L^p} \leq \|\mathcal{F}^{-1}(\sigma \cdot T_{\beta k} \hat{\chi})\|_{L^p} \|f \ast (M_{\beta k} \hat{\chi})\|_{L^p}.$$

Therefore, for $0 < q \leq \infty$ we have

$$\|H_\sigma f\|_{\mathcal{M}^{p,q}_{0,s}} \leq \sup_{k \in \mathbb{Z}^d} \|\mathcal{F}^{-1}(\sigma \cdot T_{\beta k} \hat{\chi})\|_{L^p} \|f\|_{\mathcal{M}^{p,q}_{0,s}} = \|\sigma\|_{W(\mathcal{F}L^p, L^\infty)} \|f\|_{\mathcal{M}^{p,q}_{0,s}}.$$

The result then follows from the density of \mathcal{S} in $\mathcal{M}^{p,q}_{0,s}$ for $p,q < \infty$; see [9, Theorem 3.10].

We are now ready to state and prove the boundedness of Fourier multipliers that will be needed in establishing our main results.

Lemma 2.2. Let $d \geq 1$, $s \geq 0$, and $0 < q \leq \infty$ be given. Define $m_\alpha(\xi) = e^{i|\xi|^\alpha}$. If $1 \leq p \leq \infty$ and $\alpha \in [0,2]$, then the Fourier multiplier operator H_{m_α} extends to a bounded operator on $\mathcal{M}^{p,q}_{0,s}(\mathbb{R}^d)$.

Moreover, if $\alpha \in \{1,2\}$ and $\frac{d}{\alpha+1} < p \leq \infty$, then the Fourier multiplier operator H_{m_α} extends to a bounded operator on $\mathcal{M}^{p,q}_{0,s}(\mathbb{R}^d)$.

Proof. First, we prove the result when $1 \leq p \leq \infty$, and $0 < q \leq \infty$. Let $g \in \mathcal{S}(\mathbb{R}^d)$ and define $\chi \in \mathcal{S}$ by $\hat{\chi} = g^2$. For $f \in \mathcal{S}$, we have

$$|V_\chi H_{m_\alpha} f(x,\xi)|$$

$$= \left|\int_{\mathbb{R}^d} m_\alpha(t) \hat{f}(t) e^{2\pi i x \cdot \xi} \overline{\hat{\chi}(t - \xi)} dt\right|$$

$$= \left|\int_{\mathbb{R}^d} m_\alpha(t) \mathcal{F}_\xi g(t)(\hat{f}(t))^{\ast} \hat{\chi}(t - \xi)^N \overline{\hat{\chi}(t - \xi)} e^{2\pi i x \cdot \xi} dt\right|$$

$$= \left|\int_{\mathbb{R}^d} m_\alpha(t) \mathcal{F}_{\xi} g(t)(\phi_N(t,\xi)) \overline{\hat{\chi}(t - \xi)^N} \hat{\chi}(t - \xi)^N \overline{\hat{\chi}(t - \xi)} e^{2\pi i x \cdot \xi} dt\right|$$

$$= \left|\mathcal{F} \left(m_\alpha \cdot T_\xi g \phi_N(\xi,\cdot) \right)(-x) \right|$$

$$= \mathcal{F} \left(m_\alpha \cdot T_\xi g \phi_N(\xi,\cdot) \right)(-x) \mathcal{F} \left((\hat{\chi})^N \hat{\chi}(t - \xi) \right)(-x).$$
where $N > 0$ is an integer to be chosen later, $g_N(t) = \langle t \rangle^N \overline{g}(t)$, $\phi_N(\xi, t) = \frac{\langle \xi \rangle^*}{\langle \xi \rangle \langle t - \xi \rangle^*}$, and $\langle D \rangle^* = (I - \Delta)^{-1/2}$ is the Fourier multiplier defined by $\langle D \rangle^* \hat{f}(\xi) = \langle \xi \rangle^* \hat{f}(\xi)$. We also denote by $\Phi_{2,N}(\xi, \cdot) := F_2(\phi_N(\xi, \cdot))$ the Fourier transform in the second variable of $\phi_N(\xi, \cdot)$.

We can therefore estimate the weighted modulation norm of $H_{m,n}f$ as follows:

$$
\|H_{m,n}f\|_{\mathcal{M}_{0,s}^{p,q}} = \left(\int_{\mathbb{R}^d} \left(\int_{\mathbb{R}^d} |V_x f(x, \xi)|^p \, dx \right)^{q/p} \|\xi\|^{qs} \right)^{1/q}
= \left(\int_{\mathbb{R}^d} \left(\int_{\mathbb{R}^d} \left| \mathcal{F}(m_{\alpha} \cdot T_\xi g) * \Phi_{2,N}(\xi, \cdot) * \mathcal{F}(\langle D \rangle^* f \cdot T_\xi \overline{g_N})(-x) \right|^p \, dx \right)^{q/p} \, d\xi \right)^{1/q}
\leq \left(\int_{\mathbb{R}^d} \left(\int_{\mathbb{R}^d} \left| \mathcal{F}^{-1}(m_{\alpha} \cdot T_\xi g) \right|^q \|\Phi_{2,N}(\xi, \cdot)\|_{L^1} \|\mathcal{F}(\langle D \rangle^* f \cdot T_\xi \overline{g_N})\|_{L^p} \, d\xi \right)^{1/q}
\leq \sup_{\xi \in \mathbb{R}^d} \|\mathcal{F}^{-1}(m_{\alpha} \cdot T_\xi g)\|_{L^1} \sup_{\xi \in \mathbb{R}^d} \|\Phi_{2,N}(\xi, \cdot)\|_{L^1} \left(\int_{\mathbb{R}^d} \left(\int_{\mathbb{R}^d} \left| \mathcal{F}(\langle D \rangle^* f \cdot T_\xi \overline{g_N}) \right|^q \, d\xi \right)^{1/q}
\right.
$$

Now, it follows from [3, Lemma 8] that, for $\alpha \in [0, 2]$,

$$
\sup_{\xi \in \mathbb{R}^d} \|\mathcal{F}^{-1}(m_{\alpha} \cdot T_\xi g)\|_{L^1} := \|m_{\alpha}\|_{W(\mathcal{F}L^1, \ell^{\infty})} < \infty.
$$

Moreover (see, for example, [14, Lemma 3.1] or [15, Lemma 2.1]), we can select a sufficiently large $N > 0$ such that

$$
\sup_{\xi \in \mathbb{R}^d} \|\Phi_{2,N}(\xi, \cdot)\|_{L^1} \leq \int_{\mathbb{R}^d} \sup_{\xi \in \mathbb{R}^d} |\Phi_{2,N}(\xi, x)| \, dx < \infty.
$$

Hence, using (2.1), we get

$$
\|H_{m,n}f\|_{\mathcal{M}_{0,s}^{p,q}} \leq C_n \|f\|_{\mathcal{M}_{0,s}^{p,q}}.
$$

To prove the second part of the result we shall use Lemma 2.1. In particular, we need to show that for $\alpha \in \{1, 2\}$ and $\frac{d}{s+1} < p < 1$, $m_{\alpha} \in W(\mathcal{F}L^p, \ell^{\infty})$. But this follows from modifications of the proofs of [3, Theorems 9 and 11], that we leave for the interested reader.

In analogy to the proof of the previous lemma, we can prove the following weighted version of [3, Theorem 16].

Lemma 2.3. Let $d \geq 1$, $s \geq 0$, $\frac{d}{d+1} < p \leq \infty$ and $0 < q \leq \infty$ be given, and let $m^{(1)}(\xi) = \frac{\sin(|\xi|)}{|\xi|}$ and $m^{(2)}(\xi) = \cos(|\xi|)$, for $\xi \in \mathbb{R}^d$. Then, the Fourier multiplier operators $H_{m^{(1)}}, H_{m^{(2)}}$ can be extended as bounded operators on $\mathcal{M}_{0,s}^{p,q}$.

A “smooth” version of Lemma 2.3 is obtained by replacing $|\xi|$ with $\langle \xi \rangle$.

Lemma 2.4. Let $d \geq 1$, $s \geq 0$, $\frac{d}{d+1} < p \leq \infty$ and $0 < q \leq \infty$ be given, and let $m(\xi) = e^{i\xi}$, $m^{(1)}(\xi) = \frac{\sin(|\xi|)}{|\xi|}$ and $m^{(2)}(\xi) = \cos(|\xi|)$, for $\xi \in \mathbb{R}^d$. Then, the Fourier multiplier operators H_m, $H_{m^{(1)}}, H_{m^{(2)}}$ can be extended as bounded operators on $\mathcal{M}_{0,s}^{p,q}$.

Concerning the previous two lemmas, it is worth noting that they can also be deduced from the following neat observation: if H_α is a Fourier multiplier bounded on $\mathcal{M}^{p,q}$, then H_α is also bounded on $\mathcal{M}_{0,s}^{p,q}$. By Toft’s work [15, Corollary 2.3], $\langle D \rangle^*$ is a continuous bijective map from
\(M_{0,s}^{p,q}\) to \(M^{p,q}\), with continuous inverse. Therefore, assuming that \(H_\sigma\) is continuous on \(M^{p,q}\), letting \(f \in M_{0,s}^{p,q}\) and \(g = (D)^{s}f \in M^{p,q}\), we can write
\[
\|H_\sigma f\|_{M_{0,s}^{p,q}} \simeq \|(D)^{s}H_\sigma f\|_{M^{p,q}} = \|H_\sigma((D)^{s}f)\|_{M^{p,q}} = \|H_\sigma g\|_{M^{p,q}} \lesssim \|g\|_{M^{p,q}} \simeq \|f\|_{M_{0,s}^{p,q}}.
\]

Finally, we state a crucial multilinear estimate that will be used in our proofs. Although the estimate will be needed only in the particular case of a product of functions (see Corollary 1), we present it here in its full generality that applies to multilinear pseudodifferential operators.

An \(m\)-linear pseudodifferential operator is defined à priori through its (distributional) symbol \(\sigma\) to be the mapping \(T_\sigma\) from the \(m\)-fold product of Schwartz spaces \(S \times \cdots \times S\) into the space \(S'\) of tempered distributions given by the formula
\[
T_\sigma(u_1, \ldots, u_m)(x) = \int_{\mathbb{R}^{dm}} \sigma(x, \xi_1, \ldots, \xi_m) u_1(\xi_1) \cdots u_m(\xi_m) e^{2\pi ix \cdot (\xi_1 + \cdots + \xi_m)} d\xi_1 \cdots d\xi_m,
\]
for \(u_1, \ldots, u_m \in S\). The pointwise product \(u_1 \cdots u_m\) corresponds to the case \(\sigma = 1\).

Lemma 2.5. If \(\sigma \in M_{0,0}^{1,1}((\mathbb{R}^{(m+1)d})^d)\), then the \(m\)-linear pseudodifferential operator \(T_\sigma\) defined by (2.2) extends to a bounded operator from \(M_{0,0}^{p_1,q_1} \times \cdots \times M_{0,0}^{p_m,q_m}\) into \(M_{0,0}^{p,q}\) when
\[
\frac{1}{p_1} + \cdots + \frac{1}{p_m} = \frac{1}{p_0}, \quad \frac{1}{q_1} + \cdots + \frac{1}{q_m} = m - 1 + \frac{1}{q_0}, \quad \text{and} \quad 0 < p_i \leq \infty, 1 \leq q_i \leq \infty \text{ for } 0 \leq i \leq m.
\]

This result is a slight modification of [4, Theorem 3.1]. Its proof proceeds along the same lines, and therefore it is omitted here. Note that if \(\sigma \in M_{0,0}^{1,1}\), and we pick \(u_1 = \cdots = u_m = u\) (some of them could be equal to \(\bar{u}\) since the modulation norm is preserved), \(p_1 = \cdots = p_m = mp, 0 < p \leq \infty, q_1 = \cdots = q_m = 1\) we have
\[
\|T_\sigma(u, \ldots, u)\|_{M_{0,s}^{p,q}} \lesssim \|u\|_{M_{0,s}^{mp,1}}^m \lesssim \|u\|_{M_{0,s}^{1,1}}^m,
\]
where we used the obvious embedding \(M_{0,0}^{1,1} \subseteq M_{0,0}^{mp,1}\). The notation \(A \lesssim B\) stands for \(A \leq cB\) for some positive constant \(c\) independent of \(A\) and \(B\). In particular, if we select \(\sigma = 1\) (the constant function 1), then \(\sigma \in M_{0,0}^{1,1} \subseteq M_{0,0}^{1,1}\), and we obtain

Corollary 2.6. Let \(0 < p \leq \infty\). If \(u \in M_{0,0}^{p,1}\), then \(u^m \in M_{0,0}^{p,1}\). Furthermore,
\[
\|u^m\|_{M_{0,s}^{p,1}} \lesssim \|u\|_{M_{0,s}^{p,1}}^m.
\]

This is of course just a particular case of the more general multilinear estimate
\[
\left\| \prod_{i=1}^{m} u_i \right\|_{M_{0,s}^{p_0,q_0}} \lesssim \prod_{i=1}^{m} \|u_i\|_{M_{0,s}^{p_i,q_i}},
\]
where the exponents satisfy the same relations as in Lemma 1. When we consider the power nonlinearity \(p_k(u) = \lambda|u|^{2k}u = \lambda u^{k+1}u^k\), Corollary 2.6 becomes

Corollary 2.7. Let \(0 < p \leq \infty\). If \(u \in M_{0,0}^{p,1}\), then \(p_k(u) \in M_{0,0}^{p,1}\). Furthermore,
\[
\|p_k(u)\|_{M_{0,s}^{p,1}} \lesssim \|u\|_{M_{0,s}^{p,1}}^{2k+1}.
\]

For a different proof of the estimate in Corollary 2.7, see [1, Corollary 4.2]. It is important to note that the previous estimate allows us to control all nonlinearities \(f\) of the form (1.4).
Indeed, since
\[f(u) = g([u]^2)u = \sum_{k=1}^{\infty} c_k |u|^{2k} u = \sum_{k=1}^{\infty} c_k p_k(u), \]
if we now apply the modulation norm on both sides and use the triangle inequality, we arrive at

Corollary 2.8. Let \(0 < p \leq \infty \). If \(u \in \mathcal{M}^{p,1}_{0,s} \), and \(f \) has the form (1.4), then \(f(u) \in \mathcal{M}^{p,1}_{0,s} \). Furthermore,

\[\|f(u)\|_{\mathcal{M}^{p,1}_{0,s}} \lesssim \|u\|_{\mathcal{M}^{p,1}_{0,s}} g(\|u\|_{\mathcal{M}^{p,1}_{0,s}}^2). \]

In particular, the exponential nonlinearity \(e_u \) satisfies the estimate

\[\|e_u(u)\|_{\mathcal{M}^{p,1}_{0,s}} \lesssim \|u\|_{\mathcal{M}^{p,1}_{0,s}} (e^{\|u\|_{\mathcal{M}^{p,1}_{0,s}}^2} - 1). \]

3. Proofs of the main results

We are now ready to proceed with the proofs of our main theorems. We will only prove our results for the power nonlinearities \(f = p_k \), by making use of Corollary 2.7. The case of a generic nonlinearity \(f(u) = g([u]^2)u \) is treated similarly, by now employing Corollary 2.8. In all that follows we assume that \(u : [0,T) \times \mathbb{R}^d \to \mathbb{C} \) where \(0 < T \leq \infty \) and that \(f(u) = p_k(u) = \lambda |u|^{2k} u \).

3.1. The nonlinear Schrödinger equation: Proof of Theorem 1.1

We start by noting that (1.1) can be written in the equivalent form

\[u(\cdot, t) = S(t)u_0 - iA f(u) \tag{3.1} \]

where

\[S(t) = e^{it\Delta}, \quad (Au)(t, x) = \int_0^t S(t - \tau)u(\tau, x) \, d\tau. \tag{3.2} \]

Consider now the mapping

\[\mathcal{J}u = S(t)u_0 - i \int_0^t S(t - \tau)(p_k(u))d\tau. \]

It follows from Lemma 2.2 (see also [3, Corollary 18]) that

\[\|S(t)u_0\|_{\mathcal{M}^{p,1}_{0,s}} \leq C |t^2 + 4\pi^2|^{d/4} \|u_0\|_{\mathcal{M}^{p,1}_{0,s}} \]

where \(C \) is a universal constant depending only on \(d \). Therefore,

\[\|S(t)u_0\|_{\mathcal{M}^{p,1}_{0,s}} \leq C_T \|u_0\|_{\mathcal{M}^{p,1}_{0,s}} \tag{3.3} \]

where \(C_T = (|t|^2 + 4\pi^2)^{d/4} \). Moreover, we have

\[\left\| \int_0^t S(t - \tau)(p_k(u))(\tau) \, d\tau \right\|_{\mathcal{M}^{p,1}_{0,s}} \leq \int_0^t \|S(t - \tau)(p_k(u))(\tau)\|_{\mathcal{M}^{p,1}_{0,s}} \, d\tau \leq T C_T \sup_{t \in [0,T]} \|p_k(u)(t)\|_{\mathcal{M}^{p,1}_{0,s}}. \tag{3.4} \]

By using now Corollary 2.7, we can further estimate in (3.4) to get

\[\left\| \int_0^t S(t - \tau)(p_k(u))(\tau) \, d\tau \right\|_{\mathcal{M}^{p,1}_{0,s}} \lesssim C_T T \|u(t)\|_{\mathcal{M}^{p,1}_{0,s}}^{2k+1}. \tag{3.5} \]
Consequently, using (3.3) and (3.5) we have
\[\|J u\|_{C([0,T],\mathcal{M}^{0,1}_{p,s})} \leq C_T (\|u_0\|_{\mathcal{M}^{0,1}_{p,s}} + cT \|u\|^{2k+1}_{\mathcal{M}^{0,1}_{p,s}}), \tag{3.6} \]
for some universal positive constant \(c \). We are now in the position of using a standard contraction argument to arrive to our result. For completeness, we sketch it here. Let \(B_M \) denote the closed ball of radius \(M \) centered at the origin in the space \(C([0,T],\mathcal{M}^{0,1}_{p,s}) \). We claim that
\[J : B_M \to B_M, \]
for a carefully chosen \(M \). Indeed, if we let \(M = 2C_T \|u_0\|_{\mathcal{M}^{0,1}_{p,s}} \) and \(u \in B_M \), from (3.6) we obtain
\[\|J u\|_{C([0,T],\mathcal{M}^{0,1}_{p,s})} \leq \frac{M}{2} + cC_TM^{2k+1}. \]
Now let \(T \) be such that \(cC_TM^{2k} \leq 1/2 \), that is, \(T \leq \tilde{T} (\|u_0\|_{\mathcal{M}^{0,1}_{p,s}}) \). We obtain
\[\|J u\|_{C([0,T],\mathcal{M}^{0,1}_{p,s})} \leq \frac{M}{2} + \frac{M}{2} = M, \]
that is \(J u \in B_M \). Furthermore, a similar argument gives
\[\|J u - J v\|_{C([0,T],\mathcal{M}^{0,1}_{p,s})} \leq \frac{1}{2} \|u - v\|_{C([0,T],\mathcal{M}^{0,1}_{p,s})}. \]
This last estimate follows in particular from the following fact:
\[p_k(u)(\tau) - p_k(v)(\tau) = \lambda(u - v)|u|^{2k}(\tau) + \lambda v(|u|^{2k} - |v|^{2k})(\tau). \]
Therefore, using Banach’s contraction mapping principle, we conclude that \(J \) has a fixed point in \(B_M \) which is a solution of (3.1); this solution can be now extended up to a maximal time \(T^*(\|u_0\|_{\mathcal{M}^{0,1}_{p,s}}) \). The proof is complete.

3.2. The nonlinear wave equation: Proof of Theorem 1.2

Equation (1.2) can be written in the equivalent form
\[u(\cdot,t) = \tilde{K}(t)u_0 + K(t)u_1 - Bf(u) \tag{3.7} \]
where
\[\tilde{K}(t) = \frac{\sin(t\sqrt{-\Delta})}{\sqrt{-\Delta}}, \quad K(t) = \cos(t\sqrt{-\Delta}), \quad (Bv)(t,x) = \int_0^t K(t - \tau)v(\tau,x) \, d\tau \tag{3.8} \]
Consider the mapping
\[J u = \tilde{K}(t)u_0 + K(t)u_1 - Bf(u). \]
Recall that \(f = p_k \). If we now use Lemma 2.3 (see also [3, Corollary 21]) for the first two inequalities below and Corollary 2.7 for the last estimate, we can write
\[\begin{cases} \|\tilde{K}(t)u_0\|_{\mathcal{M}^{0,1}_{p,s}} \leq C_T \|u_0\|_{\mathcal{M}^{0,1}_{p,s}}, \\ \|K(t)u_1\|_{\mathcal{M}^{0,1}_{p,s}} \leq C_T \|u_1\|_{\mathcal{M}^{0,1}_{p,s}}, \\ \|Bf(u)\|_{\mathcal{M}^{0,1}_{p,s}} \leq cT C_T \|u\|^{2k+1}_{\mathcal{M}^{0,1}_{p,s}}, \end{cases} \tag{3.9} \]
where \(c \) is some universal positive constant. The constants \(T \) and \(C_T \) have the same meaning as before. The standard contraction mapping argument applied to \(J \) completes the proof.

3.3. The nonlinear Klein-Gordon equation: Proof of Theorem 1.3

The equivalent form of equation (1.3) is
Using Lemma 2.4 and the notations above, we can write

\[u(\cdot, t) = \tilde{K}(t)u_0 + K(t)u_1 + \mathcal{C}f(u) \]

(3.10)

where now

\[K(t) = \frac{\sin t(t-\Delta)^{1/2}}{(t-\Delta)^{1/2}}, \quad \tilde{K}(t) = \cos t(I - \Delta)^{1/2}, \quad (\mathcal{C}v)(t, x) = \int_0^t K(t - \tau)v(\tau, x)d\tau. \]

(3.11)

Consider the mapping

\[\mathcal{J}u = \tilde{K}(t)u_0 + K(t)u_1 + \mathcal{C}f(u). \]

Using Lemma 2.4 and the notations above, we can write

\[
\begin{align*}
\| \tilde{K}(t)u_0 \|_{\mathcal{M}^{0,1}_{0,s}} & \leq C_T \| u_0 \|_{\mathcal{M}^{0,1}_{0,s}}, \\
\| K(t)u_1 \|_{\mathcal{M}^{0,1}_{0,s}} & \leq C_T \| u_1 \|_{\mathcal{M}^{0,1}_{0,s}}, \\
\| \mathcal{C}f(u) \|_{\mathcal{M}^{0,1}_{0,s}} & \leq C_T \| u \|_{\mathcal{M}^{0,1}_{0,s}}^{2k+1}.
\end{align*}
\]

(3.12)

The standard contraction mapping argument applied to \(\mathcal{J} \) completes the proof.

Acknowledgment. We thank the anonymous referee for thoughtful comments that helped us improve the presentation of this paper.

References

Árpád Bényi
Department of Mathematics, 516 High Street, Western Washington University, Bellingham, WA 98225
USA
arpad.benyi@wwu.edu

Kasso A. Okoudjou
Department of mathematics, University of Maryland, College Park, MD 20742
USA
kasso@math.umd.edu