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Connectivity of random k-nearest neighbour graphs

Paul Balister∗† Béla Bollobás†‡§ Amites Sarkar†¶

Mark Walters∗§¶

October 25, 2006

Abstract

Let P be a Poisson process of intensity one in a square Sn of area n. We construct
a random geometric graph Gn,k by joining each point of P to its k = k(n) nearest
neighbours. Recently, Xue and Kumar proved that if k ≤ 0.074 log n then the prob-
ability that Gn,k is connected tends to zero as n → ∞, while if k ≥ 5.1774 log n then
the probability that Gn,k is connected tends to one as n → ∞. They conjectured that
the threshold for connectivity is k = (1 + o(1)) log n. In this paper we improve these
lower and upper bounds to 0.3043 log n and 0.5139 log n respectively, disproving this
conjecture. We also establish lower and upper bounds of 0.7209 log n and 0.9967 log n

for the directed version of this problem.
A related question concerns coverage. With Gn,k as above, surround each vertex

by the smallest (closed) disc containing its k nearest neighbours. We prove that
if k ≤ 0.7209 log n then the probability that these discs cover Sn tends to zero as
n → ∞, while if k ≥ 0.9967 log n then the probability that the discs cover Sn tends
to one as n → ∞.

1 Introduction

Suppose n radio transceivers are scattered at random over a desert. Each radio is
able to establish a direct two-way connection with the k radios nearest to it. In addition,
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messages can be routed via intermediate radios, so that a message can be sent indirectly
from radio S to radio T through a series of radios S = S1, S2, . . . , Sn = T , each one having
a direct connection to its predecessor. How large does k have to be to ensure that any two
radios can communicate (directly or indirectly) with each other?

To make this precise, we define a random geometric graph G(A, λ, k) as follows. Let
P be a Poisson process of intensity λ in a region A, and join every point of P to its k
nearest neighbours. We would like to know the values of k for which the resulting graph
G(A, λ, k) is likely to be connected. Throughout this paper, distance is measured using
the Euclidean l2 norm, and is denoted by ‖ ‖.

There are two equivalent ways of viewing the problem. The first is to fix the area A
and let λ → ∞. In the second formulation, we instead fix λ = 1 and grow the region A
while keeping its shape fixed, so that the expected number of points in A again increases.
As this is the formulation we shall use, we abbreviate G(A, 1, k) to G(A, k). We shall take
A = Sn, the square of area n (not side length n), which ensures that the expected number
of points in our region is n. (However, as it turns out, the shape is essentially irrelevant.)
Thus we are interested in the values of k = k(n) for which Gn,k = G(Sn, k) is likely to be
connected, as n → ∞.

Much of the previous work on this problem has been done with the above application
(namely, to wireless ad-hoc networks) in mind. In [6, 7, 8, 12, 16, 17] the network is
modeled as a Poisson process in the plane, while in [9] the nodes (or transceivers) are
located along a line.

Before we get to our main results, we observe that two essentially trivial arguments
give the right order of magnitude for k: specifically, that there exist positive constants c1

and c2 so that if k ≤ c1 log n then the probability that Gn,k is connected tends to zero as
n → ∞, and if k ≥ c2 log n then the probability that Gn,k is connected tends to one as
n → ∞. (All logarithms in this paper are to base e). Throughout this paper, we shall say
that an event occurs with high probability (whp) if it occurs with probability tending to
one as n → ∞. Thus, if k ≤ c1 log n then Gn,k is disconnected whp, and if k ≥ c2 log n
then Gn,k is connected whp.

Let us tessellate the square Sn with small squares Qi of area log n − O(1), where the
(positive) O(1) term is chosen so that the side length of Qi exactly divides that of Sn.
Then the probability that a small square contains no points of the process is e− log n+O(1) =
O(n−1) = o( log n

n
), so that whp every small square contains at least one point. Using the

inequality r! > (r/e)r, the probability that a disc of radius
√

5 log n (area 5π log n) contains
more than k = ⌊5πe log n⌋ < 42.7 log n points is at most

e−5π log n
(

(5π log n)k+1

(k+1)!

)

(

1 + 5π log n
k+2

+ . . .
)

< e−5π log n(1 + e−1 + e−2 + . . . ) = o(n−1),
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so that whp every point has at most k points within distance
√

5 log n. Thus whp every
point of Gn,k contained in a square Qi, is joined to every point in Qi, and also to every
point in every adjacent square. This is enough to make Gn,k connected.

Further, if k is much smaller than log n, then whp Gn,k will not be connected. For
consider a configuration of three concentric discs D1, D3 and D5, of radii r, 3r and 5r
respectively, where πr2 = k +1. Call the configuration bad if (I) D1 contains at least k +1
points, (II) the annulus D3 \ D1 contains no points, and (III) the intersection of D5 \ D3

with any disc of radius 2r centered at a point P on the boundary of D3 contains at least
k + 1 points. Now if a bad configuration occurs anywhere in Gn,k, then Gn,k will not be
connected, because the k nearest neighbours of a point in D1 all lie within D1 and the k
nearest neighbours of a point outside D3 all lie outside D3. Hence there will be no edge of
Gn,k connecting D1 to Sn \ D3. Condition (I) holds with probability approximately 1/2,
condition (II) holds with probability e−8(k+1), and condition (III) holds with probability
1 − o(1) since a disc of radius 2r around a point on the boundary of D3 is very likely
to contain at least 2(k + 1) points. Hence for k ≤ (1 − ε)(log n)/8, the probability of a
configuration being bad is p ≥ (1/2− o(1))n−1+ε. Since we can fit Cn

log n
copies of D5 in Sn,

and each is bad independently with probability p, the probability that Gn,k is connected
is at most

(1 − p)
Cn

log n ≤ exp(−C ′nε/ log n) → 0,

for k ≤ (1 − ε)(log n)/8.
These elementary arguments indicate that we should focus attention on the range

k = Θ(log n). Indeed, defining cl and cu by

cl = sup{c : P(Gn,⌊c log n⌋ is connected) → 0},

and
cu = inf{c : P(Gn,⌊c log n⌋ is connected) → 1},

we have just shown that
0.125 ≤ cl ≤ cu ≤ 42.7.

By making use of a substantial result of Penrose [13], Xue and Kumar [18] improved the
upper bound to

cu ≤ 5.1774,

although a bound of

cu ≤
{

2 log
(

4π/3+
√

3/2

π+3
√

3/4

)}−1

≈ 3.8597

can be read out of earlier work of Gonzáles-Barrios and Quiroz [5].
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It seems likely that cl = cu = c, and Xue and Kumar asked whether or not c = 1. In
this paper we improve the above bounds considerably, disproving this conjecture.

The methods used in this paper are new and specific to this problem — however, it is
interesting to compare our results with those relating to two similar problems. The first
also concerns a Poisson process of intensity 1 in a region A. This time we join each point
to all other points within a radius r, obtaining the graph Gr(A): we shall refer to this as
the disc model. This model originated in a paper of Gilbert [4]. He considered the model
in the infinite plane, and was interested in the probability Pr(∞) that an arbitrary vertex
of Gr(R

2) belongs to an infinite component. Define rcrit to be the supremum of the r for
which Pr(∞) = 0. Gilbert showed that

1.75 ≤ πr2
crit ≤ 17.4.

Simulations [1, 15] suggest πr2
crit ≈ 4.512. The study of Gr(R

2) is known as continuum
percolation, and is the subject of a monograph by Meester and Roy [11]. Many authors
reserve the phrase “random geometric graphs” for the graphs Gr(A): however we shall use
it in a more general context, so that it includes the graphs Gn,k as well.

Regarding connectivity, Penrose [13] showed that if A = Sn and πr2 = c log n, so that
each point has on average c log n neighbours, then there is a critical value of c, in the sense
described above, and that it equals one. This is the result used by Xue and Kumar in the
work cited above. There is an analogous result for classical random graphs: if in a random
graph G = G(n, p) the average degree is c log n, then if c < 1, whp G is not connected,
while if c > 1, whp G is connected. In both cases, the obstruction for connectivity is the
existence of isolated vertices, in the sense that whp the graph becomes connected as soon
as it has no isolated vertices.

In our problem we expressly forbid isolated vertices, indeed, each vertex has degree at
least k. Thus the obstruction for connectivity must involve more complicated extremal
configurations, making it harder to obtain precise results. Another complication is that
the average vertex degree is not exactly k, but somewhere between k and 2k. (In fact,
it is easy to show that for k → ∞, the average degree is (1 + o(1))k.) This motivates
the study of the directed case, where, in a Poisson process of intensity 1 in a region A,
we place directed edges pointing away from each point towards its k nearest neighbours.
This ensures that in the resulting graph ~G(A, k), every vertex has out-degree exactly k.
Again, we shall only consider the case A = Sn: we further let k = ⌊c log n⌋ and write
~Gn,k = ~G(Sn, k). In this variant, we wish to know how large c should be to guarantee a
directed path between any two vertices whp. Clearly the threshold value of c, if it exists,
will be as least as large as in the undirected case. We provide upper and lower bounds for
this problem as well.
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At first sight it might seem that the following random graph problem might shed some
light on the situation: in a graph on n vertices, join each vertex to k randomly chosen
others. For what values of k is the resulting graph Gn,k-out connected whp? Surprisingly,
this question was posed by Ulam [10] in 1935 — see also page 40 of [2]. Here also we have
expressly forbidden isolated vertices, however, it is easy to show that even k = 2 is enough
to ensure connectivity whp. In contrast, for the directed version of the problem, where we
send a directed edge from each vertex to k randomly chosen others, and ask for a directed
path between any two vertices, we need k ≈ log n, the main obstruction to connectivity
being vertices with zero in-degree.

All our results will apply not only for Poisson processes, but also for n points placed in
a square of area n with the uniform distribution. Indeed, one can view our Poisson process
as simply the result of placing X points in the square, where X ∼ Po(n). For more details,
see [13] and [18].

2 Results

Our main result concerns the undirected random geometric graph Gn,k.

Theorem 1. If c ≤ 0.3043 then P(Gn,⌊c log n⌋ is connected) → 0 as n → ∞. If c >
1/ log 7 ≈ 0.5139 then P(Gn,⌊c log n⌋ is connected) → 1 as n → ∞. Thus

0.3043 ≤ cl ≤ cu ≤ 0.5139.

The lower bound appears as Theorem 5, while the upper bound is Theorem 13. The
lower bound argument is essentially a modification of that given in the introduction, while
the proof of the upper bound is more involved.

For the directed graph ~Gn,k, we have the following result. (A directed graph is connected
if, given any two vertices x and y, there is a directed path from x to y.)

Theorem 2. If c ≤ 0.7209 then P(~Gn,⌊c log n⌋ is connected) → 0 as n → ∞. If c ≥
0.9967 then P(~Gn,⌊c log n⌋ is connected) → 1 as n → ∞.

Finally, let Pn be a Poisson process giving rise to the random geometric graph Gn,k. For
a vertex in x ∈ V (Gn,k), we define the disc Bk(x) to be the smallest closed disc containing
the k nearest neighbours of x. Thus, in Gn,k, x is (almost surely) joined to every vertex in
its disc Bk(x). We say that Pn is a k-cover if the discs Bk(x) cover Sn, and we prove the
following result in Section 6.

Theorem 3. If c ≤ 0.7209 then P(Pn is a ⌊c log n⌋-cover) → 0 as n → ∞. If c ≥
0.9967 then P(Pn is a ⌊c log n⌋-cover) → 1 as n → ∞.
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3 Lower bounds

For any region S ⊆ R
2, write |S| for the Lebesgue measure of S. We start by proving

a useful lemma.

Lemma 4. Let A1, . . . , Ar be disjoint regions of R
2 and ρ1, . . . , ρr ≥ 0 real numbers

such that ρi|Ai| ∈ Z. Then the probability that a Poisson process with intensity 1 has
precisely ρi|Ai| points in each region Ai is

exp

{

r
∑

i=1

(ρi − 1 − ρi log ρi)|Ai| + O(r log+

∑

ρi|Ai|)
}

with the convention that 0 log 0 = 0, and log+ x = max(log x, 1).

Proof. Let ni = ρi|Ai|. The probability in question is given exactly by

p =
r

∏

i=1

(

e−|Ai| |Ai|ni

ni!

)

.

Taking logarithms and using Stirling’s formula gives

log p =
r

∑

i=1

(

−|Ai| + ni log |Ai| − ni log ni + ni + O(log+ ni)
)

=
r

∑

i=1

(ni − |Ai| − ni log ρi) + O(r log+ max ni)

=
r

∑

i=1

(ρi − 1 − ρi log ρi) |Ai| + O(r log+

∑

ρi|Ai|).

Theorem 5. If c ≤ 0.3043 then P(Gn,⌊c log n⌋ is connected) → 0 as n → ∞.

Proof. We first illustrate the proof with a simpler proof that c < c0 = 1/(log 50
18

+
8 log 25

18
) ≈ 0.2739 suffices. Let D be a disc with radius 5r0. Let A1 be a concentric disc

with radius r0, A2 a concentric annulus with radii r0 and 3r0, and divide the remaining
area A of D into N − 2 regions A = ∪3≤i≤NAi, with each Ai of diameter at most εr0 (see
Figure 1). Define densities ρi by ρ1 = 2ρ = 50

18
, ρ2 = 0, and ρi = ρ = 25

18
for i ≥ 3. Suppose

that ρi|Ai| ∈ Z and exactly ρi|Ai| points lie in each Ai. (Note that
∑

ρi|Ai| = |D|, so the

6
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Figure 1: Lower bound, undirected case.

number of points in D is as expected.) Pick a point x at radius r ≥ 3r0 from the centre
of D. Let Dx be the disc about x of radius r − (1 + ε)r0. Then x is at least εr0 closer
to all points in Dx than to any point in A1. If r = 3r0 and ε is sufficiently small, then
|Dx ∩ A| ≥ (1/2 + δ)|Dx| for some δ > 0, independent of ε. Hence for sufficiently small
ε, |Dx ∩ A| ≥ 2|A1|. If you move the point x radially outwards from the centre of D,
the discs Dx form a nested family. Thus |Dx ∩ A| ≥ 2|A1| for all x. If some Ai, i ≥ 3,
intersects Dx ∩ A, then all points in Ai are closer to x than any point of A1. Hence the
2|A1|ρ = ρ1|Ai| points of the Poisson process closest to x all lie outside A1. Clearly, if
x ∈ A1 then any point in A1 is closer to x than any point outside A1. Hence if we choose
r0 so that ρ1|A1| = k+1 = ⌊c log n⌋+1, the points in A1 form a component. If Sn contains
such a configuration then Gn,k is disconnected.

Now ρ1|A1| = k + 1, ρ2|A2| = 0, and
∑

ρi|Ai| = 9ρ1|A1| = 9(k + 1) are all integers. It
is easy to see that if n (and hence k and r0) are large enough, one can choose the regions
Ai, i ≥ 3, so that (i) ρi|Ai| ∈ Z for all i, (ii) the diameters of the Ai, i ≥ 3, are at most εr0,
and (iii) the number of regions N is bounded above by some function of ε, independently
of n. By Lemma 4, the probability of each Ai containing exactly ρi|Ai| points is

p = exp
{

−
(

log 50
18

+ 8 log 25
18

)

ρ1|A1| + O(N log |D|)
}

= n−c/c0+o(1).

Since we can place Θ(n/ log n) disjoint regions D in Sn, the probability of at least one such
configuration occurring in Sn tends to one as n → ∞ when c < c0.

To improve this bound, fix α with 0 < α ≤ 1
3
. Let ε ∈ (0, α) and assume the circles in

Figure 1 now have radii (α − ε)r0, r0 and (2 − α)r0 respectively. Let A1 be the inner disc
of radius (α− ε)r0, let A2 be the surrounding annulus with outer radius r0, and divide the
remaining area A into regions Ai, i = 3, . . . , N , each with diameter at most εr0, and area
at least 1. (Certainly possible if εr0 is sufficiently large.) We shall define a function ρ(r)
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that gives the approximate density of points in the regions Ai. Let B be the disc of radius
αr0 about O, so B is just a little larger than A1. For r ≤ αr0, ρ(r) will be a constant,
and we shall require exactly ρ1|A1| = ⌊ρ(r)|B|⌋ + 1 points of P in A1. For αr0 < r < r0,
ρ(r) = 0, and we shall require that A2 have no points of the process. For r ≥ r0, ρ(r) will
be a continuous function, and the number of points in Ai will be ρi|Ai| = ⌊

∫

Ai
ρ(r) dA⌋+1,

where r is the distance to the centre O of D. The function ρ(r) will be determined later,
but will be of the form ρ(r) = ρ0(r/r0) where ρ0 may depend on α, but will be independent
of n, r0 and ε. We shall also see that | log ρ(r)| is bounded on B ∪ A. We now perform a
similar calculation to above, requiring at least k + 1 points in A1 and for each point x at
distance r ≥ r0 from O, at least k + 1 points in A closer to x than any point of A1. As
before, the worst case is when x is at distance r = r0 from O, and it is enough to ensure
that there are at least k + 1 points in sets Ai that intersect the disc D(1−α)r0(x) of radius
(1 − α)r0 about x. Thus it is enough if

∫

D(1−α)r0
(x)∩A

ρ dA ≥ c log n. Define

g(r) = 1
π

cos−1
(

r2+r2
0−(1−α)2r2

0

2r0r

)

,

which is the proportion of the circle of radius r, centre O, that lies in D(1−α)r0(x). Hence

∫

D(1−α)r0
(x)∩A

ρ dA =

∫ (2−α)r0

r0

ρ(r) 2πrg(r) dr =

∫

A

ρg dA.

Thus it is enough to impose the following conditions on ρ(r).
∫

B

ρ dA =

∫

A

ρg dA = c log n. (1)

Let δε bound the variation of ρ log ρ across any of the sets Ai, i ≥ 3. By the above
assumptions, we can choose δε independently of r0 and n, with δε → 0 as ε → 0. Now by
Lemma 4, the probability p of such a configuration occurring is given by

− log p =

∫

D

(ρ − 1 − ρ log ρ) dA + O(N log |D| + N + δε|D| + εc(log n)/α), (2)

where the error terms include the error term of Lemma 4 plus N − 2 error terms of
magnitude O(1+δε|Ai|) and one of magnitude O(1+ερ1|A1|/α) arising from the differences
between

∫

Ai
(ρ − 1 − ρ log ρ) dA and (ρi − 1 − ρi log ρi)|Ai| for i = 1, . . . , N .

The function ρ(r) is chosen to maximize the above integral subject to (1). Using the
method of Lagrange multipliers, we maximize

∫

D

(ρ − 1 − ρ log ρ) dA − µ

∫

B

ρ dA − ν

∫

A

ρg dA. (3)

8



By applying the calculus of variations, we obtain

ρ(r) =











exp(µ) if r ≤ αr0;

0 if r ∈ (αr0, r0);

exp(νg(r)) if r ≥ r0,

(4)

where the constants µ and ν are chosen so that
∫

B

ρ dA =

∫

A

ρg dA and

∫

D

(ρ − 1) dA = 0.

(The second condition comes from varying the scale r0, which implies that the expression
(3) should equal zero.) It is easy to check that each value of α gives a unique value of µ
and ν, and the conditions assumed for ρ(r) above do indeed hold. Also, |D| = O(log n)
and N = O(ε−2), so by taking, say, ε ∼ (log n)−1/3, εr0 → ∞ and the error term in
(2) is o(log n). Substituting into (2) we get − log p = (c(µ + ν) + o(1)) log n. Since we
can place Θ(n/ log n) disjoint copies of D inside Sn, Gn,k is disconnected whp whenever
c < (µ + ν)−1. Finally, optimizing over α gives a value of (µ + ν)−1 just larger than 0.3043
when α = 0.3302.

Note that we were lucky that the optimum value of α was less than 1
3
. For α > 1

3
the

distances between points in A1 could be larger than the distance from A1 to A. Hence
we would need more points in A1, and we would need to cut A1 into smaller regions with
varying densities in a similar manner to that done with A.

Theorem 6. If c ≤ 0.7209 then P(~Gn,⌊c log n⌋ is connected) → 0 as n → ∞.

Proof. We first illustrate the proof with a simpler proof that c < c1 = 1/(6 log 4
3
) ≈

0.5793 suffices. Let D be a disc with radius 2r0 and centre O. Set A1 to be a disc about O
with radius εr0, A2 an annulus with centre O and radii εr0 and r0, and divide the remaining
annulus A of D into regions A3, . . . , AN , each with diameter at most εr0 (see Figure 2).
Define densities ρi by ρ2 = 0, and ρi = ρ = 4

3
for i ≥ 3. Suppose that there is one point

of the Poisson process in A1 and ρi|Ai| points of the Poisson process lie in each Ai for
i ≥ 2. Pick a point x at distance r ≥ r0 from O and let Dx be the disc about x of radius
r−2εr0. Then x is at least εr0 closer to every point in Dx than to A1. As r moves radially
outwards, Dx ∩ A increases, so |Dx ∩ A| is at least as large as when r = r0. In this case
|Dx ∩ A| > πr2

0/2 for sufficiently small ε. If some Ai, i ≥ 3, intersects Dx ∩ A then all
points in Ai are closer to x than O, so the ρπr2

0/2 closest points to x lie outside A1. Choose
r0 so that ρπr2

0/2 = k + 1 = ⌊c log n⌋+ 1. Then the unique point in A1 has zero in-degree,

so if Sn contains such a configuration then ~Gn,k is disconnected. As before, fixing ε > 0

9
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Figure 2: Lower bound, directed case.

and assuming n is sufficiently large, once can choose the Ai so that ρi|Ai| ∈ Z, and N is
bounded by a function of ε, independently of n. Now by Lemma 4, the probability of such
a configuration is

p = exp
{

−4πr2
0 log 4

3
+ O((log |A1|)/|A1|) + O(N log |D|)

}

= n−c/c1+o(1).

Since we can find Θ(n/ log n) disjoint copies of D in Sn, the probability of at least one
such configuration occurring tends to 1 as n → ∞ provided c < c1.

To improve this bound, we follow the proof of Theorem 5 and make the assumption
that the ρi are given by a function ρ(r) of the distance r to the centre of D. We shall
define the Ai exactly as in Theorem 5 with a small α > 0, but insist now that A1 contains
precisely one point of P, and ρ(r) = 0 for all r < r0. We obtain (2) again (with the last
term in the error estimate replaced with log |A1|), which we wish to maximize subject to
the conditions ρ(r) = 0 for r ≤ r0 and

∫

A
ρg dA = c log n. To do this we maximize (3)

without the µ
∫

B
ρ dA term. After optimizing we obtain

ρ(r) =

{

0 if r ≤ r0;

exp(νg(r)) if r > r0,

where ν = ν(α) is chosen so that
∫

D
(ρ − 1) dA = 0. On substituting back into (2) and

choosing ε ∼ (log n)−1/3, this gives − log p = (cν + o(1)) log n. As before, we can find

Θ(n/ log n) disjoint discs D. Hence provided c < ν−1, ~Gn,k is disconnected whp, with an
isolated point as an in-component. Finally, for sufficiently small α, ν−1 is just larger than
0.7209.
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4 Upper bounds

In this section we shall establish upper bounds for the directed and undirected cases.
The basic arguments are simple, but, in both cases, the situation is complicated by points
near the boundary. In principle these should be less of a problem than in the disc model:
unfortunately, for both problems the most natural arguments run into trouble at the bound-
ary. For the moment we shall ignore boundary effects, and assume that all points are nor-
mal: a point P is normal if the smallest circle containing its k nearest neighbours does not
intersect the boundary. This excludes O(

√
n log n) points from consideration, and enables

us to give the following “one line” argument.

Theorem 7. Let c > 1
log 2

≈ 1.4427. Then the probability that Gn,⌊c log n⌋ contains a
component consisting entirely of normal points tends to zero as n → ∞.

Proof. Suppose that Gn,⌊c log n⌋ has a component G′ containing only normal points. Let
P be a northernmost point of G′. Then P is “extreme” in the sense that its k = ⌊c log n⌋
nearest neighbours all lie below it. The probability that a normal point is extreme is 2−k,
and so the expected number of extreme normal points is at most n2−k = o(1). Thus the
probability of such a G′ arising tends to zero as n → ∞.

As an aside, we can consider the analogous problem on the torus, rather than the
square Sn. Unfortunately, the above proof does not show that the corresponding graph on
the torus is connected whp for c > 1

log 2
, since a component on the torus need not have

any extreme points.
Next we establish an upper bound. The proof splits into two parts. In the first

(Lemma 12) we show that there do not exist two “large” components; indeed we show
that even if k is far smaller than log n then these components do not exist. Secondly we
show that there are no small components.

We shall use the following simple lemma that bounds the edge lengths. There are many
results in the literature bounding the Poisson distribution; we give a simple bound in a
form convenient for our needs.

Lemma 8. Fix c > 0, and set

c− = ce−1−1/c and c+ = 4e(1 + c).

If r and R are such that πr2 = c− log n and πR2 = c+ log n, then whp every vertex in
Gn,⌊c log n⌋ is joined to every vertex within distance r, and no vertex is joined to a vertex at

distance more than R. The same is true for the directed model ~Gn,⌊c log n⌋.

11



Proof. This lemma will follow from simple properties of the Poisson distribution. Write
Dρ(P ) for the open disc of radius ρ centred at P . Fix k = ⌊c log n⌋, and suppose that
a vertex P of Gn,k is not joined to every other vertex of Gn,k in Dr(P ) ∩ Sn, where
πr2 = c− log n = λ. Then Dr(P ) ∩ Sn, which has area at most λ, contains at least k
additional vertices of Gn,k. The probability p of this happening can be bounded as follows
(by comparison with a geometric series):

p = e−λ

∞
∑

l=k

λl

l!
< e−λ k

k − λ

λk

k!
< e−λ k

k − λ

(

λe

k

)k

=
c

c − c−
nc(log(c−/c)+1)−c−(1 + o(1)),

which is o(n−1) provided

c− < c and c log(c−/c) + c − c− < −1,

which is true for c− as in the statement of the theorem.
Since the expected number of vertices in Sn is n, the expected number of vertices P such

that Dr(P ) ∩ Sn contains at least k additional vertices is o(1), and hence the probability
that there is any such vertex P in Gn,k is o(1) as claimed.

The proof of the upper bound is almost the same. Let R satisfy πR2 = c+ log n. If a
vertex is joined to another at distance at least R then the circle of radius R about one of
the two, P say, contains at most k additional vertices of Gn,k. The area of DR(P ) ∩ Sn

is at least πR2/4 = (c+/4) log n = λ, so the probability p that this occurs for a particular
vertex can be bounded by

p = e−λ

k
∑

l=0

λl

l!
< e−λ λ

λ − k

λk

k!
< e−λ λ

λ − k

(

λe

k

)k

=
c+

c+ − 4c
nc(log(c+/4c)+1)−c+/4(1 + o(1)),

which is o(n−1) provided

c+ > 4c and c log(c+/4c) + c − c+/4 < −1,

which is true for c+ as in the statement of the theorem (using the inequality log((c+1)/c) ≤
1/c). Hence, the probability we have any such vertex P is o(1).

Remark. Although we only claim that the above result holds whp, much more is true:
indeed, for any fixed constant K, we can find c− and c+ such that it holds with probability
1 − O(n−K).

The next two lemmas state simple facts about the components of Gn,k.

Lemma 9. No two edges belonging to different components of Gn,k may cross.

12



Proof. Let G1, G2, . . . , GN be the components of Gn,k. Suppose that i1i2 = ei ∈ E(Gi)
and j1j2 = ej ∈ E(Gj), for i 6= j, and that ei and ej cross. Then, considering ei, if i2 is one
of the kth nearest neighbours of i1, then ‖j1 − i1‖ > ‖i1 − i2‖, while if i1 is one of the kth
nearest neighbours of i2, then ‖j1 − i2‖ > ‖i1 − i2‖. Therefore, in either case, ei is not the
longest edge of the triangle i1i2j1, and so the angle i1j1i2 is less than π

2
. But this applies

to all four angles of the quadrilateral i1j1i2j2, which gives a contradiction.

Lemma 10. With r as in Lemma 8, whp the distance between any two edges belonging
to different components of Gn,k is at least r/2.

Proof. As before, let G1, G2, . . . , GN be the components of Gn,k, and let i1i2 = ei ∈
E(Gi) and j1j2 = ej ∈ E(Gj), for i 6= j. Since ei and ej do not cross, the distance between
them is attained at a vertex of one of them, say j1, and thus, we need only show that j1 is
not within distance r/2 of ei.

Suppose otherwise. Let z be the foot of the perpendicular from j1 onto the line through
i1i2, so that ‖j1 − z‖ ≤ r/2. If z does not lie between i1 and i2 then the minimum
distance between ei and j1 is attained at one of the endpoints of the edge, say i1, and thus
‖i1 − j1‖ ≤ r/2, so that the edge i1j1 is in Gn,k, by Lemma 8. Now suppose z does lie
between i1 and i2, and assume that the edge ei is present because i2 is one of the k nearest
neighbours of i1. Suppose that z lies within distance r/2 of i2. Then

‖i2 − j1‖ ≤ ‖i2 − z‖ + ‖z − j1‖ ≤ r
2

+ r
2

= r,

and thus, by Lemma 8, the edge i2j1 is contained in G. Otherwise,

‖z − i2‖ > r
2
≥ ‖z − j1‖,

and so

‖i1 − j1‖ ≤ ‖i1 − z‖ + ‖z − j1‖ = (‖i1 − i2‖ − ‖i2 − z‖) + ‖z − j1‖ < ‖i1 − i2‖

so that, since i1i2 is an edge, so is i1j1. In each case j1 is in the same component as ei.

Next we need a geometric lemma.

Lemma 11. Let Λl be the graph of the l×l square integer grid {1, . . . , l}2 ⊂ R
2 with all

the unit length edges. Suppose that A ⊂ V (Λl) with both A and Ac = V (Λl) \ A connected
in Λl. Let ∂A denote the set of vertices of Ac that are adjacent to vertices of A. Then the
set ∂A is diagonally connected, i.e, connected if we include all edges of length ≤

√
2.
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Proof. Let B be the set of edges from an element of A to an element of Ac and let
B′ be the corresponding edges in the dual lattice. If we consider B′ as a subgraph of the
dual lattice then every vertex has even degree except those vertices corresponding to the
boundary of Λl. Thus we can decompose B′ into edge disjoint subgraphs each of which is
either a cycle, or a path starting and ending at the boundary. Any such cycle or path splits
Λl into two components. Since all of any connected set must lie in the same component,
we see that all of A lies in the same component and all of Ac lies in the same component.
This implies that the cycle or path partitions Λl into exactly A and Ac, and hence is all
of B′. Thus ∂A is diagonally connected and the result follows.

The following lemma asserts that there are no two large components.

Lemma 12. Fix c > 0. Then, there exists a constant c′ such that the probability that
Gn,⌊c log n⌋ contains two components each of (Euclidean) diameter at least c′

√
log n tends to

zero as n → ∞.

Proof. Fix c′ to be chosen later, and let D = c′
√

log n. Let c− be as in Lemma 8 and
r satisfy πr2 = c− log n. By Lemma 8 whp every vertex is joined to every other vertex
within distance r. Thus, we may ignore all configurations for which this does not hold.
Also by assumption and the definition of D there exist two components, G1 and G2 of
G = Gn,⌊c log n⌋, each of diameter at least D. Let G3 be the rest of the vertices.

We tessellate the square Sn with squares of side r/
√

20; letting l =
√

20n/r, we identify
the squares with the square grid Λl = Z

2
l . (Here, and in the proof of Lemma 14, we assume

for convenience that r/
√

20 divides
√

n.) We colour the squares as follows. Colour red any
square containing a vertex of G1 or intersecting an edge of G1. Colour blue any square
containing a vertex of G2 or intersecting an edge of G2. Colour black the remaining squares
containing a vertex. All other squares we call empty and colour white. This colouring is
well defined by Lemma 10. The same lemma also shows that a red square can only be
adjacent to another red square or an empty square, since any two points in adjacent squares
must be within distance

√
5(r/

√
20) = r/2. In addition, the set of red squares and the set

of blue squares each forms a connected component in Λl.
Since G1 and G2 have diameter at least D, the squares have diameter

√
2r/

√
20 < r,

and the set of red squares and the set of blue squares are each connected there must be at
least D/r red squares and D/r blue squares.

Let U be the set of red squares and let V = U c be the complement of U . V splits into
components V1, V2, . . . , Vs for some s ≥ 1. Since the blue squares are connected, at most
one of these components, say V1, can contain blue squares.

Let U1 = V c
1 ; i.e., U and all the components of U c that do not contain any blue squares.

Note that both U1 and U c
1 are connected, and each contains at least D/r squares, since all

14



the red squares lie in U1 and all the blue squares lie in V1 = U c
1 .

Let ∂U1 be the set of squares not in U1, but adjacent to at least one square in U1. Each
square in ∂U1 is empty, and the set ∂U1 is a diagonally connected component of squares,
since both U1 and U c

1 = V1 are connected.
By the vertex isoperimetric inequality in the grid [3],

|∂U1| ≥ min{
√

2|U1|,
√

2|U c
1 |} ≥ (D/r)1/2.

Hence, if we have G1, G2 both with diameter at least D we can find a set connected in Λl

of size K = (D/r)1/2 = 4
√

πc′2/c− consisting entirely of empty squares. To complete the
proof we just need to show that such a set is unlikely to exist.

We use the following graph theoretic lemma. For any graph G with maximum degree ∆,
the number of connected subsets of size n containing a particular vertex v0 is at most (e∆)n.

Define Λ∗
l as the graph with vertex set Λl and edges joining diagonally connected

vertices. The graph Λ∗
l has maximum degree 8, so the number of connected sets of K

squares in Λ∗
l containing a particular square is at most (8e)K . There are l2 ≤ n squares

in Λl so the total number of connected sets of size K is at most n(8e)K . Therefore the
probability p that any connected set K consists entirely of empty squares satisfies

p ≤ n(8e)Ke−Kr2/20

≤ n exp
(

K(log(8e) − r2/20)
)

≤ n1−Kc−/20π+o(1)

which tends to zero provided we chose c′ and thus K large enough. Hence the probability
that there are two components with diameter at least D tends to zero as n tends to
infinity.

Theorem 13. If c > 1
log 7

≈ 0.5139, then P(Gn,⌊c log n⌋ is connected) → 1 as n → ∞.

Proof. Let k = ⌊c log n⌋. We shall show that for any fixed c′ > 0 there is no component
G′ of G = Gn,k with diameter less than c′

√
log n whp. This, together with Lemma 12, will

prove the result. By Lemma 8 we may assume that the k nearest neighbours of any point
all lie within distance R, where πR2 = c+ log n.

Firstly let us assume such a small component G′ exists and that G′ contains only normal
points. Consider the six tangents to the convex hull of G′ which are inclined at angles 0,
π
3
, and 2π

3
to the horizontal. These tangents form a hexagon H containing G′, as shown

in Figure 3, and each tangent ti intersects G′ in a point Pi ∈ V (G′) (some of the Pi may
coincide). The exterior angle bisectors of H divide the exterior of H into six regions Hi,
each of which is bounded by two bisectors and ti. Consider the smallest disc Di centered
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Figure 3: The hexagon H

at Pi and containing its k nearest neighbours. By assumption, all the Di are contained
in Sn. Write Ai = Hi ∩Di. Without loss of generality, |A1| ≤ |Ai| for all i, so that, writing
A = H ∩ D1 and noting that |A| ≤ |A1| (since A1 does not meet the boundary of Sn), we
obtain |A| ≤ 1

7
|A ∪ (∪iAi)|. Now we require that there are exactly k points in the region

A ∪ (∪iAi), and that they all lie within A. The probability of this happening is at most
7−k. However, the number of choices for the regions A, Ai, can be estimated as follows.
There are O(n) choices for the point P1 (whp), and, fixing P1, there are whp O(log n)
choices for each P2, . . . , P6 (since they lie within c′

√
log n of P1), and O((log n)6) choices

for the six radii of the Di, since they are determined by a point within distance R of Pi.
Thus the number of choices for the A and Ai is O(n(log n)11) which is n1+o(1). Thus, the
probability that we have a G′ of diameter at most c′ log n is at most n1+o(1)7−k, which is
o(1) for c > 1

log 7
.

The above argument applies if G′ is not too close to the boundary of Sn. Suppose now
that G′ is within distance R of the boundary, but further than R from a corner of Sn. In
this case we ignore the two tangents ti whose normal vectors point out of Sn, and define
H and the relevant Hi and Ai as the intersections of the previously defined H, Hi and Ai

with Sn (see Figure 4). (For the horizontal boundaries, rotate the tangents by 90 degrees.)
Now, supposing that again |A1| ≤ |Ai| for all i, and writing A = H ∩ D1 as before, we
obtain |A| ≤ 1

5
|A ∪ (∪iAi)|. Therefore the probability that all k points in A ∪ (∪iAi) are

in fact contained in A is at most 5−k. Thus the probability of obtaining such a small
component lying near the boundary is n

1
2
+o(1)5−k, which is o(1) for c > 1

log 7
> 1

2 log 5
. (Note

16



P1

A1

H1

P2 A2

H2

P3

A3

H3
P4

A4

H4

A
H

P1

A1

H1

P2

A2

H2

AH

Figure 4: G′ lies near an edge or corner

that there are now only O(
√

n log n) choices for P1.)
Finally, if some point of G′ is within R of a corner of Sn, we now have |A| ≤ 1

3
|A∪(∪iAi)|

(see Figure 4), and thus the probability of all k points in A∪(∪iAi) lying in A is at most 3−k.
Here, the shape of the region H is not critical — we only need to ensure that the reflections
of H in the tangents ti are disjoint and lie within Sn. Hence the probability of obtaining a
small component lying at a corner is no(1)3−k = o(1), there now being only O(log n) choices
for P1.

4.1 The directed case

As in the undirected case we first show that whp there do not exist two large com-
ponents. The proof is very similar to that of the undirected case, so we sketch the parts
that are the same and concentrate on the differences. The first key difference is that in a
directed graph there is no clear idea of component. We define two such notions which will
satisfy our needs. A set C is a out-component if, for some x0, it is of the form { y : there
exists a directed path from x0 to y }. It is an in-component if it is of the form { y : there
exists a directed path from y to x0 }. If the graph is undirected then both of these reduce
to the normal definition of component. The following lemma is analogous to Lemma 12.

Lemma 14. Fix c > 0 and let k = ⌊c log n⌋. Then there exists c′ such that the

probability that ~Gn,k contains an in-component and an out-component that are disjoint
and both of diameter at least c′

√
log n tends to zero as n → ∞.

Proof. As before fix c′ to be chosen later and let D = c′
√

log n. This time, since we
shall also need an upper bound on the edge length, let c− and c+ be as in Lemma 8 and
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let r and R satisfy πr2 = c− log n and πR2 = c+ log n. We may ignore all configurations
which have two points at distance at most r that are not joined, or have two points at
distance at least R that are joined.

Let G1 be an out-component and G2 an in-component, both of diameter at least D.
Let G3 be the rest of the vertices. This time edges of Gi and Gj may cross for i 6= j.
However, it is still true that no vertex not in G1 may lie within distance r/2 of an edge
of G1. Indeed the proof of Lemma 10 shows that (with notation as in that proof) in this
case either ~i1j or ~i2j is an edge. Thus, since G1 is an out-component, j ∈ G1. (Note that
it is important that G1 is an out-component: it would not be true for an in-component.)

Again, we tessellate the square with squares of side r/
√

20; letting l =
√

20n/r, we
identify the squares with the square grid Λl. We colour the squares almost exactly as
before: colour the squares containing a vertex of G1 or intersecting an edge of G1 red,
colour the squares containing a vertex of G2 blue (note we do not colour the squares
intersecting an edge of G2 as that might conflict with the squares already coloured), colour
the remaining squares containing a vertex black, and finally colour the empty squares
white. As before, the colouring is well defined and also we see that a red square can only
be adjacent to another red square or an empty square. In addition, the set of red squares
forms a connected component of squares.

This time, since no point is joined to another at distance greater than R, there must
be at least D/R red squares, and at least D/R blue squares.

Let U be the set of red squares and let V = U c be the complement of U . V splits
into components V1, V2, . . . , Vs for some s ≥ 1. This time the blue squares need not be
connected and so need not all be in the same set Vi. Suppose that the components that
contain blue squares are V1, V2, . . . , Vt.

Let U1 = U ∪ ⋃s
i=t+1 Vi; i.e., U and all the components of U c that do not contain any

blue squares. U1 and U c
1 each contain at least D/R squares, since all the red squares lie in

U1 and all the blue squares lie in U c
1 .

Let ∂U1 be the set of squares not in U1, but adjacent to at least one square in U1.
Each square in ∂U1 lies in ∂U , so is empty. The set ∂U1 is not necessarily a connected
component of squares in Λl, however, we show that, for some d, it is connected in Λl,d, the
dth power of the lattice Λl, where we join vertices if their distance in the lattice (i.e., their
l1 distance) is at most d.

Let d = 2⌈
√

20R/r⌉. Then the blue squares are joined in Λl,d. Suppose that ∂U1 is
not connected in Λl,d; i.e., we can partition ∂U1 into two non-empty sets A and B with
no square in A within d of any square in B. For i ≤ t write ∂Vi for ∂U1 ∩ Vi. Since Vi

and V c
i are both connected in Λl, ∂Vi is connected in Λl,2, and hence A and B are both

the union of such ∂Vi. Every Vi with i ≤ t contains a blue square so there must be a pair
i, j ≤ t with ∂Vi ⊆ A, ∂Vj ⊆ B and blue squares bi, bj with bi ∈ Vi, bj ∈ Vj and l1 distance
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d(bi, bj) ≤ d. The shortest path from bi to bj in Λl passes through ∂Vi and ∂Vj and has
length at most d, so d(∂Vi, ∂Vj) < d, contradicting the assumption that ∂Vi and ∂Vj were
in different components in Λl,d.

As before, by the vertex isoperimetric inequality in the grid [3],

|∂U1| ≥ min{
√

2|U1|,
√

2|U c
1 |} ≥ (D/R)1/2.

Hence, if we have G1, G2 both with diameter at least D, we can find a set connected in
Λl,d of size K = (D/R)1/2 = 4

√

πc′2/c+ consisting entirely of empty squares. Once again
we show that it is unlikely that such a set exists.

Λl,d has maximum degree 2d2 +2d. Thus, applying the lemma stated in the undirected
case, the number of connected sets of K squares in Λl,d containing a particular square is
at most (e(2d2 + 2d))k ≤ (4ed2)k. Since there are l2 ≤ n squares in Λl, the probability p
that there exists a set connected in Λl,d of empty squares satisfies

p ≤ n(4ed2)Ke−Kr2/20

≤ n exp
(

K(log(4ed2) − r2/20)
)

≤ n1−Kc−/20π+o(1)

which, again, tends to zero provided we chose c′ and thus K large enough. Hence the
probability that we have an in-component and an out-component each of size at least D
tends to zero.

Theorem 15. If c ≥ 0.9967 then P(~Gn,⌊c log n⌋ is connected) → 1 as n → ∞.

Proof. Suppose that k = ⌊c log n⌋ and ~G = ~Gn,k is not connected. Then there will be

two points x, y ∈ V (~G) such that there is no directed path from x to y. We consider two

subsets of V (~G), Cx and Cy, defined as follows:

Cx = {x} ∪ {x′ : there is a directed path from x to x′ },

and
Cy = {y} ∪ { y′ : there is a directed path from y′ to y }.

Cx and Cy are disjoint, since if we had z ∈ Cx ∩ Cy, there would be a directed path from
x to z and another directed path from z to y, giving us a directed path from x to y.

Lemma 14 shows that there exists a c′ > 0 such that the probability that both Cx and
Cy have diameter more than c′

√
log n tends to zero. The proof of Theorem 13 shows that

the probability that an out-component Cx exists with diameter less than c′
√

log n tends to
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zero since c > 1
log 7

. We complete the proof by showing that for all c′ > 0, the probability

that an in-component Cy exists with diameter less than c′
√

log n also tends to zero.
We first illustrate the proof with a simpler proof that c ≥ 1.0293 > 1

log γ
is sufficient,

where γ = (4π
3

+
√

3
2

)/(π
3

+
√

3
2

).
Suppose first that no point of Cy lies within a distance R of the boundary of Sn, where

R is as in Lemma 8. Let z /∈ Cy be the closest point of V (~G) \Cy to Cy and yz its nearest
neighbour in Cy. Write ρ = ‖z − yz‖ for the distance between them, and, for an arbitrary
point P , write Dρ(P ) for the open disc of radius ρ, centered at P . Consider the leftmost
point yl and the rightmost point yr of Cy. There can be no points in B = Dl

ρ(yl)∪Dr
ρ(yr),

the left half of Dρ(yl) or the right half of Dρ(yr). By the proof of Lemma 8, we may
assume Dl

R(yl) contains at least k points. Hence ρ < R, B is contained within Sn, and
|B| = |Dρ(x)| = πρ2. On the other hand, there are at least k points in A = Dρ(z)\Dρ(yz),
since otherwise z would send a directed edge to either yz, or to a point y′ ∈ Dρ(z)∩Dρ(yz).
The first possibility contradicts the hypothesis z /∈ Cy, and for the second possibility,
we must have y′ /∈ Cy to ensure z /∈ Cy, but then y′ /∈ Cy is closer to Cy than is z,
contradicting the choice of z. Therefore, as shown in Figure 5, there must be at least k
points in A∪B, which must all lie in A \B. The probability of this happening is at most
(

|A\B|
|A∪B|

)k

≤
(

|A|
|A|+|B|

)k

= γ−k. The number of choices for z, yz, yl, and yr is O(n(log n)3),

so the probability such a configuration occurs anywhere is at most n1+o(1)γ−k, which is
o(1) for c > 1

log γ
.

If some point of Cy is close to an edge or corner of Sn we use a single half disc or quarter
disc for B, and a similar argument to the one used to complete the proof of Theorem 13
shows that the probability of obtaining a small Cy near the boundary is also o(1).

With a little more work, we can obtain a slight improvement by showing there is a
region C ⊆ A containing no points in its interior.

Suppose that w ∈ Dρ(z). Write ρ′ = ‖w − yz‖ and set

A1 = (A \ Dρ′(w)) \ B,

A2 = (A ∩ Dρ′(w)) \ B,

A3 = (Dρ′(w) \ (Dρ(z) ∪ Dρ(yz))) \ B,

A4 = B

as illustrated in Figure 5 (for simplicity, the set B is not shown). Writing ni for the number
of points (other than yz, z, or w) in regions Ai, we see that the following must hold:

n1 + n2 ≥ k − 1, n3 + n2 ≥ k − 1, n4 = 0. (5)
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Figure 5: Upper bound, directed case (B not shown)

We need to show that for some w, the probability p of such an arrangement is small. By
Lemma 4, we have

log p =
∑

i

(

ni − |Ai| − ni log ni

|Ai|

)

+ O(log
∑

ni). (6)

We now maximize the right hand side of (6). Since (5) becomes more likely if |A1|,
|A2|, or |A3| is increased, we may assume B is disjoint from A ∪ Dρ′(w). Also, as we shall
only be interested in ratios of areas, we first maximize (6) under uniform scaling of areas,
giving

n1 + n2 + n3 = |A1| + |A2| + |A3| + |A4|.
Now vary the ni subject to n1 + n2 and n3 + n2 being fixed. This gives

η =
n2

|A2|
=

n1

|A1|
n3

|A3|
.

Also, by varying just n1, we see that either n1 + n2 = k − 1 or n1 = |A1|. Similarly, either
n3 + n2 = k − 1 or n3 = |A3|. Hence

log p =
∑

−ni log ni

|Ai| + O(log
∑

ni)

= −n1 log n1

|A1| − n3 log n3

|A3| − n2 log( n1 n3

|A1||A3|) + O(log
∑

ni)

= −(n1 + n2) log n1

|A1| − (n3 + n2) log n3

|A3| + O(log
∑

ni)

= −(k − 1) log( n1 n3

|A1||A3|) + O(log
∑

ni).

Therefore,
p = η−(k−1)no(1).
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Define γ′ by (log γ′)−1 = 0.9967 and let C be the set of points w ∈ A such that

∑

i|Ai| > γ′|A2| +
√

4γ′|A1||A3| and |A3| < 2|A1|.

We shall show that with the above constraints

η = n2

|A2| = n1 n3

|A1||A3| > γ′.

If n3 + n2 > k − 1 = n1 + n2, then n3 = |A3| and so 2|A1| > |A3| = n3 > n1 = η|A1|.
But then η < 2 and |A1| + |A2| + |A4| = n1 + n2 < 2(|A1| + |A2|), contradicting the
fact that |A1| + |A2| < |A4|. On the other hand, if n1 + n2 > k − 1 = n3 + n2 then
|A1| = n1 > n3 = η|A3|. But |A3| ≥ |A1|, so η ≤ 1. But then n1+n2+n3 ≤ |A1|+|A2|+|A3|
and so |A4| ≤ 0, a contradiction. Similarly, if n1 + n2 > k − 1 and n3 + n2 > k − 1 then
η = 1 and |A4| ≤ 0 again. Hence we may assume n1 + n2 = n2 + n3 = k − 1, n1 = n3 and
so

∑

i |Ai| = n2 + (n1 + n3) = n2 +
√

4n1n3 = η|A2| +
√

4η|A1||A3|. But this then implies
η > γ′ as required.

Computer calculations show that

|B|+|A\C|
|A\C| > γ′.

Now suppose that the region C contains no points in its interior. Then we have at least k
points in the region (A \ C) ∪ B, all of which are constrained to lie in A′ = A \ (C ∪ B)
(see Figure 5). This event has probability at most γ′−kno(1) = o(n−1). On the other
hand, the probability that a configuration exists with a point w ∈ C is also at most
γ′−kno(1) = o(n−1). Therefore, whp ~G is connected.

5 Sharp threshold

Theorems 5 and 13 show that if n = n(k) ≤ ek/0.5139 then limk→∞ P(Gn,k is connected) =
1 and if n = n(k) ≥ ek/0.3043 then limk→∞ P(Gn,k is connected) = 0. There is no doubt
that there is a constant c, 1/0.5139 < c < 1/0.3043, such that if ε > 0 then for n =
n(k) ≤ e(c−ε)k we have limk→∞ P(Gn,k is connected) = 1 and for n = n(k) ≥ e(c+ε)k

we have limk→∞ P(Gn,k is connected) = 0. Although we cannot show the existence of this
constant c, let alone determine it, in this brief section we shall show that the transition from
connectedness to disconnectedness is considerably sharper than these relations indicate:
the length of the window is O(n) rather than n1+o(1). To formulate this result, for k ≥ 1
and 0 < p < 1, set

nk(p) = max{n : P(Gn,k is connected) ≥ p }.
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Theorem 16. Let 0 < ε < 1 be fixed. Then, for sufficiently large k,

nk(ε) < C(ε)(nk(1 − ε) + 1)

where
C(ε) =

⌈

6
ε
log

(

1
ε

)

+ 1
⌉2

.

Proof. Write M =
⌈

6
ε
log

(

1
ε

)

+ 1
⌉

and N = nk(1 − ε) + 1, so that the probability that
we have at least two components in GN,k is at least ε. By Theorems 5 and 13, we may
assume, by taking k sufficiently large, that 0.3043 log N < k < 0.5139 log N . Therefore, by
Lemma 8, we see that whp no edge in GN,k has length greater than R =

√

c+(log N)/π.
We say that a point x ∈ V (GN,k) is close to a side s of SN if x is less than distance

2R from s, and call a component G′ of GN,k close to s if it contains points which are close
to s. Further, we say that x ∈ V (GN,k) is central if it is not close to any side s of SN ,
and call a component G′ of GN,k central if it consists entirely of central points. Finally,
we call a component G′ of GN,k small if it has diameter at most c′

√
log N , where c′ is as

in Lemma 12.
By Lemma 12, with probability more than ε

2
, GN,k contains a small component, which

can be close to at most two sides of SN . Write α for the probability that we have a small
central component of GN,k. Write β for the probability that we have a small component
of GN,k which is close to exactly one side of SN , and γ for the probability that we have a
component of GN,k close to two sides of SN (so that it lies at a corner of SN). We have
α + β + γ > ε

2
, and the proof of Theorem 13 shows that

γ = no(1)3−k → 0

as k → ∞. Therefore we may assume that at least one of α and β is greater than ε
6

(we
do not know which one). If we specify one side s of SN , the probability that we obtain a
small component G′ which may only be close to s is thus at least ε

24
.

Now we consider the larger square SM2N , and tessellate it with copies of SN . We
only consider the small squares of the tessellation incident with the boundary of SM2N .
Considering sides of these copies of SN lying on the boundary of SM2N , we see that we have
4(M − 1) independent opportunities to obtain a small component G′ in one of the small
squares S, in such a way that G′ can only intersect the boundary of S on the boundary
of SM2N . Such a component will also be isolated in GM2N,k, since whp no edge of GM2N,k

has length greater than
√

c+(log M2N)/π < 2R for sufficiently large k (and thus N).
Therefore, if p is the probability that GM2N,k is connected, we have

p <
(

1 − ε
24

)4(M−1)
< e−

ε

6
(M−1) < ε,

completing the proof.
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6 Coverage

Let Pn be a Poisson process of intensity one in the square Sn. For any x ∈ Pn, let
r(x, k) be the distance from x to its kth nearest neighbour (infinite if this does not exist),
and let Bk(x) = Dr(x,k)(x)∩ Sn. Let Ck(Pn) =

⋃

x∈P Bk(x). We say that Pn is a k-cover if
Ck(Pn) = Sn.

First we prove a quick lemma bounding the Poisson distribution.

Lemma 17. Suppose that P is a Poisson process of intensity one in the square Sn and
fix c and ε > 0. Then there exists δ > 0 such that, whp, there does not exist a point x of
the process with

r(x, ⌊c log n⌋) − r(x, ⌊(c − ε) log n⌋) < δ
√

log n. (7)

Proof. Let k = ⌊c log n⌋ and k′ = ⌊(c− ε) log n⌋. By Lemma 8 we may assume that no
edge in Gn,k is longer than R = cm

√
log n, where cm =

√

c+/π in the notation of Lemma 8.
For a fixed point x, condition (7) only holds if the annulus of width δ

√
log n and outer

diameter r(x, k) contains at least ⌊ε log n⌋ − 1 points. This annulus, A, say, has area at
most 2πRδ

√
log n = 2πδcm log n.

The number of points in A is stochastically dominated by a Poisson distribution with
mean 2πδcm log n. Thus the probability p that there are more than ⌊ε log n⌋ − 1 points in
A satisfies

log p ≤ −2πδcm log n − ε log n log

(

ε

e2πδcm

)

+ O(log log n)

which is less than − log n provide we choose δ small enough. Hence the probability that
any point fails (7) is o(1).

Theorem 18. Fix c > c′ > 0.
If whp ~Gn,⌊c′ log n⌋ does not have a vertex of in-degree zero. Then whp Pn is a ⌊c log n⌋-

cover.
Conversely, suppose that whp Pn is a ⌊c′ log n⌋-cover. Then whp ~Gn,⌊c log n⌋ does not

have a vertex of in-degree zero.
Consequently, if c ≤ 0.7209 then whp Pn is not a ⌊c log n⌋-cover, while if c ≥ 0.9967,

whp Pn is a ⌊c log n⌋-cover.

Proof. Let k = ⌊c log n⌋ and k′ = ⌊c′ log n⌋. Suppose that it is not true that, whp, Pn

is a k-cover. Then there exists ε > 0, such that, for infinitely many n, the probability that
Pn is not a k-cover is at least ε. Let n′ = n(1 + 1/ log n). We show that

P(~Gn′,k′ has a vertex of in-degree zero) > ε′
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for some ε′ > 0.
By Lemma 17, there exists δ > 0 such that, whp, r(x, k)− r(x, k′) ≥ δ

√
log n for every

x ∈ Pn. Thus,

P(Sn \ Ck′(Pn) contains a ball of radius δ
√

log n) ≥ (1 − o(1))P(Pn is not a k-cover)

≥ (1 − o(1))ε.

We identify Pn′ with Pn ∪ Pn/ log n where all squares are scaled to be the same size

as Sn. Let R =
√

c+(log n)/π = cm

√
log n be as in Lemma 8. Fix Pn such that ~Gn,k′

has no edge of length more than R, and that Ck′(Pn)c contains a disc of radius δ
√

log n,
and let y be the centre of such a disc. The probability that the disc Dδ

√
log n(y) contains

exactly one point of Pn/ log n is a constant independent of n, as is the probability that the
disc D(cm+δ)

√
log n(y) contains no other point of Pn/ log n. Hence there exists ε1 > 0 such

that
P(~Gn′,k′ has a vertex of in-degree zero | Pn) ≥ ε1,

since this event occurs provided both the previous events occur. Combining these, we see
that

P(~Gn′,k′) has a vertex of in-degree zero) ≥ (1 − o(1))εε1.

as claimed.
Conversely, suppose that it is not true that, whp, ~Gn,k does not have a vertex of in-

degree zero. As before, this implies that there exists ε > 0 such that, for infinitely many
n, the probability ~Gn,k has a vertex of in-degree zero is at least ε.

Let R be as in Lemma 8. Fix a configuration Pn with a point y of zero in-degree, no edge
length longer than R, and no vertex with more than c1 log n points within distance 2R. The
first condition occurs with probability at least ε, the second condition fails with probability
tending to zero, as does the final condition provided that c1 is large enough. (For the last
assertion, set c0 = 4c+/c− and apply Lemma 8 with n replaced with nc0 . Then no vertex
of Snc0 ∩ P ⊃ Sn ∩ P has more than ⌊c log nc0⌋ ≤ cc0 log n points within a disc of area
c− log nc0 = π(2R)2.) Fix δ > 0 and let n′ = (1 − δ)n. Similarly to before we identify Pn

with Pn′ ∪ Pδn (both scaled to the same size Sn) by independently assigning each vertex
of Pn to Pδn with probability δ. Then

P(Pn′ is not a k′ cover | Pn) ≥ ε′

since this event occurs if the point y is in Pδn and no disc of radius R containing y contains
more than k − k′ ≥ (c − c′) log n − 1 points of Pδn. The number of points in D2R(y) is
at most c1 log n, so the number of points in D2R(y) ∩ Pδn is stochastically dominated by
the distribution Bin(⌊c1 log n⌋, δ). Thus, with probability at least 1/2, D2R(y) contains
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at most c1δ log n points of Pδn. Hence, provided that c − c′ > c1δ, the latter condition is
satisfied with probability at least one half for large enough n. The former condition, is
independent of the latter, and occurs with probability δ. Combining these, we see that

P(Pn′ is not a k′ cover) ≥ (1 − o(1))δε′/2.

7 Numerical results

Computer simulations suggest that for k ≥ 3 there exists a giant component in Gn,k

which contains almost all of the vertices (over 98.5% for k = 3) with a few isolated small
components. On the other hand, for k ≤ 2 all components are small. As we are interested
mainly in large k we have confined our numerical results to k ≥ 3, since these are more
likely to reflect the situation when k is large.

For k ≥ 3 the small components are relatively few and far between (more so for larger k).
As a result one would expect that for a large rectangular region A, the small components
would be roughly Poisson distributed with constant density throughout the area A, with
perhaps a somewhat different density near the sides and corners of A. Hence we would
expect the average number of small components in A to be approximately Poisson dis-
tributed with mean αk|A| + βk|∂A| + 4γk, where αk represents the density of components
far from the boundary of A, βk gives a correction for “edge effects”, and γk gives a cor-
rection for “corner effects”. By considering rectangles with various sizes and aspect ratios,
one can investigate numerically the constants αk, βk and γk. Computer simulations were
performed on large rectangular regions for 3 ≤ k ≤ 8 and the number and sizes of the small
components were recorded. The numbers of components found were fitted by the linear
formula αk|A|+βk|∂A|+4γk and for all k considered this did indeed fit the data extremely
well. In total an area of over 1012 was simulated for each k from 3 to 8. Estimates of αk,
βk and γk are given in Table 1.

The values of βk and γk were positive, indicating that small components are more
common near the boundary and corners of A. Figure 6 plots the probability that Gn,k is
connected and the average number of components against n for 3 ≤ k ≤ 8. The predictions
based on the number of components being distributed as 1 + Po(αkn + 4βk

√
n + 4γk) are

also given and are in excellent agreement for large n. We know from Theorem 13 that
γk → 0, however it also appears that βk <<

√
αk. Hence, if A is the square Sn, when n

is large enough so that the k nearest neighbour model has a reasonable chance of being
disconnected, the expected number of components is dominated by the term αkn. One
would therefore expect that the probability that the model is connected to be approximated
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k − log αk − log βk − log γk E|C|
3 6.2259 [1] 4.9876 [3] 2.8685 [13] 7.1031 [2]
4 9.1828 [1] 7.1871 [6] 4.6905 [22] 6.7519 [3]
5 12.0917 [4] 9.3145 [13] 6.2918 [33] 7.3551 [9]
6 15.0052 [17] 11.4542 [31] 7.8476 [53] 8.1728 [30]
7 17.9340 [71] 13.6015 [79] 9.4211 [93] 9.0659 [116]
8 20.8979 [310] 15.7770 [221] 11.0057 [179] 10.0022 [425]

Table 1: Best fit data for αk, βk, γk, and the average size of small components. Numbers
in [ ] indicate 1 standard deviation error in last digit.
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Figure 6: Probability that Gn,k is connected (solid line, left scale), average number of
components (dotted line, right scale), and theoretical predictions based on number of
components being given by 1 + Po(αkn + 4βk

√
n + 4γk) (dashed line, either scale). Note

that lines are indistinguishable for k > 5. The left hand scale is exponentially related to
the right hand scale.
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Figure 7: Proportion of small components that are of size k + x. The dotted line is the
theoretical prediction for large k based on the lower bound argument. Error bars represent
1 standard deviation.

very well by exp{−αkn}, and to be fairly insensitive to the shape of the region Sn, provided
the boundary is reasonably smooth and not excessively long. One would also expect that
for fixed n the critical value of k occurs when αk ∼ 1/n. The data suggests that this
critical k is between about 0.3 log n and 0.4 log n, consistent with the theoretical bounds,
and closer to the lower bound.

If one believes that the lower bound construction of Theorem 5 is in fact asymptotically
correct, then the sizes of the components in the interior should be geometrically distributed
with minimum value k + 1 and ratio about e−µ ≈ 0.3016, where µ is the constant found
in the proof of Theorem 5. Of course, this assumes that k is very large. For more modest
values of k, the lower bound construction suggests that the density of components of size
t ≥ k+1 should be about exp{−ηk

√
t} for some constant ηk. To see this, consider a disc of

area t with t points in it and insist that a vertex-free annulus of constant width surrounds
it. If this width is large enough, the t points inside the disc should form a component,
and the vertex-free region is of area O(

√
t), so this configuration has probability about
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Figure 8: Proportion of small components that are of size t versus
√

t for 3 ≤ k ≤ 6. Error
bars represent 1 standard deviation.
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k = 3 k = 4 k = 5 k = 6 k = 7 k = 8
nC 2,174,360,691 113,019,084 6,163,109 334,633 17,923 924

max|C| 547 106 65 37 27 20

Table 2: Number and maximum size of small components in simulation results in area of
size 240 ≈ 1012.

exp{−ηk

√
t}. The component size distribution for components near the edge of A is

different than for components near the centre of A, so we only considered components
far from the boundary of A. (Numerical evidence suggests that the components near the
boundary are on average slightly larger than components far from the boundary.) Table 2
gives the total number of components found in our simulations and the maximum size of a
small component. Figures 6 and 7 plot the proportion of small components found against
their size, first using a linear scale in component size and second versus

√
t. For k ≥ 4, the

plot against
√

t does indeed appear to be close to linear, however for k = 3 there does seem
to be some deviation from linearity. The average small component sizes for components
far from the boundary are given in Table 1.

8 Conjectures

We end with three extremely natural conjectures we would very much like to see solved.
The first was mentioned briefly in the introduction.

Conjecture 1. Is there a critical value of c such that, for c′ < c, Gn,⌊c′ log n⌋ is discon-
nected whp, and, for c′′ > c, Gn,⌊c′′ log n⌋ is connected whp? In the terminology introduced

in the introduction, is it true that cl = cu? Is it true for the directed graphs ~Gn,k?

Conjecture 2. For the directed graphs ~Gn,k, write

~cl = sup{c : P(~Gn,⌊c log n⌋ is connected) → 0}, and

~ciso = sup{c : P(~Gn,⌊c log n⌋ contains a vertex with zero in-degree) → 1}.

Trivially, we have ~cl ≥ ~ciso. Is it in fact true that ~cl = ~ciso?

Conjecture 3. Is the threshold for connectivity of Gn,k sharp in k? In other words,
setting

kn(p) = min{ k : P(Gn,k is connected) ≥ p },
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is it true that, for any 0 < ε < 1, there exists C(ε) such that, for all sufficiently large n,

kn(1 − ε) < C(ε) + kn(ε)?

“Sharpness in n” was proved in Section 5, but perhaps this is more natural.
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