May 1st, 8:30 AM - 10:00 AM

Carbonate chemistry covariation with temperature and oxygen in the Salish Sea and California Current Ecosystems: implications for the design of ocean acidification experiments

Jonathan C. P. (Jonathan Charles Patrick) Reum
National Marine Fisheries Service (U.S.), jonreum@gmail.com

Simone Alin
Pacific Marine Environmental Laboratory (U.S.)

Nina Bednarsek
Pacific Marine Environmental Laboratory (U.S.)

Wiley Evans
United States. National Oceanic and Atmospheric Administration

Richard A. Feely
Pacific Marine Environmental Laboratory (U.S.)

See next page for additional authors

Follow this and additional works at: https://cedar.wwu.edu/ssec

Part of the Terrestrial and Aquatic Ecology Commons

Reum, Jonathan C. P. (Jonathan Charles Patrick); Alin, Simone; Bednarsek, Nina; Evans, Wiley; Feely, Richard A.; Hales, Burke; Mathis, Jeremy T.; McElhany, Paul; Newton, Jan; and Sabine, Christopher L., "Carbonate chemistry covariation with temperature and oxygen in the Salish Sea and California Current Ecosystems: implications for the design of ocean acidification experiments" (2014). *Salish Sea Ecosystem Conference*. 41.

This Event is brought to you for free and open access by the Conferences and Events at Western CEDAR. It has been accepted for inclusion in Salish Sea Ecosystem Conference by an authorized administrator of Western CEDAR. For more information, please contact westerncedar@wwu.edu.
Speaker

This event is available at Western CEDAR: https://cedar.wwu.edu/ssec/2014ssec/Day2/41
Carbonate chemistry covariation with temperature and oxygen in the Salish Sea: implications for the design of ocean acidification experiments

Jonathan Reum¹*, Simone Alin², Richard Feely², Nina Bednarsek², Wiley Evans², Burke Hales³, Paul McElhany¹, Jan Newton⁴, Chris Sabine²

*Jonathan.Reum@noaa.gov

¹Northwest Fisheries Science Center, NOAA
²Pacific Marine Environmental Laboratory, NOAA
³College of Oceanic and Atmospheric Sciences, OSU
⁴Applied Physics Laboratory, University of Washington
Ocean acidification experiments

Scenario IS92a

\[p\text{CO}_2 \] (µatm)

Year

- Preind.
- Today
- 2100
Ocean acidification experiments

body growth

280 PreInd
400 Today
800 Future
How does $p\text{CO}_2$ change with temperature and oxygen?

What does covariation mean for OA experimental design and interpretation?
Seattle Temperature (°C)
Vertical distribution
Vertical distribution

Winter

Summer

Nighttime

Daytime

Depth (m)

Temperature (°C)
Mooring Puget Sound discrete West coast discrete Surface underway CO2 data OA experiments

Reum et al. In Review
Reum et al. In Review
Temperature (°C)

pCO_2 (μatm)

OA treatment

control
Equilibration with air CO$_2$ at formation

DIC_{Air} $800 \ \mu$atm $- \ \text{DIC}_{\text{formation}} = \Delta \text{DIC}$

$\Delta \text{DIC} + \text{DIC}_{\text{Respiration}} + \text{formation}$

Puget Sound

Upwelling

$\text{DIC}_{\text{formation}}$

$+ \ \text{DIC}_{\text{Respiration}}$
ΔDIC = 90 umol kg⁻¹
$\uparrow \text{CO}_2$

Direct Effects

Upwelled/deep
- Low Oxygen
- Low Temp
- High pCO_2

Oceanic/shallow
- High Oxygen
- High Temp
- Low pCO_2

Carbonate chemistry niche
Acknowledgements

Funding sources:
- National Research Council Fellowship
- NOAA Ocean Acidification Program and NOAA Pacific
- Marine Environmental Laboratory
- University of Washington, including the PRISM program
Washington State Department of Ecology

Field and laboratory support:
The officers and crew of the R/V Thomas G. Thompson, Cynthia Peacock, Geoff Lebon, Cathy Cosca, Corinne Bassin, Jill Coyle, Dana Greeley, Julia Bos, Kathy Krogslund, Amanda Gray, Megan Black, Sylvia Musielewicz, and Jennifer Nomura for their shipboard, laboratory, and graphics support of this research effort.