Rewards, Challenges, Approaches and Solutions for Developing the Soos Creek Bioassessment TMDL

Stephanie E. Brock
Washington (State). Department of Ecology, steb461@ecy.wa.gov

Dave Garland
Washington (State). Department of Ecology

Joan Nolan
Washington (State). Department of Ecology

Follow this and additional works at: https://cedar.wwu.edu/ssec

Part of the Terrestrial and Aquatic Ecology Commons

Brock, Stephanie E.; Garland, Dave; and Nolan, Joan, "Rewards, Challenges, Approaches and Solutions for Developing the Soos Creek Bioassessment TMDL" (2014). *Salish Sea Ecosystem Conference*. 125.

This Event is brought to you for free and open access by the Conferences and Events at Western CEDAR. It has been accepted for inclusion in Salish Sea Ecosystem Conference by an authorized administrator of Western CEDAR. For more information, please contact westerncedar@wwu.edu.
Rewards, Challenges, and Approach for Developing the Soos Creek Bioassessment TMDL

May 1, 2014 ~ Salish Sea Conference

Stephanie Brock
Washington State Department of Ecology
Goal and Purpose

- Expand TMDLs to cover aquatic life beneficial uses and better incorporate stormwater pollutants and impacts
 - Benthic Macroinvertebrate Scores
 - Flow Metrics
 - Land Use
- Develop meaningful measures or targets for allocations/implementation requirements
TMDL Examples from Other States

- **Potash Brook, Vermont (7 mi²)**
 - Use an “attainment watershed” approach to set modeled flow reductions for land uses to meet state biocriteria.

- **Eagleville Brook, Connecticut (2.4 mi²)**
 - EPA Stressor ID Process indicated stormwater as primary stressor
 - Correlated aquatic life to impervious cover
 - TMDL Target is 12% impervious cover (IC)

- **Maine (7 watersheds) - *urban stream syndrome***
 - Combination of pollutants and non-pollutant aquatic life stressors related to stormwater runoff.
 - Loading capacity = greatest amount of impervious cover each watershed can support without violating stream segment’s assigned aquatic life criteria.

<table>
<thead>
<tr>
<th>Maine</th>
<th>Class AA/A</th>
<th>Class B</th>
<th>Class C</th>
</tr>
</thead>
<tbody>
<tr>
<td>IC TMDL TARGETS</td>
<td>< 5%</td>
<td>< 9%</td>
<td>< 16%</td>
</tr>
</tbody>
</table>
Soos Creek Pilot TMDL

- Originally, TMDL for temperature and DO (70-mi^2)
- Local flow and bug studies - became a pilot for using that data for stormwater allocation development (off critical period)

<table>
<thead>
<tr>
<th>CATEGORY</th>
<th>WATERBODY NAME</th>
<th>BASIS (B-IBI Scores)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>BIG SOOS CREEK</td>
<td>24 - 28</td>
</tr>
<tr>
<td>5</td>
<td>UNNAMED CREEK (TRIB TO BIG SOOS CREEK)</td>
<td>14 - 16</td>
</tr>
<tr>
<td>5</td>
<td>LITTLE SOOS CREEK</td>
<td>18 – 36</td>
</tr>
<tr>
<td>2</td>
<td>BIG SOOS CREEK</td>
<td>26 – 32</td>
</tr>
<tr>
<td>2</td>
<td>BIG SOOS CREEK</td>
<td>24 – 46</td>
</tr>
<tr>
<td>1</td>
<td>BIG SOOS CREEK</td>
<td>32 – 44</td>
</tr>
</tbody>
</table>
Bioassessment to Support the Soos Creek TMDL

- Contractor collected BMI & periphyton at 6 sites in summer 2012
- B-IBI and RIVPACS scores calculated for each site
- Individual biometrics calculated and compared to determine if correlations exist for the following:
 - Measured physical features (temperature, DO, stream velocity)
 - Streamflow
 - Landuse
Bioassessment - Conclusions

- Statistically significant relationships were observed between a number of the biometrics and the following:
 - Water Quality
 - pH, DO, temperature
 - Stream Geomorphology
 - Gradient, velocity, flow, substrate composition, embeddedness, bank instability
 - Riparian Condition
 - Canopy cover
WRSA9 Retrofit Project – Flow Indicators and Targets

- Use an **indicator** (e.g., 2-year peak:mean winter base flow ratio) to link both watershed conditions and aquatic health and identification of **targets** (e.g., indicator value <10) necessary to meet a protection **goal** (e.g., B-IBI>90 percent of maximum).

\[
\text{Ln (\% Max. B-IBI Score)} = -0.066\times\text{HPC} + 4.50 \\
R^2 = 0.745
\]
Proposed Approach

- Select a protection **Goal**
 - BIBI score of 38
- Calculate the hydrologic **Indicators** developed by Horner for Soos Creek
 - High Pulse Count and High Pulse Range
- Use the HSPF model to calculate the corresponding **Target**
 - Stormwater Flow Reduction
Potential Allocations

- Effective shade
- Stormwater flow treatment or reductions
- Biological endpoint targets
Challenges

- First Washington TMDL with B-IBI (bioassessment)
 - Local target for the watershed?
- Policy decisions
 - Surrogates, standards...
- Pilot – 1st TMDL with surrogate hydrologic metric WLAs?
- Level of correlation is good between HPC:B-IBI, but there are other factors affecting aquatic health
 - Meeting the surrogate allocation may not be sufficient to meet the B-IBI target.
- New approach = learning curve
Rewards

- Address all three facets of the Clean Water Act
 - Biological, chemical, and physical
- 1st bioassessment TMDL in Washington state
- Address stressors and allocate meaningful targets contributing to “urban stream syndrome”
- Expand and utilize the bioassessment data collected by Ecology, King County and others
- Teach old TMDL dogs new tricks (expand the knowledge base)
Thanks!

Dept. of Ecology:
Brandi Lubliner
Dave Garland
Joan Nolan
Chad Larsen
Chad Brown
Ann Dettelbach
Ed O’Brien

King County:
Curtis DeGasperi
Jeff Burkey
Jim Simmonds
Deb Lester

Muckleshoot Tribe:
Nancy Rapin
Carla Carlson
Joel Massman

EPA:
Claire Schary
Ben Cope
Dino Marshalonis
Gretchen Hayslip
Dave Ragsdale