May 1st, 1:30 PM - 3:00 PM

Early marine survival of steelhead smolts in Puget Sound

Megan Moore
*United States. National Marine Fisheries Service*, megan.moore@noaa.gov

Barry A. Berejikian
*United States. National Marine Fisheries Service*

Frederick William Goetz
*United States. Army Corps of Engineers*

Thomas P. (Thomas Peter) Quinn
*University of Washington*

Sayre Hodgson
*Nisqually Indian Tribe*

*See next page for additional authors*

Follow this and additional works at: [https://cedar.wwu.edu/ssec](https://cedar.wwu.edu/ssec)

Part of the Terrestrial and Aquatic Ecology Commons

Moore, Megan; Berejikian, Barry A.; Goetz, Frederick William; Quinn, Thomas P. (Thomas Peter); Hodgson, Sayre; Connor, Ed; and Berger, Andrew, "Early marine survival of steelhead smolts in Puget Sound" (2014). *Salish Sea Ecosystem Conference*. 199.

This Event is brought to you for free and open access by the Conferences and Events at Western CEDAR. It has been accepted for inclusion in Salish Sea Ecosystem Conference by an authorized administrator of Western CEDAR. For more information, please contact westerncedar@wwu.edu.
Speaker
Megan Moore, Barry A. Berejikian, Frederick William Goetz, Thomas P. (Thomas Peter) Quinn, Sayre Hodgson, Ed Connor, and Andrew Berger

This event is available at Western CEDAR: https://cedar.wwu.edu/ssec/2014ssec/Day2/199
Survival of steelhead in Puget Sound and Hood Canal

Megan Moore, NOAA Fisheries
Barry Berejikian, NOAA Fisheries
Manchester Research Station
and
Salish Sea Marine Survival Project
Steelhead Workgroup
Threatened steelhead


Puget Sound

Washington Coast

Nisqually  Puyallup  Green  Skagit  Quinault  Queets  Hoh  Quillayute

South  North  South  North
Marine survival trends

- Marine survival rates have declined dramatically over the last 25-30 years.
- Puget Sound populations have not rebounded in recent years as have coastal and Columbia populations.
- Marine migration through Puget Sound seems to be a major limiting factor.
Acoustic telemetry

7mm and 9 mm transmitters @ 69kHz, 136 db
Puget Sound Telemetry Project

Hood Canal Rivers: 2006-2010
- 362 tagged smolts
- NOAA Fisheries

Green River: 2006-2009
- 337 tagged smolts
- Fred Goetz, Tom Quinn/UW

Puyallup River: 2006, 2008-2009
- 206 tagged smolts
- Puyallup Tribe

Nisqually River: 2006-2009
- 187 smolts tagged
- Nisqually Tribe

Skagit River: 2006-2009
- 250 smolts tagged
- Seattle City Light
Telemetry array

Migration Segments

<table>
<thead>
<tr>
<th>Hood Canal</th>
<th>Puget Sound</th>
<th>Skagit</th>
</tr>
</thead>
<tbody>
<tr>
<td>River Mouth - HCB</td>
<td>River Mouth - CPS</td>
<td>River Mouth - DP</td>
</tr>
<tr>
<td>HCB - ADM</td>
<td>CPS - ADM</td>
<td></td>
</tr>
<tr>
<td>ADM - JDF</td>
<td>ADM - JDF</td>
<td>DP - JDF</td>
</tr>
</tbody>
</table>
Mark-Recapture Model: Cormack-Jolly-Seber

<table>
<thead>
<tr>
<th>Population</th>
<th>N_{2006}</th>
<th>N_{2007}</th>
<th>N_{2008}</th>
<th>N_{2009}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hood canal</td>
<td>106</td>
<td>170</td>
<td>109</td>
<td>78</td>
</tr>
<tr>
<td>Green</td>
<td>100</td>
<td>89</td>
<td>98</td>
<td>50</td>
</tr>
<tr>
<td>Nisqually</td>
<td>55</td>
<td>49</td>
<td>14</td>
<td>69</td>
</tr>
<tr>
<td>Puyallup</td>
<td>50</td>
<td>0</td>
<td>90</td>
<td>66</td>
</tr>
<tr>
<td>Skagit</td>
<td>23</td>
<td>47</td>
<td>100</td>
<td>80</td>
</tr>
<tr>
<td><strong>TOTAL</strong></td>
<td><strong>334</strong></td>
<td><strong>355</strong></td>
<td><strong>411</strong></td>
<td><strong>293</strong></td>
</tr>
</tbody>
</table>

N=1393

Variables included in the survival analysis
Factors: Population, Region (HC, SS, Skagit), Rear type, Migration Segment, Year, Tag Type
Covariates: Distance, Body Length

Model with lowest AICc = ~Segment:population+year+reartype
Marine survival is low in Hood Canal and Puget Sound

Combined early marine survival estimate = 17% (hatchery = 12%, wild = 20%)
Travel Times

Puget Sound

Travel time (days)

Hood Canal

Travel time (days)
Potential factors affecting marine survival (why do so many steelhead die so quickly)

- **Freshwater influences**
  - Reduced diversity (‘Portfolio effect’: e.g., Schindler et al. 2012. *Nature*)
  - Hatcheries (genetic or ecological)
  - Water quality (toxic contaminants)
  - Disease-causing pathogens (nanophyetus)

- Changes in the Puget Sound ecosystem that have influenced predator-prey dynamics
  - Avian predators: cormorants, Caspian terns, common mergansers, and loons
  - Mammalian predators: harbor seals, harbor porpoise
Predator-prey interactions (harbor seals)

Harbor seal counts

Jeffries et al. 2003 J. Wildlife Manage.
Predator-prey interactions (harbor porpoise)

1993-1998

1999-2004

2005-2011

(J. Evenson, WDFW, 2013, unpublished data)
Figure 5. Estimated herring spawning biomass, 1973-2011.
Pacific Cod Abundance

Data source: Palsson et al. via NMFS 2000 Status Review
Summary

• Early marine survival rates of Hood Canal and Puget Sound steelhead populations are low considering short observed travel times

• Travel times within the Puget Sound environment are very short, giving little time for long term sources of mortality to take effect

• Puget Sound has undergone a major ecosystem shift timed with the decline in steelhead abundance and SAR.

• Future studies: tag more steelhead smolts and harbor seals
Acknowledgements

Funding provided through NOAA, USACE (Seattle District), UW, Steelhead Trout Club of Washington, Pacific Ocean Shelf Tracking Network (POST)

Survival Modeling Support
Mike Melnychuk (UW)
Jeff Laake (NOAA SWFSC)

Field/Logistic Support
Skip Tezak • Long Live the Kings • Hood Canal Salmon Enhancement Group • Mat Gillam • R2 Resource Consultants • Bob Leland • Kelly Kiyohara • Pat Michael • Brody Antipa • Pete Topping • Deborah Feldman • Kelly Andrews • John Blaine • Jim Deveraux • Correigh Greene • Shawn Larson • Jeff Christiansen • John Rupp • Chuck Ebel • Jose Reyes-Tomassini • Jennifer Scheurell • Chris Ewing • Dawn Pucci • Kurt Dobszinsky • Paul Winchell • David Welch • Debbie Goetz • Jose Gimenez • Aswea Porter • Emiliano Perez • Craig Smith • Tim Wilson • Florian Leischner • Christopher Ellings • Scott Steltzner
Temperature in Puget Sound (Strait of Juan de Fuca)

Early Marine Mortality in Puget Sound makes up a substantial amount of overall marine mortality.

Slope of the line = instantaneous mortality rate

Red line = estimates from previous telemetry work in Hood Canal

Blue Line = 2x Hood Canal estimates, providing for underestimation of early mortality rate

Assumed 3% Smolt to Adult return rate (SAR)
Where within Puget Sound is survival occurring?