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Abstract 

One of the continuing challenges in wildland fire management is maintaining accurate 
vegetation and fuel data of an adequate resolution on an ever-changing landscape. The 
USGS’s LANDFIRE program produces national, mid-level resolution datasets of fuel, 
vegetation, and fire regime data useful in the modeling of wildland fire behavior.  One 
of the most effective and least expensive ways for maintaining the accuracy of these 
layers is to incorporate area updates by detecting landscape changes.  While many 
algorithms exist for detecting change and disturbances, these algorithms are often tuned 
for a particular landscape and require very precise training data or rely heavily on scene 
statistics.  This research looks at a method for detecting wildland fire across a broad 
array of landscapes using a collection of computer-generated rules built from hundreds 
of thousands of points of training data.   Verification of the results were assessed by 
visual comparison to a time series of high spatial resolution imagery through Google 
Earth and cross-referenced to fires from various historical databases.  A majority of the 
fires detected in this assessment were in either a conifer or grassland landscape.  The 
methods outlined in this thesis performed best in those two landscapes, detecting 73% 
to 78% of conifer fires correctly and 79% to 83% of grassland fires correctly.  
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Introduction 

The modern computer, running on silicon-based processors, was invented in the 

early 1970’s.  Since then, the computational power of a single computer has doubled 

nearly every eighteen months1.  The rapid expansion of low cost computing resources 

has made the storage of large datasets and the analysis of data using computationally 

intensive algorithms possible on inexpensive consumer hardware.  In this research 

thesis, I took advantage of this rapid growth in computing resources to develop a 

process for detecting disturbances using a time series of Landsat imagery and a 

machine-learning algorithm. 

In this research, I extracted hundreds of thousands of points of spectral response 

data from a three year, six image time series of Landsat satellite images.  I extracted the 

spectral data from Landsat in locations and time periods where wildland fire had 

occurred within the past year.  I also extracted data from areas where wildland fire had 

not recently occurred.    This data was combined into a training dataset and processed 

with a machine-learning algorithm called Cubist (Quinlan, 2016) that employs a 

                                                 

1 According to Moore’s Law, it is the number of transistors on an integrated circuit that doubles every 
eighteen months.  However, the number of transistors on a chip and the chips computational power are 
not strictly a 1:1 relationship.  As you add more transistors to a chip, you have greater power 
consumption and require greater heat dissipation.  The higher heat associated with chips with more 
transistors can have a negative impact on processing capabilities.  However, generally speaking, the 
number of transistors strongly correlates with processing power, or the number of calculations that can 
be performed per second. 
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multivariate linear model algorithm.  I used Cubist to analyze this dataset for temporal 

patterns in spectral trajectories.  Cubist turned those patterns into a series of rules.  Each 

rule described a multivariate linear model.  A multivariate linear model is similar to a 

linear regression model, but has some key differences.  Primarily, multivariate linear 

models have a linear model at each leaf, while a regression model has a simple numeric 

output (Walsh & Milligan, 2005; Walton, 2008).  The value of each equation, when 

applied to each pixel in a new Landsat time series, can be used to predict the likelihood 

of whether or not a fire had occurred in that location within the past year.  

One major advantage of machine-learning algorithms, like Cubist, are their 

ability to identify patterns within large and noisy datasets.  These machine-learning 

algorithms allow researchers to analyze “fuzzy” datasets where a percentage of the 

input data are labeled incorrectly.  Outliers in the data can be detected and ignored by 

Cubist when building rules that describe the data.  This allows researchers to use many 

of the disturbance datasets available despite the variability in data quality and 

reliability.  These algorithms can therefore accept a percentage of incorrectly labeled 

data.  i.e. training data labeled as a wildland fire that was not actually a fire or data that 

was not labeled as fire, even when it should have been.  This is very important in 

change detection models, because much of the available data are of varying quality.   

Keeping large GIS databases such as the USGS’s LANDFIRE database up to date 

are major undertakings.  LANDFIRE is a joint program of the Department of 

Agriculture and the Department of the Interior.  LANDFIRE provides 30m pixel 
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resolution datasets for the whole US.  LANDFIRE datasets include existing and 

potential vegetation layers, surface and canopy fuel layers important for modeling fire 

behavior, fire regime datasets that describe historical fire characteristics, and 

topographic layers.  The LANDFIRE program currently employs several analysts that 

look at disturbance GIS data from a variety of federal, state and local sources as well as 

disturbances detected with automated computer algorithms.  LANDFIRE analysts 

overlay these disturbance datasets on Landsat and other high-resolution imagery data 

using Hexagon Geospatial’s ERDAS Imagine and ESRI’s ArcGIS computer software 

programs.  When those analysts manually confirm the location and type of disturbance 

through visual interpretation of the data, they integrate the changes associated with that 

disturbance back into the appropriate LANDFIRE layers (B. K. J. Nelson et al., 2016).  

For example, when a fire burns through an area and removes dead and woody debris, 

the analyst updates the fuel models in that area.  When agricultural land is replaced 

with a housing suburb, the analyst updates the underlying vegetation layer to reflect 

those changes. 

Much of the change information used today comes from Landsat and Landsat-

derived products.  Landsat 7 currently transmits approximately 400 images a day to 

Earth for processing while Landsat 8 transmits upwards of 700 images per day (U.S. 

Geological Survey, 2015).  Each image covers an area approximately 31,000 square 

kilometers.   Finding and identifying all changes by hand would require an inordinate 

amount of time and staff.  Instead, the LANDFIRE analysts currently rely on automated 
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change detection and disturbance detection modeling routines.  When a disturbance is 

detected by a computer algorithm, the analyst inspects that disturbance and attempts to 

associate it with a known disturbance event (K. J. Nelson, Connot, Peterson, & Martin, 

2013).  If the detected disturbance cannot be associated with a known disturbance event, 

the LANDFIRE analyst attempts to determine disturbance type (K. J. Nelson et al., 

2013).  The disturbance can then be delineated and integrated back into the appropriate 

LANDFIRE layers by the analyst.  Currently, the USGS’s LANDFIRE program uses the 

Multi-Index Integrated Change Analysis (MIICA) change detection algorithm, recently 

replacing the Vegetation Change Tracker (VCT) algorithm, to perform LANDFIRE’s 

automated change detection routines (B. K. J. Nelson et al., 2016). 

Objective 

The objective of this research thesis was to develop a tool using the machine-

learning algorithm Cubist that could supplement or replace the current MIICA 

algorithm by providing more complete wildland fire detections.  This tool will improve 

the LANDFIRE analysts’ workflow by giving them the tools to quickly identify and 

verify wildland fire disturbances while detecting fires not currently detected by existing 

algorithms.  Increased detection performance and better detection verification 

workflows will help make LANDFIRE a better product. 

Unlike the current MIICA method, this machine-learning technique can integrate 

the analysts’ verification data back into the training dataset, improving Cubist’s rule 

model and increasing the efficacy of the algorithm over subsequent iterations.   
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This thesis focuses specifically on the detections of wildland fire as a test case for 

using the Cubist algorithm as a detection method for multiple disturbance types.  In 

order to aid the analysts in quickly verifying wildland fire detections, I built a web 

based tool for looking at the detections and comparing against available ancillary data 

and high-resolution imagery.  This allows the analyst to quickly identify and flag false 

detections while keeping the correct detections for further analysis.  As false detections 

are identified, these cases can be integrated back into the training dataset, potentially 

improving future iterations of Cubist’s rule model. 

Background 

Why Change Detection is Important 

An understanding of landscape composition (e.g. topology, vegetation, and fuel 

dynamics) is critical for making well-informed land management decisions.  Accurate 

data about the landscape can give policymakers the tools to make better management 

decisions about the land within their jurisdiction (Dale et al., 2000).  High quality 

vegetation, fuel, and topographic datasets also give wildland fire managers’ better 

ability to model and predict fire behavior, giving them the tools to best allocate 

resources and protect the lives of the firefighters under their charge (Rollins, 2009).  

Mapping all the vegetation cover for the United States is an expensive and time 

consuming endeavor (Rollins, 2009).  The United States is nearly one billion hectares in 

size.  Of that, 259 million hectares, or about 28% of all land in the United States are 
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publicly owned, (Vincent, Hanson, & Bjelopera, 2014). It is not reasonable, nor feasible 

to map all public and/or private land every year.  However, the landscape is constantly 

changing.  Wildland fire burns fuel and resets successional stages of the landscape 

(Wright, 1974).  Insects damage forests making them more susceptible to fire and 

disease (Parker, Clancy, & Mathiasen, 2006).  Forests in the US are thinned and cleared 

at the rate of 4.4 million hectares annually (Masek et al., 2011).  New trees are planted at 

the rate of 900,000 hectares annually (Masek et al., 2011).  Farmlands are developed into 

shopping malls and homes.  New roads crisscross the landscape, allowing an ever 

growing population to move into and develop more remote areas (Theobald & Romme, 

2007; Tully, 2013).  Keeping track of all this change is difficult, but important for 

keeping data layers, such as LANDFIRE, up to date.  While it is not feasible to remap 

the landscape every year with current technology, personnel, and budgets, identifying 

the changes on the landscape using big data analytics and machine-learning techniques, 

and making inferences on how those changes affect the landscape, will allow data 

managers to keep those critical data layers up to date. 



7 
 

History of Airborne and Spaceborne Imagery 

People have been putting cameras into the air and pointing them at the ground 

shortly after the camera’s invention (J Hannavy, 2013).  

As early as the 1880’s, cameras were attached to kites, 

balloons, and even the occasional pigeon (Cohen & 

Goward, 2004; J Hannavy, 2013; Hildebrandt, 1908).  In 

these early days remotely sensed images were typically 

one-band black and white photos (Olsen, 2007).  Over 

time, as cameras, film, and sensors became more sophisticated, we were able to capture 

more data at higher resolutions and with color and infrared bands of information.  

However, until late in the last century, most of these images were analyzed by hand by 

specially trained analysts (Balchin, 1987).  This did not scale well and it limited our 

ability to analyze the ever growing amount of data.  Mapping was one of the first 

objectives of remote sensing, but soon, the potential of aerial imagery for military 

applications were realized, driven in large part by the first two world wars (Lillesand, 

Kiefer, & Chipman, 2015).  The first 100 years of airborne and spaceborne imaging 

applications were dominated by military and state spy craft objectives with images 

coming from either spy-planes or military satellites (Downing, 2011).  It wasn’t until 

1972, and the birth of the environmental movement, that the first Land Remote-Sensing 

Satellite (Landsat) was launched into low-earth orbit (Cohen & Goward, 2004).  Landsat 

1 was equipped with a 4 band multispectral camera tuned for environmental 

monitoring (Table 1), starting an era of remote sensing for environmental monitoring 

Figure 1 – Pigeon Camera from 1914. 
Attribution: Bundesarchiv, Bild 183-
R01996 / CC-BY-SA 3.0 
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and landscape analysis (Cohen & Goward, 2004).  With the launch of Landsat, 

researchers were now able to use remotely gathered satellite images to begin analyzing 

the natural features of the Earth.  Much of this analysis in the early days continued to be 

done by hand or with simple supervised and unsupervised classification techniques, 

but with increased access to modern computers, researchers began developing 

algorithms to detect features and classify landscapes automatically (Fleming, Berkebile, 

& Hoffer, 1975; Mirajkar & Srinjvasan, n.d.).  As computers and algorithms became 

more sophisticated, more complex problems could be applied to a series of images to 

detect temporal patterns of change, such as landscape disturbance.  Initially these 

algorithms were relatively simple, using a handful of carefully collected, collated, and 

hand-tuned training points to describe all the features the analyst hoped to detect 

(Fleming et al., 1975).  This process of collecting training points was time consuming 

and expensive as it often required field checking the training data points.  It also 

assumed the analysts’ biases in picking training points that they thought best described 

the phenomena they were trying to identify. Once these training points were collected, 

a series of classified images could then be compared and differences between the two 

analyzed. 

Table 1 – Landsat band wavelengths. The first three Landsat satellites used the Multispectral scanner and consisted of four 
spectral bands of information at approximately 60m spatial resolution.  Landsat 4 and 5 used the Thematic Mapper scanner. All 
but the thermal band are recorded at a 30m spatial resolution.  The thermal band (6) is recorded at 120m spatial resolution.  
Landsat 7 uses the Enhanced Thematic Mapper Plus scanner.  The spectral band information recorded by Landsat 7 mirrors that 
of 4 and 5.  However, Landsat 7 adds an additional panchromatic band (8) that records information at 15m pixel resolution.  
Landsat 8 uses the Operational Land Imager and adjusts the spectral band information recorded from that of its predecessors.  
Additionally, Landsat 8 adds a band (9) used for detecting cirrus clouds.  Landsat 8 also includes two new thermal bands on a 
different sensor not included in this table (U.S. Geological Survey, 2016).  Landsat 6 carried the ETM sensor, but failed to 
achieve orbit. 



9 
 

In the decades since, more Landsat satellites have been launched, each making 

improvements and refinements over previous models.  The latest version of Landsat, 

Landsat 8, images the earth recording 7 bands of data at 30-meter spatial resolution, 

plus two thermal bands at lower spatial resolution.  In the versions between Landsat 1 

and 8, the number of bands have increased and the wavelength intervals for each band 

have been refined to optimize for environmental landscape analysis (Table 1) (U.S. 

Geological Survey, 2016). This thesis primarily relies on Landsat 5 data because of its 

long-term data availability and reliability. 

Changes in the Computer Environment 

The early 1970’s marked the beginning of the silicon-based processor era.  In 

1972, the top of the line Intel 8008 processor had 3,500 transistors, could access 16kb of 

memory and perform 60,000 instructions per second (Betker, Fernando, & Whalen, 

 Landsat 1-3 
(MSS) 

Landsat 4-5 (TM) Landsat 7 
(ETM+) 

Landsat 8 (OLI) 

Band 1 N/A 0.45-0.52 0.45-0.52 0.43 - 0.45 

Band 2 N/A 0.52-0.60 0.52-0.60 0.45 - 0.51 

Band 3 N/A 0.63-0.69 0.63-0.69 0.53 - 0.59 

Band 4 0.5-0.6 0.76-0.90 0.77-0.90 0.64 - 0.67 

Band 5 0.6-0.7 1.55-1.75 1.55-1.75 0.85 - 0.88 

Band 6 0.7-0.8 10.40-12.50 10.40-12.50 1.57 - 1.65 

Band 7 0.8-1.1 2.08-2.35 2.09-2.35 2.11 - 2.29 

Band 8 N/A N/A .52-.90 0.50 - 0.68 

Band 9 N/A N/A N/A 1.36 - 1.38 
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1997). One 8008 processor cost over $650 in 2016 dollars (Betker et al., 1997).  Since the 

1970’s however, processing power has followed Moore’s law, (until very recently) 

doubling every 18 months, while the cost per transistor has decreased by half every 1.1 

years (Kurzweil, 2016)2.   A midrange consumer-level Intel processor in 2011, the latest 

for which Intel published numbers, had 1.16 billion transistors and cost about $300 

(McGrath, 2011). 

Prior to the 1980’s, most data storage was on magnetic tape.  A high-end typical 

tape storage disk in the mid 1970’s could store between 5Mb and 140Mb of data.  A 

typical Landsat 5 scene for all 7 bands is approximately 1.5Gb in size3.  The limitations 

in tape capacity meant computer storage and digital analysis of Landsat and other 

aerial imagery was difficult, time consuming, and prohibitively expensive outside of 

large research organizations and Universities.  It wasn’t until the 1980’s that magnetic 

storage hard drives became available, and early on, their capacity was tiny and their 

cost high.  The first consumer hard disk drives were released in 1980 with a total 

capacity of 26Mb.   The cost per Gb in hard drive storage in 1980 was $437,500, while in 

                                                 

2 Gordon Moore was the co-founder of Intel.  In 1965, he predicted that the number of components on an 
integrated circuit would double every year.  He later refined that prediction to every two years.  His 
prediction, on average, held true until 2012.  The typical transistor size in 2012 was as small as 22nm and 
is approaching 10nm in 2016.  The size of silicon based transistors are reaching their physical limit of 
about 5nm.  Any smaller than that, and the transistor starts to experience the effects of quantum 
mechanics.  However, researchers have been experimenting with new materials that will allow even 
smaller transistors.  Transistors made out of newer materials, such as graphene, have been produced in a 
lab as small as 10 atoms think.  As the end of the silicon era is approaching and new materials come into 
use, Moore’s law will likely need to be revised. 
3 1Gb is equal to 1024Mb.   A typical Landsat image would require anywhere from 10 to 300 tapes. 
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2013, the cost per Gb was as low as 4.3 cents (Statistic Brain Research Institute, 2016).  

Performing remote sensing analysis in the early days was extremely costly and slow 

(Cohen & Goward, 2004).   

Many of the machine-learning algorithms we use today are simply too resource 

intensive to even be considered on the most sophisticated hardware of the early era of 

environmental remote sensing.  The rapid increase in computing power has allowed us 

to build much more sophisticated, computational and data intensive algorithms.   This 

has given rise to the machine-learning era where we can feed large quantities of data 

into the computer and let the computer, using sophisticated algorithms, identify 

patterns that make up the processes we are trying to identify. 

Remote sensing techniques have evolved over time and have gotten more 

sophisticated as computing capabilities have increased.  The quantity of available data 

is ever growing.  As of 2011, the growth rate of stored data worldwide was growing 

25% annually at a compounding rate (Press, 2013).  This rapid rate of data growth poses 

many challenges in mining the large quantities of data for useful information and 

patterns.  However, as these big data tools evolve, a natural application for those tools 

will be in the remote sensing arena.   

Remote Sensing Techniques 

Computer driven remote sensing originally relied on analysis of a single image 

analysis using either supervised or unsupervised classification techniques (Lillestrand, 

1972).  Supervised classification relies on labeled training data to inform the spectral 
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signatures of the desired targets of discovery.  Unsupervised classification breaks the 

imagery up into areas of similar spectral signatures and leaves it up to human 

interpretation as to what those areas represent.  Overtime, the algorithms for both 

supervised and unsupervised classification techniques have improved.  Eventually 

these techniques were expanded to multi-imagery comparisons looking for change 

between imagery taken on two or more different dates (Singh, 1989).  The simplest 

analysis would be to subtract one band of data in one scene from the same band of data 

from another scene from two spatially equivalent images.  The difference of these 

scenes would inform a potential change in landscape.  This simple analysis, however, 

doesn’t inform the type of change, and doesn’t account for seasonal differences between 

images.  More sophisticated techniques looking for patterns between multi-bands of 

data from images on multiple dates have evolved to identify changes and trends and 

allows the algorithm to identify only specified phenomena, if so desired.   

The first several versions of the LANDFIRE data products relied on the 

Vegetation Change Tracker (VCT) algorithm to detect change and inform updates to the 

LANDFIRE dataset.  VCT is algorithmically similar to  Oregon State University’s 

LandTrendr project (Kennedy, Yang, & Cohen, 2010), both being developed in 2008, 

shortly after the Landsat archive became freely available.  In the latest 1.3.0 version of 

LANDFIRE, VCT was replaced by the Multi-Index Integrated Change Analysis (MIICA) 

algorithm as the primary source of change detection data (B. K. J. Nelson et al., 2016). 
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Disturbance Detection with LandTrendr 

LandTrendr is a change detection tool developed at Oregon State University in 

cooperation with the U.S. Forest Service and NASA.  Unlike many traditional change 

detection routines that only look for change in a pair of scenes, LandTrendr looks for 

change by analyzing the trends of individual pixels over the course of many years.  Not 

only does this allow the algorithm to pick up abrupt disturbances on the landscape such 

as fire and clear-cuts, but also long-term trends of vegetation decline and regrowth 

(Kennedy et al., 2010).  

Trends are identified by stacking pre-processed Landsat scenes taken in the 

summer months from multiple years and graphing the spectral values of a single band 

or index (based on two or more bands) for those years.  Best fit vertices are created 

through a series of mathematical functions that simplify the vertices into generalized 

trends (Kennedy et al., 2010).  This is repeated for every pixel in a scene. 

These trends are then compared to an idealized trend model for varying types of 

change.  If the trend shapes are similar enough within a statistical margin-of-error, then 

the trend is labeled as a change.  The model includes four idealized trend patterns: 

simple disturbance, disturbance followed by revegetation, ongoing revegetation, and 

revegetation to stable state.  Everything else is labeled as not having changed. In 

addition to labeling change, the year of disturbance, its intensity and the rate of 

recovery were also labeled.  While the LandTrendr model can automatically detect 

disturbance and change directionality, it does not classify the cause of change.  A 
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separate process where groups of pixels have been identified as changed are validated 

and labeled by a human analyst comparing the LandTrendr output and high-resolution 

satellite photos (Cohen, Yang, & Kennedy, 2010; Kennedy et al., 2010). 

Disturbance Detection with Vegetation Change Tracker (VCT) 

The Vegetation Change Tracker (VCT) was developed as part of the USGS’s 

LANDFIRE program located at the EROS Data Center in Sioux Falls, South Dakota 

(Vogelmann et al., 2011).  It is algorithmically similar to that of LandTrendr.  VCT is 

able to accurately detect most stand-clearing disturbances including fire and clear-cuts 

and many other disturbances that don’t have complete stand removal (K. J. Nelson et 

al., 2013).  The VCT algorithm is tuned specifically to forested environments but tends 

to break down in non-forest environments (Jin et al., 2013).  This is in part dependent on 

VCT’s dependence on scene statistics and the brightness of many non-forested scenes 

prevent the bright spots of fire from being detected (Jin et al., 2013). 

Disturbance Detection with MIICA 

In 2013 the LANDFIRE program switched its change detection algorithm to the 

Multi-Index Integrated Change Analysis (MIICA) algorithm (B. K. J. Nelson et al., 2016).  

This algorithm was developed by the Multi-Resolution Land Characteristics (MRLC) 

consortium.  MRLC produces the National Land Cover Database (NLCD) and 

developed MIICA for the 2011 NLCD update, which was the last major NLCD update.  

MIICA uses four spectral indices derived from a pair of Landsat scenes to find changes 
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between two dates in time.  This algorithm performs better at detecting disturbances, 

like wildland fire, in non-forested areas than the VCT algorithm. 

The indices used in MIICA are the differenced Normalized Burn Ratio (dNBR), 

the differenced Normalized Difference Vegetation Index (dNDVI), the Change Vector 

(CV), and an index developed specifically for MIICA called the Relative Change Vector 

Maximum (RCVMAX) index (Jin et al., 2013).  

Detecting Fire 

My research will focus on the development of an alternative approach for the 

detection of wildland fire events. This approach may also be useful for detecting other 

disturbance types. My research is facilitated by the availability of the US Forest Services 

Fire Occurrence Database (FOD) of fire points for the years 1992-2013 (Karen C. Short, 

2015).  This is the most complete database of fire in the US.  While this database is 

certainly not a complete record of wildland fires in the United States, it is far more 

complete than any other previous database (K. C. Short, 2014).  To the best of my 

knowledge, no similar databases of nationally complete data for both public and private 

land exists for other disturbances of interest, such as clear-cuts, thinning, insect damage, 

or other disturbances.  The availability of this database was useful in verifying the 

detection results. 

There are many methods of fire detection and they serve different purposes.  

Wildland fire can have significant impact on the human environment, so having rapid, 

near real-time detection methods for fires is important for identifying active fires that 
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might require immediate human response.  The primary, global, real-time detection 

method for wildland fires relies on the Moderate Resolution Imaging 

Spectroradiometer, more commonly referred to as MODIS, satellite data. 

MODIS is an imaging platform aboard the Terra and Aqua EOS Satellites.  Both 

satellites are in near-polar orbits and are both sun-synchronous. The spatial resolution 

and orbital paths of the two MODIS platform satellites enable the earth to be imaged 

four times a day – twice at night and twice in the day.  The high-temporal frequency of 

global passes allows for detection of near real-time events and provides early warning 

and analysis of a disturbance (Giglio, Csiszar, & Justice, 2006). 

The MODIS fire detection system is an early-warning tool for detecting the 

spatial location of fires across the planet.  Fires can be detected at the sub-pixel level 

(Giglio et al., 2006).  However, given the 1 kilometer pixel resolution, it is not a good 

tool for the assessment of fire perimeters or internal heterogeneity of fires.  It is also not 

a tool for detecting fire scars on the landscape.  It is solely a real-time active fire 

detection tool. 

Other algorithms, such as VCT, LandTrendr, and the research developed in this 

thesis, look for past fires based on a time series of Landsat imagery by looking for 

changes in the recorded spectral data that is indicative of a fire scar. 
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Detecting Disturbance vs. Delineation of Disturbance Area 

When looking for wildland fires and other disturbances with remote sensing 

techniques, there are three levels of detail possible.  The first level is the detection of the 

disturbance.  Detection of a disturbance will find the location of a change, but not 

provide details about size and severity.  The second level is delineation of the 

disturbance perimeter.  Delineation of the perimeter will provide details on size and 

location of the disturbance, but will not provide detail about internal severity of 

individual pixels within the disturbance.  Finally, delineation with classification will 

determine the location, spatial extent and internal heterogeneity of the disturbance by 

classifying the level of disturbance of each individual pixel within the disturbance 

perimeter. 

While delineation and classification of disturbances is an important future goal 

for this research, this thesis focuses on detection of wildland fire.  This is in large part 

due to the lack of complete historical fire records, including location, perimeter, and 

severity of fires.  This makes verification of fire perimeters and internal heterogeneity 

difficult.  The FOD database, which is the best fire occurrence database to date, only 

includes point data, so shape and internal heterogeneity of the detected fires can’t be 

compared to the outputs of my model.  While delineation would be beneficial for the 

advancement of wildland fire research, positive identification of previously unknown 

fires is the first goal of this research. Detection of previously undetected fires will allow 



18 
 

the LANDFIRE analysts to manually delineate the disturbance and further improve the 

LANDFIRE data products. 

Utility of Research 

Identifying wildland fires and other disturbances is important for a number of 

reasons.  It helps data managers, such as the USGS’s LANDFIRE team, keep fuel and 

vegetation layers up to date by incorporating the changes associated with disturbances 

into existing datasets.  For example, this could include updates to fuel load and 

classification layers as fuel is removed by fire.  Incorporating the results of these 

changes into the data layers can improve the accuracy and decrease the cost of 

maintaining those datasets by eliminating the need to remap the data in its entirety.    

Knowing the location and size of fires can help policy makers and researchers better 

understand the wildland fire landscape.  Good fire data, for example, can help 

determine trends in the number of ignitions, total fire area, and severity of fire.  These 

are important pieces of information when studying the trends and impacts of climate 

change.  Having accurate fuel, vegetation and historical fire data is important for 

informing wildland fire policy and modeling fire behavior.  The goal of this thesis is to 

develop a tool for quickly and accurately identifying past wildland fires.  More 

complete and accurate data can be used by LANDFIRE analysts to improve the 

LANDFIRE data products. 
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Machine-Learning and Cubist 

Machine-learning is the ability for computers to identify patterns without 

explicitly being programmed to recognize a predetermined pattern (Samuel, 1959).  

Machine-learning algorithms identify patterns in data and create models that predict 

outcomes based on that pattern given similar data.  These algorithms can continually 

improve their models as more data is collected, classified, and input into the algorithm.  

Generally speaking, machine-learning algorithms are broken down into two broad 

types: supervised learning and unsupervised learning (Russell & Norvig, 2009).  

Unsupervised learning algorithms analyze a dataset for structure without knowing 

anything about the meaning of the dataset.  Supervised learning is a technique where 

data are labeled within a dataset by type and the data are analyzed for patterns 

describing each of the labeled types. 

There are many types of machine-learning algorithms, all with different 

strengths and weaknesses.  A non-exclusive list of machine-learning algorithms 

includes decision trees, regression trees, neural networks, deep learning, Bayesian 

networks, and genetic algorithms.  For this thesis, I am using a machine-learning 

algorithm called Cubist which is a multivariate linear model algorithm (Quinlan, 2016).   

Cubist is an algorithm that builds a collection of rules based on the patterns 

found within the data.  Each rule describes a multivariate linear model.  That linear 

model can then be applied to each pixel value in a Landsat pixel stack that calculates a 

numerical value.  This numerical value describes the likelihood that a particular value is 
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correctly identified.  The analyst can set a threshold to convert these numerical values 

into a binary response.  In this case, I set a threshold of 95.  Values above 95 are 

considered burned, while values below 95 are considered unburned.  Cubist, according 

to the documentation “… is a powerful tool for generating rule-based models that 

balance the need for accurate prediction against the requirements of intelligibility. 

Cubist models generally give better results than those produced by simple techniques 

such as multivariate linear regression, while also being easier to understand than neural 

networks” (Quinlan, 2016).  Cubist is designed to quickly analyze datasets with millions 

of records and up to 1,000’s of data fields.  Cubist has been used for many data-mining 

and GIS research projects including a process to update the National Land Cover 

database (Fry, Coan, Homer, Meyer, & Wickham, 2009), to determine local effects of 

Mercury emissions (Walsh & Milligan, 2005), to predict profit in dairy farms (Yli-

heikkil, Tauriainen, & Sulkava, 2015), to estimate vegetation canopy density (Huang, 

Yang, Wylie, Homer, & Itss, 2001), and to forecast wind farm power production 

(Wiener, Pearson, Lambi, Myers, & Goodrich, 2011), among many others.  

There are some additional characteristics of Cubist that were factors in choosing 

it for this research.  There is an open source version of the code available.  This allows 

us to analyze and modify the code freely should the need arise.  While open source code 

is available, Cubist is a proprietary product produced by a company called RuleQuest.  

This company sells and supports a version of the algorithm designed to work on 
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multiple processors.  Paid professional support is often a requirement for larger 

organizations when adopting new tools and software. 

Another advantage to Cubist is the structure of the data models that it creates.  

These models are well-structured plain text rules.  This means that the models can 

easily be opened up in a text editor and the rules analyzed by a human, they could then 

be applied by hand if so desired. 

Finally, the Cubist algorithm is fast.  It is written in the C programming language 

and is very fast and efficient when building and applying models.  In fact, Cubist is the 

fastest part of the toolset built for this research.  Extracting Landsat data from the hard 

drive and pulling it into the Cubist algorithm is the biggest bottleneck with this tool.  

Methods 

This section describes the detailed steps I performed in this research, from data 

collection and processing, to result analysis and verification.  Most of the steps were 

rules="98" 

conds="3" cover="68950" mean="0.1" loval="0" hival="100" esterr="0.2" 

type="2" att="l3b1" cut="42" result="<=" 

type="2" att="l3b2" cut="35" result=">" 

type="2" att="l1b3" cut="45" result=">" 

coeff="1" att="l1b2" coeff="0.01" att="l1b3" coeff="-0.013" att="l1b6" coeff="-

0.008" att="yl1b2" coeff="0.02" att="l2b3" coeff="-0.03" att="l2b4" coeff="0.02" 

att="l4b3" coeff="0.01" att="l4b4" coeff="-0.017" att="l4b5" coeff="-0.01" 

att="l4b6" coeff="0.01" att="l5b5" coeff="-0.02" att="l5b6" coeff="0.02" 

att="l6b2" coeff="-0.02" att="l6b5" coeff="0.013" 

Figure 2 – Sample Cubist rule.  This rule has three condition that must be met.  The first band of the third scene in the Landsat 
time series stack must be less than or equal to 42 while the second band of the third scene must be greater than 35 and finally, the 
third band of the first scene must be greater than 45.  If these conditions are met, then, then the linear model equation using the 
listed coefficients and band values are used to calculate the result for each pixel 
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scripted using Python and rely heavily on the Geospatial Data Abstraction Library 

(GDAL).  Open source tools were chosen whenever possible to facilitate low-cost 

repeatability of this research.  Most of the scripts I developed are available in the 

appendices.  I processed the data on a distributed number of computers.  The code is 

separated in such a way that the analysis can be scaled in parallel across numerous 

machines. 

Study Area 

I used Landsat 5 scenes as the remotely sensed data for this project. I collected 

Landsat data individually by scene, with two scenes per year, for the years 2009 

through 2011.  Each scene covers an area defined by the Worldwide Reference System 

(WRS) path/row boundaries.   
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Each WRS path/row is approximately 170 kilometers along its north-south 

orientation and 183 kilometers along its east-west orientation.  Each scene is 

approximately 31,000 square kilometers in area.  I collected pre-processed Landsat data 

covering paths 39 through 41 and rows 26 through 30.  This area covers parts of 

Montana and Idaho (Figure 3).  I extracted data from all WRS path/rows in the study 

area but only applied the models built from that data to path 40, rows 26 through 29.  I 

built training datasets for each detection scene by combining the data from all 

neighboring training scenes.  The area where I verified detections covers an area about 

124,000 square kilometers.  The time period, or detection window, in which I’m trying 

to identify fires is between the third and fifth scenes in the stack, which is 

approximately September 2009 through September 2010. 

Figure 3 – Study area covering Western Montana and central Idaho.  Fire detections were verified in path 40, rows 26 through 
29.  Data used to train the model for detection scenes was collected from the neighboring scenes. 
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Prep BARC Data: 

I used the Burned Area Reflectance Classification (BARC) datasets to identify 

fires for labeling disturbance pixels in the dataset extracted for training the Cubist 

algorithm.  The Burned Area Emergency Response (BAER) team produces BARC rasters 

for dozens of fires across the western United States every year.  BARC data uses 

Landsat’s near infrared (NIR) and shortwave-infrared (SWIR) bands to calculate a 

normalized burn ration (NBR) index suitable for identifying fire severity using the 

following equation: 

𝑁𝑁𝑁𝑁𝑁𝑁 =
(𝑁𝑁𝑁𝑁𝑁𝑁 − 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆)
(𝑁𝑁𝑁𝑁𝑁𝑁 + 𝑆𝑆𝑆𝑆𝑆𝑆𝑅𝑅) 

The BARC data compares the NBR index from a Landsat scene before the fire and the 

NBR index from a Landsat scene after the fire.  This comparison is called the 

differenced normalized burned ratio (dNBR).  Pixels with high dNBR values are 

considered the highest severity areas of the fire while the lowest values are considered 

unburned.  The dNBR equation is as follows:   

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 𝑁𝑁𝑁𝑁𝑁𝑁𝑝𝑝𝑝𝑝𝑝𝑝−𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 −  𝑁𝑁𝑁𝑁𝑁𝑁𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝−𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 

The BAER team rescales the dNBR burn severity index to a 0-256 scale.  This is 

then segmented into four classes, representing unburned area, low severity, medium 

severity and high severity areas.  Low severity pixels are defined as areas where surface 

material is not completely consumed and still recognizable.  Canopy and understory 

vegetation is still usually green.  Moderate severity pixels are areas where up to 80 

percent of surface material is consumed by fire, vegetation is typically scorched and 
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appears brown.  High severity pixels are areas where all of the surface material is 

removed and vegetation, where it remains, is typically black in appearance (Parsons, 

Robichaud, Lewis, Napper, & Clark, 2010). 

The BARC data for each fire is evaluated by a BAER field team.  Typical class 

breaks for BARC data are 0 to 75 as unburned, 76 to 109 as low severity, 110 to 187 as 

medium severity, and 188 to 255 as high severity (Parsons et al., 2010).  Adjustments to 

the class breaks for each fire are adjusted, if necessary, based on the field team’s 

observations (Parsons et al., 2010).  I downloaded all BARC data in the training area 

from the BARC repository.  Data formats are sometimes inconsistent in the repository.  

Most fires include the BARC four class raster, but occasionally it is missing from the 

BARC repository.  In these instances, the BARC 256 data are provided, along with the 

custom break points that are needed to convert the BARC 256 raster into the BARC four 

raster.  In these instances, I reclassified the BARC 256 raster into a BARC four raster.  

Additionally, most BARC datasets are in the USGS Albers projection.  Occasionally, 

however, these datasets are provided in a local UTM coordinate system.  In these cases, 

I projected the data into Albers. 

After ensuring the BARC data was processed consistently, I calculated the 

outermost rectangular extent of each BARC fire that would encompass all BARC pixels 

from that fire.  This process identified the minimum extent of the fire in Albers 

coordinates and inserted the coordinates into a computer file shared by all of my BARC 

data for each year of interest. 
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The code for prepping BARC data is available in Appendix III. 

Collect and Prepare Fire Perimeter Data 

We also needed to extract pixels without a fire disturbance when training our 

detection model.  The BARC dataset is only available for a handful of fires in any given 

year.  In order to minimize the risk of extracting a point as an unburned training pixel 

that was actually burned, we needed to know where all fires were located.  I collected 

fire perimeters from many national, state and local datasets (Appendix I).  These 

perimeters were combined into a single GIS database.  At a bare minimum, I tried to 

identify the year of the fire.  If possible, I also included the start date and containment 

date of the fire.  As much attribute data was kept as possible from the datasets and 

merged into a consistent schema.  I was then able to use this dataset to mask out areas 

of fire when extracting training data that represented unburned pixels.  While this 

dataset is not a complete historical record, it does reduce significantly the risk of 

extracting training data incorrectly.  This is largely due to the fact that there is much 

more likely to be an historical fire record and perimeter data for larger fires. 

Identify Input Datasets 

My training data structure required two Landsat scenes for each year in the 

analysis.  One scene was a minimum vegetation scene and the other was a maximum 

vegetation scene.  The scenes were selected by hand by staff at the USGS for each WRS 

path/row. Scenes were selected to minimize clouds, snow, and smoke.  Surface 

reflectance values for each Landsat scene were calculated at the USGS using the Landsat 
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Ecosystem Disturbance Adaptive Processing System (LEDAPS) before the data was 

downloaded (USGS, 2016).  This made the data between scenes more consistent by 

minimizing variability due to atmospheric conditions. The thermal band from Landsat 

was stripped from these scenes.  In its place is a mask band that masks clouds, water, 

snow, ice, and smoke. These steps were all performed by personnel or by automated 

processes at the USGS.   

Extract Training Data 

For every WRS path/row, I created a dataset to train the Cubist model.  This 

dataset consisted of all the burned pixel data for each of the eight neighboring WRS 

path/rows as well as a random sampling of unburned pixels.  For each WRS path/row 

in the training dataset, I built a 3-year Landsat time series stack.  I used two scenes for 

each year.  One scene was a leaf-off scene and one was a leaf-on scene. 

Because the Landsat satellite orbit drifts slightly in space, and because of limited 

fuel, satellite thrusters are only burned infrequently as the drift becomes relatively 

severe (NASA, n.d.).  Because of this drift, the footprints of scenes from multiple passes 

of the same WRS path/row do not line up perfectly with each other.  For each scene, I 

created a data mask.  I calculated the minimum congruent extent for all six data masks 

to determine the area from which I could extract training data.  This prevented 

extraction of values with no data from some scenes where data did not overlap. 

I performed an intersection between my data mask and each BARC dataset 

extent for each BARC fire in the year of analysis.  When a BARC fire extent intersected 
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my data mask, I extracted all the pixel data for each Landsat scene where a BARC pixel 

was classified as either medium or high severity.  Additionally, I calculated the Julian 

day of year for each Landsat scene and included that variable in my dataset.  Finally, 

the last variable in my dataset indicated that the pixel represented a burned location.  

Burned pixels were given a value of 100.  I saved all variables for each Landsat band, 

Julian day of year, and burned pixel as a single row in a data file.  I extracted data into 

individual data files for each WRS path/row and year combination.  

I also extracted data from unburned areas. I randomly selected rows within my 

scene, and within each row, I randomly selected pixels to extract undisturbed data.  For 

each pixel chosen for extraction, I checked to see if it intersected any of my BARC data 

or any fire perimeter in my fire perimeters database.  If the pixel intersected a fire, and 

the fire occurred in the year of analysis, and before the scene was taken, I removed the 

pixel.  This minimized training pixels as unburned pixels in areas where fire actually 

occurred.  I limited the number of unburned pixels extracted to the lesser of either 10 

times the number of burned pixels extracted, or 1 million pixels.  Spectral data variables 

for unburned pixels were extracted, and Julian day of year was calculated, using the 

same process for burned pixels.  However, the final variable was set to 0 instead of 100 

to represented unburned pixels. 

The code for the extraction process can be seen in Appendix IV. 
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Build the Training Model 

For each WRS path/row being analyzed, I combined the training data files from 

all eight neighboring WRS path/rows.  I did not include the training data from the WRS 

path/row being analyzed in order to prevent biasing the results by detecting the same 

fires used to train the model.  I took this combined training data file for each WRS 

path/row and applied the Cubist statistical algorithm.  Cubist built a separate model 

for each scene being analyzed that could then be used to identify likely fires. 

The code for prepping the data and building the models can be seen in Appendix 

V 

Using the Detection Model 

The detection process followed similar steps as the extraction process.  I 

extracted the pixel data for each pixel in my 3-year Landsat time series.  I also converted 

the date the scene was recorded by Landsat into the Julian day of year and included 

that as a variable in my training dataset.  However, instead of setting the 

burned/unburned variable as either 0 or 100, I left it as unknown. 

I then applied the Cubist model to every pixel which returned a value between 

approximately 0 and 110.  The higher the value, the more likely the pixel was burned 

during the detection window.  I then took the returned values calculated by the Cubist 

model and applied them to a new single band likelihood of fire raster. 

The code for applying the model to a new scene can be seen in Appendix VI. 
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Prep the Likelihood of Fire Raster for Analysis 

The raster created from my Cubist model represented a likelihood value that 

each pixel experienced a fire during the year of analysis.  I used the Schowengerdt 

method to set a standard threshold for determining the cutoff between burned and 

unburned values by adjusting the threshold while looking at overlaid BARC data 

(Singh, 1989).  I set the threshold at the point around where the BARC fires were just 

distinguishable.  This value was typically around 95.  I reclassed this raster, setting 

every pixel with a value equal to, or above 95 as a burned pixel, and everything below 

as unburned.  Finally, I performed a raster sieve operation to remove single pixels from 

my analysis.  This removed a great deal of noise from the output.  In this analysis, I only 

looked for fire that was 2 or more adjoining or diagonal 30m2 pixels, or at least 0.5 acres 

in size.  This created my final output raster of pixels where the model had detected fire 

in the detection window. 

The code for preparing the results raster for analysis can be seen in Appendix 

VII. 

Verify the Results 

Verification of the results was difficult.  We have a good idea when and where 

many, but not all, fires have occurred by using our history fire point database from the 

USGS.  However, this is only point data and does not provide perimeter delineation, or 

more importantly, internal heterogeneity of the fire.  We can supplement, to an extent, 

with our custom fire perimeter database, but again, these are just perimeters and don’t 
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reflect the actual severity of the fire over each pixel.  Neither of these databases are a 

complete record of all fires that have occurred over the landscape in our study area and 

over our study time period.  BARC data are the only national, field verified, datasets we 

have that show internal heterogeneity of the fire, and, because it is our training source, 

output severity classifications should match the BARC input data if the model is trained 

perfectly.  However, only a handful of fires are processed as BARC datasets by the 

BAER team.  For these reasons, it is difficult to build an automated testing model to 

verify each detected fire.  I opted instead to do a visual analysis of each detection and 

verify each detection by comparing to high resolution aerial imagery and, when 

possible, cross-reference with my various historical fire databases.  To facilitate the 

verification, I created a custom web map application (Figure 4)  
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Figure 4 – Validation tool.  This tool runs in a standard web browser and can be accessed from any internet connected computer.  
The tool allows the user to view all detections as well as the Landsat data where the disturbances were detected.  Ancillary data, 
including fire history points with attribute data, BAER team data and Landsat orbital paths can all be toggled on and off 
allowing the user to quickly determine the validity of a detection.  Red dots represent fires in the FOD and are sized based on the 
total burned area field in the FOD.  The rasters in the black boxes are BAER data.  The black box is the data mask in the BAER 
raster.  It is set slightly opaque and can be toggled on and off to see the disturbance in the imagery below.  The fire information in 
the top left corner is the attribute information for one of the FOD fires.  The user can click on any FOD and see the basic 
attribute information associated with that fire.  The “unsure”, “correct”, and “incorrect” toggles on the right allow the user to 
draw polygons on the map for each of those verification classes. 

This application included all of the fire detections as well as all of the BARC data 

and fire history points relevant to my detection time period.  Landsat’s orbital path and 

rows could be toggled to orient me to the relevant testing area.  The final Landsat scene 

in my detection time period was available for viewing using several band combinations, 

including standard RGB, 543 and an NDVI index.  This was used to look at the actual 

data where a disturbance was detected.  A high resolution basemap from ESRI was 

included as well.  This basemap was not time-stamped, and the date and time the 



33 
 

imagery was taken varied across the study area.  However, this provided another clue 

when identifying the disturbance. 

When clicking on a historical fire point, attribute data for that fire, including the 

name of the fire, the fire year, the containment date of the fire (if it existed in the 

attribute data) and the fire size in acres were displayed in a popup along with a unique 

integer identifier for that fire.  This was used to cross-reference historical fires with my 

 
Figure 5 – Google Earth.  This screenshot of Google Earth shows one of the detected disturbance locations in high resolution.  
This was a correctly detected fire.  The time slider at the top left corner of the image could be adjusted allowing the user to view 
all imagery available for different time periods.  Looking at imagery before the detected disturbance and after the detected 
disturbance allowed me to verify the disturbance time period. 
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detected fires.  

 When clicking on a pixel on the map, the latitude and longitude for that location 

was displayed.  I copied the latitude and longitude values into Google Earth.  I then 

used Google Earth’s imagery to try and verify the fire disturbance and time period.  I 

adjusted the imagery time-slider in Google Earth to determine if a fire disturbance 

occurred within or close to (depending on the dates of the imagery) the detected fire 

disturbance.  

After I verified the disturbance using Google Earth, I drew a polygon around the 

disturbance in the verification app.  I then entered in attribute information about that 

detection, including whether or not the disturbance could be verified as correct or 

Figure 6 - An example of a correctly detected disturbance in the validation tool.  This was the Bielenaburg Complex fire in 2009. 
The validation box in the center of the screen allowed me to manually enter in known attributes about the detection that I could 
cross reference with my fire history attributes.  Selected fire history attributes could be compared in the top left box. The detected 
size is automatically calculated from the fire perimeter I drew around each detection. 
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incorrect.  If I was unable to determine whether or not a verification was correctly 

detected, I labeled the status as indetermined.  There were many times when the spatial 

or temporal resolution of the aerial imagery was not adequate enough to make a 

determination.  I included a note to provide a description of the details about an 

incorrect classification or a classification that couldn’t be determined.   

If I was able to cross-reference the fire with a historical known fire, I entered the 

unique fire, fire size, and name into the attribute data of the detected fire. 

Results 

I evaluated all detections in four scenes in my study area.  Path 40, rows 26 

through 29.  There were a total of 881 detections in those four scenes, or approximately 

220 detections per scene on average.  Each scene was approximately 31,110 square 

kilometers in area.  Of those 881 detections, I was able to verify 331 of them as fire 

detections during the correct detection time window.  256 were clearly not fires, or fires 

but outside of the detection time window.  Another 224 detections could not be 

determined clearly as fire or non-fire detections.  

Of the incorrect detections, 103, or 40% were agricultural land.  39, or 15% were 

clear-cut or thinned forests.  15, or 6% were fires, but from an early time period, outside 

of our detection window.  16, or 6.5% were detections on barren land, often at high 

altitude areas with perennial snow caps.  The last 83, or 32% were not classified. 
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There were 224 fires that I was unable to verify as correctly or incorrectly 

detected fire disturbances.  Of those 224 detections, 31, or 14% were either clear-cut or 

thinned forests or fires.  109, or 49% were determined as fire disturbances, but may or 

may not have occurred before our detection time period window.   Inability to identify 

whether these fires fell within, or close to the correct time period was usually due to 

inadequate high-resolution imagery around the detection window.  23, or 10% were 

non-forested lands, usually either grass or shrublands.  The spatial and temporal 

resolution of the high-resolution verification imagery was usually too low to adequately 

determine whether or not these were correctly detected fire disturbances.  Finally, 61, or 

27% were not classified.  These disturbances usually occurred in areas where the spatial 

or temporal resolution of the validation imagery was of poor quality, there were 

obstructions such as shadows in the imagery that made an adequate determination 

difficult, or it was in a non-forested area where determinations were difficult because of 

the quick recovery of the vegetation type in low level fires. 

Table 2 – Summary table of results. 

Determination Note Count Percentage of 
determination 

Percentage of total 

Correct   331   40.8% 
Incorrect   256   31.6% 

  Agriculture 103 40.2% 11.7% 
  Barren 16 6.3% 2% 
  Clear-cut or Thinning 39 15.2% 4.8% 
  Wrong time period 15 5.9% 1.8% 
  Other 83 32.4% 10.2% 

Indetermined  224   27.6% 
  Clear-cut or Thinning or 

fire 
31 13.8% 3.8% 
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  Fire, but possibly wrong 
time window 

109 48.7% 13.4% 

  Non-forest 23 10.3% 2.8% 
  Other 61 27.2% 7.5% 

 

The Fire Occurrence Database has 204 fire records for the four scenes in my 

study area and detection window.  Of those 204 records, I was able to match 10 with my 

fire detections.  Those 10 matched detections accounted for 85% of the total acreage 

burned in that time period according to the FOD database.  The other 194 were very 

small to small fires ranging from a few square meters in size to 300 acres, with a 

majority of the fires being sub-acre and below the detection threshold. 

Table 3 – FOD Comparisons.  This table compares the fires I detected to the fires in the FOD database.  I was able to match 10 of 
the fires in the FOD database to the detected fires.  This accounted for the majority of fire by area in the study area. 

FOD fire detections Total Acreage Historical Fire Count 
Detected 15,919 10 

Not Detected 2,707 194 
Total 18,626 204 

 

I stratified the FOD database by fire size and compared my detections (Table 4). 

Seven fires were greater than 1,000 acres.  Of those seven fires, I detected six.  The fire 

not detected was the Gabe Creek fire.  This was a lightning fire discovered July 30th 

2009.  It’s containment date was November 20, 2009 (Karen C. Short, 2015).  This fire 

straddled my detection window The majority of this fire occurred prior to the detection 

window starting on September 16, 2009 (USDA Forest Service, 2009).  I correctly 

detected 3 of the 7 fires in the 50 to 300-acre size class.  Only 1 fire smaller than 50 acres 

was correctly detected.  This was a lightning fire in the Salmon-Challis National Forest.  

A full list of fires in the FOD greater than one acre in size is available in Appendix II. 
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Table 4 – FOD detections stratified by size.  Most large fires were detected by the detection tool.  However, most of the fires in the 
FOD were very small and below the detection threshold of one half acre.  There were no fires in the FOD between 300 and 1,000 
acres in size. 

Reported Fire 
Size 

Records Detected # of Records % 
Detected 

1000+ Acres 6 7 85.8% 

50 - 300 Acres 3 7 42.9% 

10 – 50 Acres 1 11 9% 

5 – 10 Acres 0 5 0% 

1 – 5 Acres 0 20 0% 

<1 Acre 0 154 0% 

 

Of the 331 fire detections that I was able to verify, only 10 could be associated 

with fires in the FOD.  The other 321 fires were not listed in the FOD.  A majority of 

fires in the FOD are below my detection threshold of half an acre. 

Comparing the results from this research with the results from LandTrendr, 

VCT, and MIICA are difficult for several reason.  LandTrendr and VCT are only 

designed to work in forested environments.  The detailed analysis of those algorithms 

was limited to those land classification types.  I ran my tool across all land classification 

types within my four WRS path/row study area.  In order to better compare my results 

to LandTrendr and VCT, I extracted the vegetation physiognomy from the LANDFIRE 

existing vegetation layer at the centroid of each detection (Table 5). 
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Table 5 – Verification by Physiognomy 

Physiognomy Correct Incorrect Indetermined % Correct 
Agricultural 0 57 3 0% 

Barren 4 9 2 31% 
Conifer 178 65 130 73% 

Developed 3 7 8 30% 
Grassland 131 36 54 79% 
Hardwood 1 1 1 50% 

Open Water 0 1 0 0% 
Riparian 1 1 2 50% 

Shrubland 10 17 16 37% 
Snow-Ice 0 2 0 0% 

Sparsely Vegetated 2 14 6 13% 
 

The two biggest physiognomy classes with detections were conifer and grassland 

with 73% and 79% correct respectively.  Those two classes also had the highest number 

of verifications that were not conclusively labeled as correct or incorrect.  41% of the 

indetermined detections in the conifer class were fires that could not be verified in the 

detection window, while 81% of the indetermined detections in the grassland class were 

fire where the detection window could not be verified.  If higher temporal resolution 

imagery were available to confirm that all of those fires were actually detected within 

the detection window, then the percentage of correct detections in the conifer and 

grassland classes would be 78% and 83% respectively. 

LandTrendr is designed to detect multiple disturbance types, as well as stable 

and recovering areas.  However, it is only designed to work in forested areas.  

LandTrendr had an overall omission rate between approximately 31% and 33% while 

the commission rate for disturbances was between 41 and 48%.  In the LandTrendr 
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study, 31 total fire disturbances were detected with an omission rate between 10% and 

26% (Cohen et al., 2010).  No commission rate for fires was provided in the study.  

LandTrendr currently has a better detection rate of wildland fires in forested areas than 

my tool, however, the number of wildland fire detections was much lower than in my 

detection analysis.  Furthermore, LandTrendr only detected 5 fires smaller than 1,000 

acres, while my tool demonstrated numerous correct detections of small fires (Cohen et 

al., 2010). 

VCT is also designed to detect multiple disturbance types.  In VCT’s accuracy 

assessment, however, they did not give accuracy percentages by type.  The overall 

commission error for VCT detections is approximately 70% while the omission error is 

approximately 60% (Jin et al., 2013).  The overall accuracy of VCT in forested areas 

currently performs better than my algorithm.  However, VCT does not perform well in 

non-forested types, while I have demonstrated moderate success in non-forested areas.  

The only MIICA analysis available was a case study on two different WRS 

path/rows.  The results of the MIICA analysis are for all change classes, and not 

explicitly broken out by disturbance type, so again, we cannot directly compare the 

results to my research.  In both case studies, there was a 0% commission error.  

However, in the two case studies, the omission errors were 18% and 88% (Huang et al., 

2010).  While MIICA is very good at reducing errors of commissions, it’s detection rate 

seems spurious. 
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Discussion 

It is difficult to directly compare my results against those of the LandTrendr, 

VCT, and MIICA algorithms.  LandTrendr and VCT only work in forested areas while 

MIICA’s validation analysis was fairly minimal.  Additional analysis comparing my 

tool and these three algorithms would be required to ensure comparisons were done 

using identical procedures.  Regardless, my tool does demonstrate moderate success at 

detecting wildland fire in both forested and non-forested areas.  

I was able to detect a majority of the fire, by area, in the FOD database.  

However, many of the medium size fires that I would expect to detect were not 

detected.  Further refinements to the training data will likely improve the detection rate.  

I also detected many fires that I could not identify in the FOD.  This suggests that many 

fires do not have public records and that the FOD is incomplete.   

The current training data needs improvement through further iterations of the 

model to reduce commission errors.  The most common commission errors occurred on 

clear-cut and agriculture land.  Clear-cuts can look relatively similar to severe, stand 

removing fires.  I had difficulty at times, determining whether an area with a fire 

detection was a clear-cut or a fire, even when looking at imagery with a higher spatial 

resolution then Landsat.  

Agricultural land goes through significant spectral changes throughout a given 

year.  This confused the algorithm in several scenes.  The error rate can be reduced by 
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adding the agricultural land and clear-cut forest commission error points back into the 

training data specifically as "undisturbed" pixels.  Increasing the number of fires used 

for training the model would also help significantly improve the detection rate. 

BARC data in some of my training areas were very sparse.  Sometimes, I only 

had one or two BARC fires, if any, for a given training scene.  Also, since I was only 

training off of the moderate and high severity pixels, those pixels were even more 

limited.  The lack of data in some parts of my study area decreased the accuracy of the 

algorithm in those places.  In future iterations, Monitoring in Trends and Burn Severity 

(MTBS) data can be used to supplement BARC data.  MTBS data is calculated for most 

fires over 1,000 acres in size and classifies pixel severity similar to BARC data.  It tends 

not, however, to be field validated (Eidenshink et al., 2007). 

Julian day of year was one of the few non-spectral variables used in this analysis.  

Pixels in a given area can look quite different depending on the time of year.  There is 

usually less vegetation during winter months compared to summer months.  Shadows 

cast from trees and other objects will vary in direction and intensity based on the time 

of year.  Fire behavior and severity in any given area can look quite different early and 

late in the season compared to the peak season.  Julian day of year for each scene, 

including the scene in which the fire is first detected can be an important clue when 

building rule models to detect fire.  The minimal amount of BARC data over parts of the 

study area significantly limits the value of the day of year code for the analysis, as there 

are relatively few fires to compare in any given region and at any given time.  An 
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increase in the number of training fires would increase the value of the Julian day of 

year variable for detecting fires. 

Compounding events also provided obstacles in determining whether or not a 

fire detection was correctly detected because of a fire.  There are many fire detections 

that appear to be fire that are clear-cut shortly after.  It is difficult to ascertain whether 

the detection was the initial fire, or the post clear-cut.  Sometimes the reverse is also 

true.  Areas are clear-cut, and then the slash is burned.    Greater temporal resolution in 

the high-spatial resolution verification imagery would help more accurately determine 

if these pixels are correctly being detected because of the fire, or incorrectly detected 

because of the clear-cut. 

There needs to be significant experimentation with training area zones.  This 

project used a rudimentary system to define areas where training data would be 

extracted.  It used training data from neighboring scenes.  There are many ways in 

which ecosystems can be segmented, such as LANDFIRE Zones, EPA Regions, and 

other ecological boundary systems.  Training data divvied up by regions of similar 

characteristics may lead to better detection models for those same regions. 

I would like to repeat this research using Landsat 8 data.  Landsat 5, on which 

this model was trained, is no longer in service, and Landsat 7's problems with the Scan 

Line Compensator make its data less than ideal for analysis.  Landsat 8 was only 

launched in February 2013, and fully calibrated imagery for analysis was not available 

until April 2013.  There is not yet a rich time series of data available with Landsat 8 for 
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performing a similar analysis.  However, by 2017 or 2018, there should be enough 

Landsat 8 data available to repeat this experiment.  I could also experiment with 

combining Landsat 5 and Landsat 8 data in a time series.  The spectral properties 

recorded by Landsat 8 for each band differ slightly from Landsat 5 (Table 1), however, 

the differences may be negligible when applying the fire detection rule models. 

Conclusions 

This tool shows promise for detecting fires and other disturbances.  To be 

effective, the model needs to go through several more iterations of training both for 

disturbed pixels and undisturbed pixels.  Many of the areas where the model classified 

a disturbance incorrectly, such as agricultural pixels, should be relatively easy to train 

out of the model.  More fire training data would be extremely beneficial to improving 

the accuracy of the model and MTBS data may be a good solution.  Continued 

development will be required to turn this into an effective tool ready for production. 

Limitations and Future Research 

This project represents over 1000 hours of development and testing.  I have 

begun to lay the foundation for a sophisticated machine-learning fire and change 

detection tool, however, significant more time investment will be required to turn this 

research into a full-production system.  However, the road map for future work on this 

research is fairly clear.  The first step will be to build a better management system for 

the training data.  Once the training data are more optimally organized, the web based 
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validation tool can be expanded to convert user verifications back into training data, 

either in the affirmative or the negative.  This will allow analysts to quickly inspect and 

verify disturbance detections.  Once the verification is complete, the new data should be 

integrated back into the training data model and the process rerun.  Over time, this will 

allow human analysts to constantly improve the training data set, enabling the 

computer to make better detection rules.  Over-time, through an iterative machine-

learning process we can create an accurate fire detection engine for all of the United 

States, and elsewhere in the world. 
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Appendix I 

This table is a partial list of sources of historical fire perimeters 

Number of Fires Source 
405 Apache-Sitgreaves National Forests 

359 Bitterroot National Forest 
2 Bitterroot National Forest 

86 Carson National Forest 
322 Cibola National Forest 
417 Clearwater National Forest 
366 Coconino National Forest 
459 Coronado National Forest 
189 Flathead National Forest 

53643 Geospatial Multi-Agency Coordination 
440 Gila National Forest 

3590 Idaho Panhandle National Forest 
305 Kaibab National Forest 
848 Kootenai National Forest 
130 Lincoln National Forest 
190 Lolo National Forest 
554 Nez Perce-Clearwater National Forests 
131 Prescott National Forest 
248 Santa Fe National Forest 
174 Tonto National Forest 

5440 US Forest Service Region 1 
340 US Forest Service Southwestern Region 
237 Wyoming Wind River Bighorn Basin District 
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Appendix II 

List of all FOD fires in the study area greater than one acre in size 

Fire Name Fire 
Detected 

Fire 
Size 

(acres) 

Land 
Owner 

Discovery 
Date 

Containment 
Date 

Cause 

Fred Burr Creek False 1.1 Private 9/26/2009 9/27/2009 Miscellaneous 
 False 1.2 Private 4/10/2010 N/A Debris Burning 

Park Lake False 1.25 USFS 7/23/2010 9/15/2010 Lightning 
  False 1.3 State 7/18/2010 N/A Miscellaneous 
  False 2 Private 7/15/2010 N/A Miscellaneous 
  False 2 Private 4/25/2010 N/A Debris Burning 

Cigarette Fire False 2 Tribal 9/16/2009 9/16/2009 Smoking 
Nelson Fire False 2 Tribal 4/4/2010 4/4/2010 Arson 
Hibbs Fire False 2 Private 4/8/2010 4/8/2010 Railroad 

Marco False 2 BLM 8/26/2010 8/27/2010 Equipment Use 
  False 3 State 7/31/2010 N/A Lightning 

Wallace Ditch False 4 USFS 4/2/2010 4/2/2010 Debris Burning 
Falls False 5 USFS 8/5/2009 10/22/2009 Lightning 

Bonita Ranger 
Station Road 

False 5 Private 9/29/2009 9/29/2009 Fireworks 

  False 6 Private 7/16/2010 N/A Miscellaneous 
  False 6 Private 7/16/2010 N/A Railroad 
  False 7 State 5/2/2010 N/A Debris Burning 
  False 10 Private 3/25/2010 N/A Debris Burning 

White Calf Fire False 10 Tribal 7/19/2010 7/19/2010 Lightning 
Yellowjacket 

Creek 
False 11 USFS 8/2/2009 10/22/2009 Lightning 

  False 12 Private 4/17/2010 N/A Debris Burning 
Dupont Deuce False 13 Private 10/23/2009 10/24/2009 Debris Burning 

Haynes False 15 USFS 3/18/2010 4/1/2010 Miscellaneous 
  False 19 State 8/1/2010 N/A Lightning 

Star Falls False 20 USFS 9/18/2009 9/30/2009 Campfire 
Jesse True 20 USFS 8/26/2010 8/31/2010 Lightning 

  False 25 Private 4/24/2010 N/A Debris Burning 
  False 49 Private 9/28/2010 N/A Debris Burning 

Upper Railroad True 70 USFS 10/3/2010 10/25/2010 Lightning 
  False 99 Private 5/15/2010 N/A Miscellaneous 

North Lyons 
Creek 

False 104 Private 4/28/2010 N/A Debris Burning 

Copper Creek False 109 State 9/22/2009 9/30/2009 Miscellaneous 
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Macdonald Pass True 170 USFS 9/25/2009 10/6/2009 Miscellaneous 
Pig Fire False 200 Private 3/21/2010 3/21/2010 Debris Burning 

Sand Basin True 305 USFS 8/23/2009 11/19/2009 Lightning 
River Breaks True 1,862 USFS 9/28/2010 10/14/2010 Miscellaneous 

Gabe Creek False 1,932 USFS 7/30/2009 11/20/2009 Lightning 
Bielenburg True 1,950 USFS 7/12/2009 11/30/2009 Lightning 

Davis True 2,015 USFS 8/26/2010 9/10/2010 Miscellaneous 
Lily Lake True 2,120 USFS 8/13/2009 10/9/2009 Lightning 

Cardinal Creek True 2,127 USFS 7/25/2010 11/9/2010 Lightning 
Table Mountain True 5,280 USFS 9/13/2009 11/19/2009 Lightning 
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Appendix III 

import os 
import sys 
import glob 
import ConfigParser 
import gdal 
import osr 
 
# command line parameters 
year = sys.argv[1] 
 
# Load configuration information from settings.ini 
config = ConfigParser.ConfigParser() 
config.read("settings.ini") 
 
baer_dir = config.get("Directories", "BAER_DATA_DIRECTORY") 
 
data_dir = os.path.join(baer_dir, year) 
perimeter_file = open(os.path.join(data_dir, 'perimeter.txt'), 'w') 
 
# USGS Albers Projection 
PROJ = 'PROJCS["Albers_Conic_Equal_Area",' \ 
        'GEOGCS["NAD83",DATUM["North_American_Datum_1983",' \ 
        'SPHEROID["GRS 1980",6378137,298.257222101,' \ 
        'AUTHORITY["EPSG","7019"]],' \ 
        'TOWGS84[0,0,0,0,0,0,0],' \ 
        'AUTHORITY["EPSG","6269"]],' \ 
        'PRIMEM["Greenwich",0,' \ 
        'AUTHORITY["EPSG","8901"]],' \ 
        'UNIT["degree",0.0174532925199433,' \ 
        'AUTHORITY["EPSG","9108"]],' \ 
        'AUTHORITY["EPSG","4269"]],' \ 
        'PROJECTION["Albers_Conic_Equal_Area"],' \ 
        'PARAMETER["standard_parallel_1",29.5],' \ 
        'PARAMETER["standard_parallel_2",45.5],' \ 
        'PARAMETER["latitude_of_center",23],' \ 
        'PARAMETER["longitude_of_center",-96],' \ 
        'PARAMETER["false_easting",0],' \ 
        'PARAMETER["false_northing",0],UNIT["meters",1]]' 
 
output_srs = osr.SpatialReference(PROJ) 
 
# Find all files that are barc4 
for fire in glob.glob(os.path.join(data_dir, '*', '*barc4_alb.img')): 
    print fire 
 
    # split file by the "_" separator and iterate through to 
    # identify date in file path 
    file_path = fire.split('_') 
    for date in file_path: 
        if date.startswith(str(year)): 
            barc4_ds = gdal.Open(fire, 0) 
 
            # Calculate Extent 
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            geoTransform = barc4_ds.GetGeoTransform() 
            x1 = geoTransform[0] 
            x2 = geoTransform[0] + (barc4_ds.RasterXSize * geoTransform[1]) 
            y1 = geoTransform[3] 
            y2 = geoTransform[3] + (barc4_ds.RasterYSize * geoTransform[5]) 
 
            # make sure all extents are calculated in the same Projection 
            input_srs = osr.SpatialReference() 
            input_srs.ImportFromWkt(barc4_ds.GetProjectionRef()) 
            transform = osr.CoordinateTransformation(input_srs, output_srs) 
            corner_nw = transform.TransformPoint(x1, y1) 
            corner_sw = transform.TransformPoint(x2, y2) 
            corner_nw = (x1, y1) 
            corner_sw = (x2, y2) 
 
            # Output information to csv file as file path, extent, date 
            perimeter_file.write( 
                    fire + "," + str(corner_nw[0]) + "," + 
                    str(corner_nw[1]) + "," + 
                    str(corner_sw[0]) + "," + 
                    str(corner_sw[1]) + "," + 
                    date + "\n") 
 
            # We don't want to output the same file multiple times if 
            # the date appears in the file path multiple times 
            break 
perimeter_file.close() 
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Appendix IV 

import os 
import sys 
import glob 
import math 
import random 
import ConfigParser 
import subprocess 
from datetime import date 
import random 
import gdal 
import ogr 
import osr 
import numpy as np 
 
# USGS Albers Projection 
PROJ = 'PROJCS["Albers_Conic_Equal_Area",' \ 
        'GEOGCS["NAD83",DATUM["North_American_Datum_1983",' \ 
        'SPHEROID["GRS 1980",6378137,298.257222101,' \ 
        'AUTHORITY["EPSG","7019"]],' \ 
        'TOWGS84[0,0,0,0,0,0,0],' \ 
        'AUTHORITY["EPSG","6269"]],' \ 
        'PRIMEM["Greenwich",0,' \ 
        'AUTHORITY["EPSG","8901"]],' \ 
        'UNIT["degree",0.0174532925199433,' \ 
        'AUTHORITY["EPSG","9108"]],' \ 
        'AUTHORITY["EPSG","4269"]],' \ 
        'PROJECTION["Albers_Conic_Equal_Area"],' \ 
        'PARAMETER["standard_parallel_1",29.5],' \ 
        'PARAMETER["standard_parallel_2",45.5],' \ 
        'PARAMETER["latitude_of_center",23],' \ 
        'PARAMETER["longitude_of_center",-96],' \ 
        'PARAMETER["false_easting",0],' \ 
        'PARAMETER["false_northing",0],UNIT["meters",1]]' 
# Command line arguments to determine path, row, and year of data to extract 
path = int(sys.argv[1]) 
row = int(sys.argv[2]) 
year = int(sys.argv[3]) 
 
# Parse configuration information from the settings.ini file 
config = ConfigParser.ConfigParser() 
config.read("settings.ini") 
 
# Load configuration information from settings.ini 
landsat_data_directory = config.get("Directories", "LANDSAT_DATA_DIRECTORY") 
baer_dir = config.get("Directories", "BAER_DATA_DIRECTORY") 
training_data_output_directory = config.get("Directories", 
                                            "TRAINING_DATA_OUTPUT_DIRECTORY") 
fire_history_path = config.get("Directories", "FIRE_HISTORY_DIRECTORY") 
 
# Processed Landsat data location 
data_dir = os.path.join(landsat_data_directory, "p0" + str(path) + 
                        "r0" + str(row), 'HFA') 
baer_dir = os.path.join(baer_dir, str(year)) 
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outfile_path = os.path.join(training_data_output_directory, str(path) + "_" + 
                            str(row), str(year)) 
 
try: 
    os.makedirs(os.path.dirname(outfile_path) + "\\") 
except WindowsError: 
    # directory already exists or other permissions/disk errors 
    pass 
except OSError: 
    # Other operating system, and windows write errors 
    pass 
 
# This is date order, but not necessarily leaf-on/leaf-off order. 
# Get three years of data (two scenes per year).  Middle scene represents 
# the year from the command line argument and should represent the 
# year of disturbance 
years = [year-1, year, year+1] 
 
# Only extract data where disturbance raster is one of these values 
# Baer data has the following classes. 
# We are only likely to pick up class 3 and 4 
#   0 = outside perimeter 
#   1 = unchanged / very low (Dark Green) | This means the area after the 
fire 
#       was indistinguishable from pre-fire conditions. This does not always 
#       indicate the area did not burn. 
#   2 = low severity (Cyan) | This severity class represents areas of surface 
#       fire with little change in cover and little mortality of the dominant 
#       vegetation. 
#   3 = moderate severity (Yellow) | This severity class is between low and 
#       high and means there is a mixture of effects on the dominant 
#       vegetation. 
#   4 = high severity (Red) | This severity class represents areas where the 
#       dominant vegetation has high to complete mortality. 
disturbance_values = [3, 4] 
 
# Create separate text files for each disturbance type and for undisturbed 
data 
outfiles = [] 
for disturbance_value in disturbance_values: 
    outfiles.append(open(outfile_path + "_" + 
                    str(disturbance_value) + '.txt', 'w')) 
 
# undisturbed values 
outfiles.append(open(outfile_path + "_0" + '.txt', 'w')) 
 
 
# coordinates of all baer pixels 
coordinates = set() 
 
# Lists to store rasters and raster metadata 
rasters = [] 
scene_dates = [] 
days_of_year = [] 
 
# Identify Landsat rasters for analysis 
for raster_path in glob.glob(os.path.join(data_dir, '*.img.gz')): 
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    # Only get the Landsat scene rasters.  We could do something more elegant 
    # with regular expressions, but this gets the job done well enough for 
now 
    if len(os.path.basename(raster_path)) == 27: 
        # only get rasters within the year range we are extracting from 
        if int(os.path.basename(raster_path)[12:16]) in years: 
            # Open rasters while still gzipped.  This is slower to read, 
            # but probably faster and cleaner than extracting first 
            if not os.path.isfile(raster_path[0:-3]): 
                proc = subprocess.Popen( 
                    ['7-Zip\\7z.exe', '-o' + 
                        os.path.dirname(raster_path), 'e', raster_path], 
                    stdout=subprocess.PIPE, 
                    shell=True) 
                out, err = proc.communicate() 
                if err: 
                    print raster_path[0:-3] 
                    raise SystemExit 
                proc, out, err = None, None, None 
            rasters.append(gdal.Open(raster_path[0:-3], 0)) 
            # Extract date of scene from raster file path and store in a list 
            scene_dates.append(int(os.path.basename(raster_path)[12:20])) 
    raster_path = None 
 
if len(rasters) > 10: 
    print ("ERROR: More than 10 Rasters") 
 
    for raster_path in glob.glob(os.path.join(data_dir, '*.img.gz')): 
        if os.path.isfile(raster_path[0:-3]): 
            os.remove(raster_path[0:-3]) 
 
    raise SystemExit 
 
# Calculate the day of year each scene was taken using the scene dates 
for scene_date in scene_dates: 
    scene_year = int(str(scene_date)[0:4]) 
    scene_month = int(str(scene_date)[4:6]) 
    scene_day = int(str(scene_date)[6:8]) 
    scene_doy = date(scene_year, scene_month, scene_day).timetuple().tm_yday 
    days_of_year.append(scene_doy) 
 
# For now we'll assume all rasters in a scene have the same 
extents/projections 
# and extract the geotransform data from the first raster 
# At some point if that changes, then we will have to project into a uniform 
# projection (if different) and compute the extent as the area where all 
scenes 
# have data 
scene_geotransform = rasters[0].GetGeoTransform() 
scene_upper_left_x = scene_geotransform[0] 
scene_pixel_width = scene_geotransform[1] 
scene_upper_left_y = scene_geotransform[3] 
scene_pixel_height = scene_geotransform[5] 
scene_xsize = rasters[0].RasterXSize 
scene_ysize = rasters[0].RasterYSize 
 
# loads a list of our rasters extent in the order [left,top,right,bottom] 
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extent = [ 
    scene_upper_left_x, 
    scene_upper_left_y, 
    scene_upper_left_x + (scene_xsize * scene_pixel_width), 
    scene_upper_left_y + (scene_ysize * scene_pixel_height) 
    ] 
 
# Create polygon of scene extent to intersect with baer/disturbance 
# data to identify disturbances overlapping the scenes 
scene_geometry = ogr.Geometry(ogr.wkbPolygon) 
ring = ogr.Geometry(ogr.wkbLinearRing) 
ring.AddPoint(extent[0], extent[3])  # x1y1 
ring.AddPoint(extent[2], extent[3])  # x2y2 
ring.AddPoint(extent[2], extent[1])  # x2y1 
ring.AddPoint(extent[0], extent[1])  # x1y2 
ring.CloseRings() 
scene_geometry.AddGeometry(ring) 
ring = None 
 
shp_driver = ogr.GetDriverByName("ESRI Shapefile") 
fire_history_ds = shp_driver.Open(os.path.join(fire_history_path, 
                                               str(year) + '.shp')) 
print os.path.join(fire_history_path, str(year) + '.shp') 
if fire_history_ds is None: 
    print 'could not open fire history perimeters %s' 
    % os.path.join(fire_history_path, str(year) + '.shp') 
    raise SystemExit 
 
fire_geometries = [] 
fire_history_lyr = fire_history_ds.GetLayer() 
fire_history_lyr.SetSpatialFilter(scene_geometry) 
 
 
# numpy array to mask out disturbed pixels which we'll use to then extract a 
# sample of undisturbed pixels 
mask = np.ones((scene_xsize, scene_ysize)) 
 
# Keeps track of the number of disturbed pixels 
count = 0 
 
# Read in fire extents and see if they intersect the scene geometry 
with open(os.path.join(baer_dir, 'perimeter.txt')) as f: 
    for line in f: 
        # last character is a newline character, so we trim that off 
        # and split into a comma separated list 
        baer = line[:-1].split(',') 
        baer_file_path = baer[0] 
        baer_left = float(baer[1]) 
        baer_top = float(baer[2]) 
        baer_right = float(baer[3]) 
        baer_bottom = float(baer[4]) 
        baer_date = int(baer[5])  # yyyymmdd 
        baer = None 
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# Check if fire occurs between 3rd and 5th Landsat scenes in the  
# stack 

        #  ____   ____   ____   ____   ____   ____ 
        # | y1 | | y1 | | y2 | | y2 | | y3 | | y3 | 
        # | l1 | | l2 | | l1 | | l2 | | L1 | | l2 | 
        # |____| |____| |____| |____| |____| |____| 
        #                     ^      ^ 
        #                     | fire | 
        #################################################################### 
 
        if baer_date > scene_dates[2] and baer_date < scene_dates[4]: 
            data = [] 
 
            # Create polygon of the baer/disturbance extent 
            baer_geometry = ogr.Geometry(ogr.wkbPolygon) 
            ring = ogr.Geometry(ogr.wkbLinearRing) 
            ring.AddPoint(baer_left, baer_bottom)  # x1y1 
            ring.AddPoint(baer_right, baer_bottom)  # x2y1 
            ring.AddPoint(baer_right, baer_top)  # x2y2 
            ring.AddPoint(baer_left, baer_top)  # x1y2 
            ring.CloseRings() 
            baer_geometry.AddGeometry(ring) 
            ring = None 
 
            # If the baer/disturbance geometry intersects the scene geometry 
            # then the scene likely has been disturbed so extract disturbed 
            # pixels 
            if scene_geometry.Intersects(baer_geometry): 
                # Open baer/disturbance raster as read only 
                baer_ds = gdal.Open(baer_file_path, 0) 
                baer_geotransform = baer_ds.GetGeoTransform() 
                baer_upper_left_x = baer_geotransform[0] 
                baer_pixel_width = baer_geotransform[1] 
                baer_we_rotation = baer_geotransform[2] 
                baer_upper_left_y = baer_geotransform[3] 
                baer_ns_rotation = baer_geotransform[4] 
                baer_pixel_height = baer_geotransform[5] 
                baer_xsize = baer_ds.RasterXSize 
                baer_ysize = baer_ds.RasterYSize 
 
                # Sometimes BAER data is in UTM projection instead of Albers 
                # projection 
                # Project BAER data into Albers, if necessary, using Nearest 
                # projection Neighbor algorithm 
                if "utm" in baer_file_path: 
                    print 'utm' 
                    # Define transformation from input projection to output 
                    # projection 
                    utm_proj = osr.SpatialReference(baer_ds.GetProjection()) 
                    alb_proj = osr.SpatialReference(PROJ) 
                    transformation = osr.CoordinateTransformation(utm_proj, 
                                                                  alb_proj) 
 
                    # Calculate geotransform of projected raster 
                    # top left corner 
                    (ulx, uly, ulz) = transformation.TransformPoint( 
                        baer_upper_left_x, baer_upper_left_y) 
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                    # bottom right corner 
                    (lrx, lry, lrz) = transformation.TransformPoint( 
                        baer_upper_left_x + baer_pixel_width*baer_xsize, 
                        baer_upper_left_y + baer_pixel_height*baer_ysize) 
                    # bottom left corner 
                    (llx, lly, llz) = transformation.TransformPoint( 
                        baer_upper_left_x, baer_upper_left_y + 
                        baer_pixel_height * baer_ysize) 
                    # top right corner 
                    (urx, ury, urz) = transformation.TransformPoint( 
                        baer_upper_left_x + baer_pixel_width * baer_xsize, 
                        baer_upper_left_y) 
 
                    transformation = None 
 
                    # Identify the furthest left point and the top most point 
                    # Sometimes the rasters in a particular projection are 
                    # skewed relative to the new position in a way that makes 
                    # the bottom left corner "more left" than the top corner, 
                    # and similar with the top and bottom most values.  By 
                    # detecting the left most and top most corners, we ensure 
                    # that we output a new projected raster with the correct 
                    # dimensions. 
                    lx = min(llx, ulx) 
                    rx = max(urx, lrx) 
                    ty = max(uly, lly) 
                    by = min(lry, ury) 
 
                    # Create empty raster in new projection 
                    # with the correct bounds 
                    mem = gdal.GetDriverByName('MEM') 
                    dest = mem.Create('', int( 

 (rx - lx)/baer_pixel_width), int( 
                        (by - ty) / baer_pixel_height), 1, 
                        baer_ds.GetRasterBand(1).DataType) 
 
                    new_geotransform = (int(lx), baer_pixel_width, 
                                        baer_we_rotation, int(ty), 
                                        baer_ns_rotation, baer_pixel_height) 
                    dest.SetGeoTransform(new_geotransform) 
                    new_geotransform = None 
                    lr, rx, ty, by = None, None, None, None 
                    dest.SetProjection(alb_proj.ExportToWkt()) 
 
                    # Reproject the image from the original dataset into the 
                    # new dataset using Nearest Neighbor. We use nearest 
                    # neighbor because it is most important to preserve  
                    # actual pixel values rather than altering them with an  
                    # algorithm that "averages" values 
                    gdal.ReprojectImage(baer_ds, dest,  

    utm_proj.ExportToWkt(), 
                                        alb_proj.ExportToWkt(), 
                                        gdal.GRA_NearestNeighbour) 
                    utm_proj, alb_proj = None, None 
 
                    baer_ds = dest 
                    baer_geotransform = baer_ds.GetGeoTransform() 
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                    baer_upper_left_x = baer_geotransform[0] 
                    baer_pixel_width = baer_geotransform[1] 
                    baer_we_rotation = baer_geotransform[2] 
                    baer_upper_left_y = baer_geotransform[3] 
                    baer_ns_rotation = baer_geotransform[4] 
                    baer_pixel_height = baer_geotransform[5] 
                    baer_xsize = baer_ds.RasterXSize 
                    baer_ysize = baer_ds.RasterYSize 
 
                    # The geometry of the new reprojected raster extent is 
                    # different and so needs to be recalculated 
                    baer_geometry = None 
                    baer_geometry = ogr.Geometry(ogr.wkbPolygon) 
                    ring = ogr.Geometry(ogr.wkbLinearRing) 
                    ring.AddPoint(ulx, uly)  # x1y1 
                    ring.AddPoint(urx, ury)  # x2y1 
                    ring.AddPoint(lrx, lry)  # x2y2 
                    ring.AddPoint(llx, lly)  # x1y2 
                    ring.CloseRings() 
                    baer_geometry.AddGeometry(ring) 
                    ring, ulx = None, None 
                    uly, urx = None, None 
                    ury, lrx = None, None 
                    lry, llx, lly = None, None, None 
 
                disturbance_extent = scene_geometry.Intersection( 
                    baer_geometry).GetEnvelope() 
                disturbance_min_x = disturbance_extent[0] 
                disturbance_max_x = disturbance_extent[1] 
                disturbance_min_y = disturbance_extent[2] 
                disturbance_max_y = disturbance_extent[3] 
 
                # Values to extract from Scene Data 
                # NOTE: BAER imagery is not always snapped to LANDSAT 
                # imagery. This can cause a 1 pixel shift between baer values  
                # and underlying Landsat values. Since BAER data is for fires  
                # over 40 acres, a few edge pixels shouldn't make too big of 
                # a difference (sensitivity analysis)?  This shouldn't cause  
                # a problem detecting smaller fires. 
                if (abs((scene_upper_left_x - baer_upper_left_x) % 
                        scene_pixel_width) < (scene_pixel_width / 2)): 
                    x_snap_factor = 1 
                else: 
                    x_snap_factor = 0 
 
                if (abs((scene_upper_left_y - baer_upper_left_y) % 
                        scene_pixel_height) < (scene_pixel_height/2)): 
                    y_snap_factor = -1 
                else: 
                    y_snap_factor = 0 
 
                print "snap factors: ", x_snap_factor, y_snap_factor 
 
                # Subtract 1 from both x_size and y_size since we are  
                # rounding  up the starting locations (x_start, y_start)  
                # using the math.ceil function.  This ensures that we don't  
                # run out of bounds on the East side of our Landsat rasters 
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                ls_x_start = int((disturbance_min_x - scene_upper_left_x) / 
                                 scene_pixel_width) + x_snap_factor 
                ls_x_size = int((disturbance_max_x - disturbance_min_x) / 
                                scene_pixel_width) - x_snap_factor 
                ls_y_start = int((disturbance_max_y - scene_upper_left_y) / 
                                 scene_pixel_height) + y_snap_factor 
                ls_y_size = int((disturbance_min_y - disturbance_max_y) / 
                                scene_pixel_height) - y_snap_factor 
                for raster in rasters: 
                    for band in range(raster.RasterCount): 
                        data.append(raster.GetRasterBand(band+1).ReadAsArray( 
                            ls_x_start, ls_y_start, ls_x_size, ls_y_size)) 
 
                # Values to extract from BAER 
                baer_x_start = int((disturbance_min_x - baer_upper_left_x) / 
                                   baer_pixel_width) 
                baer_x_size = int((disturbance_max_x - disturbance_min_x) / 
                                  baer_pixel_width) 
                baer_y_start = int((disturbance_max_y - baer_upper_left_y) / 
                                   baer_pixel_height) 
                baer_y_size = int((disturbance_min_y - disturbance_max_y) / 
                                  baer_pixel_height) 
 
                if baer_x_start < 0: 
                    baer_x_start = 0 
                    baer_x_size -= 1 
 
                if baer_y_start < 0: 
                    baer_y_start = 0 
                    baer_y_size -= 1 
 
                data.append(baer_ds.GetRasterBand(1).ReadAsArray( 
                    baer_x_start, baer_y_start, baer_x_size, baer_y_size)) 
 
                for column in xrange(min(ls_x_size, baer_x_size)-1): 
                    for row in xrange(min(ls_y_size, baer_y_size)-1): 
                        l = [] 
 
                        x = str(scene_upper_left_x + 
                                (0.5 * scene_pixel_width) + 
                                ((ls_x_start + column) * scene_pixel_width)) 
 
                        y = str(scene_upper_left_y + 
                                (0.5 * scene_pixel_height) + 
                                ((ls_y_start + row) * scene_pixel_height)) 
 
                        l.append(x) 
                        l.append(y) 
 
                        coordinates.add((int(float(x)), int(float(y)))) 
 
                        for raster in xrange(len(data) - 1): 
                            l.append(str(data[raster][row][column])) 
 
                        for doy in days_of_year: 
                            l.append(str(doy)) 
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                        l.append(str(data[len(data) - 1][row][column])) 
 
                        # If any pixel has no value in the Landsat stack,  
                        # then ignore the entire pixel stack 
                        if all(i != '0' for i in l[2:-6]) and ( 
                                int(l[-1:][0]) in disturbance_values): 
                            outfiles[disturbance_values.index( 
                                int(l[-1:][0]))].write((',').join(l) + '\n') 
                            count += 1 
 
                        l = None 
 
                baer_x_start = None 
                baer_x_size = None 
                baer_y_start = None 
                baer_y_size = None 
 
            data = None 
 
        baer_ds = None 
        baer_date = None 
        baer_file_path = None 
        baer_left = None 
        baer_top = None 
        baer_right = None 
        baer_bottom = None 
        baer_date = None 
 
    line = None 
 
# read undisturbed points 
max_undisturbed = min(count*10, 1000000) 
x_size = rasters[0].RasterXSize 
y_size = rasters[0].RasterYSize 
 
pixels = x_size * y_size 
try: 
    offset = pixels / max_undisturbed 
except ZeroDivisionError: 
    print 'no pixels to extract' 
    for outfile in outfiles: 
        outfile.close() 
 
    rasters = None 
 
    # Don't process undisturbed scenes with no disturbance pixels 
    raise SystemExit 
 
# read one line at a time, take pixel sample by offset 
for row in random.sample(range(0, y_size), int(math.sqrt(max_undisturbed))): 
 
    data = [] 
    for raster in rasters: 
        for band in range(raster.RasterCount): 
            data.append(raster.GetRasterBand(band+1).ReadAsArray( 
                0, row, x_size, 1)) 
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    for column in random.sample(range(0, x_size), 
                                int(math.sqrt(max_undisturbed))): 
 
        x = str(scene_geotransform[0] + (0.5 * scene_geotransform[1]) + 
                (column * scene_geotransform[1])) 
        y = str(scene_geotransform[3] + (0.5 * scene_geotransform[5]) + 
                (row * scene_geotransform[5])) 
        if (int(float(x)), int(float(y))) in coordinates: 
            continue 
 
        in_perimeter = False 
        fire_history_lyr.ResetReading() 
        for fire_perimeter in fire_history_lyr: 
            geom = fire_perimeter.GetGeometryRef() 
            pt = ogr.Geometry(ogr.wkbPoint) 
            pt.SetPoint(0, float(x), float(y)) 
            # test 
            if pt.Within(geom): 
                in_perimeter = True 
                break 
 
        if in_perimeter is True: 
            continue 
 
        l = [] 
        l.append(x) 
        l.append(y) 
 
        for raster in xrange(len(data)): 
            l.append(str(data[raster][0][column])) 
 
        for doy in days_of_year: 
            l.append(str(doy)) 
 
        l.append('0')  # undisturbed class 
        if all(i != '0' for i in l[2:-7]): 
            outfiles[-1].write((',').join(l) + '\n') 
 
for outfile in outfiles: 
    outfile.close() 
rasters = None 
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Appendix V 

import os 
import sys 
import glob 
import shutil 
import csv 
import ConfigParser 
 
# Load configuration information from settings.ini 
config = ConfigParser.ConfigParser() 
config.read("settings.ini") 
 
training_data_path = config.get("Directories", 
                                "TRAINING_DATA_OUTPUT_DIRECTORY") 
 
output_path = config.get("Directories", 
                         "COMBINED_TRAINING_DATA_OUTPUT_DIRECTORY") 
 
c5_exe = config.get("Executables", "C5_EXE") 
cubist_exe = config.get("Executables", "CUBIST_EXE") 
 
c5_names_template = config.get("Templates", "C5_NAMES_TEMPLATE") 
cubist_names_template = config.get("Templates", "CUBIST_NAMES_TEMPLATE") 
 
years = [2008, 2009, 2010] 
scenes = [] 
 
# We can really add a lot of options in a more robust manner here 
# but this will work for now. 
if "-x8" in sys.argv: 
    path = int(sys.argv[2]) 
    row = int(sys.argv[3]) 
    output_folder = str(path) + "_" + str(row) 
 
    for year in years: 
        scenes.append([path+1, row, year]) 
    for year in years: 
        scenes.append([path+1, row+1, year]) 
    for year in years: 
        scenes.append([path+1, row-1, year]) 
    for year in years: 
        scenes.append([path, row+1, year]) 
    for year in years: 
        scenes.append([path, row-1, year]) 
    for year in years: 
        scenes.append([path-1, row, year]) 
    for year in years: 
        scenes.append([path-1, row+1, year]) 
    for year in years: 
        scenes.append([path-1, row-1, year]) 
 
else: 
    raise SystemExit 
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output_path = os.path.join(output_path, output_folder) 
os.mkdir(output_path) 
shutil.copyfile(c5_names_template, os.path.join(output_path, 
'train_c5.names')) 
shutil.copyfile(cubist_names_template, os.path.join(output_path, 
                                                    'train_cubist.names')) 
 
c5_outfile = open(os.path.join(output_path, 'train_c5.data'), 'w') 
 
for scene in scenes: 
    print scene 
    inpath = os.path.join(training_data_path, str(scene[0]) + "_" + 
                          str(scene[1]), str(scene[2])) 
 
    for file in glob.glob(inpath + '_*.txt'): 
        with open(file) as infile: 
            c5_outfile.write(infile.read()) 
print inpath 
c5_outfile.close() 
 
with open(os.path.join(output_path, 'train_c5.data'), "rb") as infile, open( 
        os.path.join(output_path, 'train_cubist.data'), "wb") as outfile: 
    r = csv.reader(infile) 
 
    for row in r: 
        if row[-1] != '0': 
            row[-1] = "100" 
        outfile.write(",".join(row)) 
        outfile.write("\n") 
 
os.system(cubist_exe + ' -f ' + os.path.join(output_path, 'train_cubist')) 
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Appendix VI 

# applyTree 
# applytree.py [path] [row] [year] 
# apply tree to set of scenes 
 
import os 
import sys 
import glob 
import shutil 
import struct 
import subprocess 
import ConfigParser 
import numpy as np 
from datetime import date 
import gdal 
 
 
# http://stackoverflow.com/a/4914089 
def slices(s, *args): 
    position = 0 
    for length in args: 
        yield s[position:position + length] 
        position += length 
 
path = int(sys.argv[1]) 
row = int(sys.argv[2]) 
year = int(sys.argv[3]) 
 
# Load configuration information from settings.ini 
config = ConfigParser.ConfigParser() 
config.read("settings.ini") 
 
landsat_data_path = config.get("Directories", "LANDSAT_DATA_DIRECTORY") 
combined_training_data_output_directory = config.get( 
        "Directories", "COMBINED_TRAINING_DATA_OUTPUT_DIRECTORY") 
cubist_interpreter_exe = config.get("Executables", "CUBIST_INTERPRETER_EXE") 
 
# for each row in set of rasters 
#   export row data to text file of cases 
#   process cases with c5 
#   import results into new raster 
 
# Processed Landsat data location 
data_dir = os.path.join(landsat_data_path, "p0" + str(path) + "r0" + 
                        str(row), 'HFA') 
 
# Output location 
output_dir = os.path.join(combined_training_data_output_directory, 
                          str(path) + "_" + str(row)) 
output_ds_path = os.path.join(combined_training_data_output_directory, 
                              str(path) + "_" + str(row), str(year) + ".img") 
 
try: 
    os.makedirs(output_dir) 
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except WindowsError: 
    # directory already exists 
    pass 
 
# This is date order, but not necessarily leaf-on/leaf-off order. 
# Get three years of data (two scenes per year).  Middle scene represents 
# the year from the command line argument and should represent the 
# year of disturbance.  This needs to match the years extracted as part 
# of extract.py 
years = [year-1, year, year+1] 
 
scene_dates = [] 
days_of_year = [] 
 
# Identify Landsat rasters for analysis 
rasters = [] 
for raster_path in glob.glob(os.path.join(data_dir, '*.img.gz')): 
    # Only get the Landsat scene rasters.  We could do something more elegant 
    # with regular expressions, but this gets the job done well enough 
    if len(os.path.basename(raster_path)) == 27: 
        # only get rasters within the year range we are extracting from 
        if int(os.path.basename(raster_path)[12:16]) in years: 
            # Open rasters while still gzipped.  This is slower to read, but 
            # probably faster and cleaner than extracting first 
            if not os.path.isfile(raster_path[0:-3]): 
                proc = subprocess.Popen( 
                    ['7-Zip\\7z.exe', '-o' +  

os.path.dirname(raster_path), 'e', 
                        raster_path], stdout=subprocess.PIPE, shell=True) 
                out, err = proc.communicate() 
                if err: 
                    print raster_path[0:-3] 
                    raise SystemExit 
                proc, out, err = None, None, None 
            rasters.append(gdal.Open(raster_path[0:-3], 0)) 
            scene_dates.append(int(os.path.basename(raster_path)[12:20])) 
 
if len(rasters) > 10: 
    print ("ERROR: More than 10 Rasters") 
    raise SystemExit 
 
for scene_date in scene_dates: 
    year = int(str(scene_date)[0:4]) 
    month = int(str(scene_date)[4:6]) 
    day = int(str(scene_date)[6:8]) 
    doy = date(year, month, day).timetuple().tm_yday 
    days_of_year.append(doy) 
    scene_date, year, month, day, doy = None, None, None, None, None 
 
# Get raster properties 
# This assumes all rasters have identical extents and projections 
driver = rasters[0].GetDriver() 
geoTransform = rasters[0].GetGeoTransform() 
projection = rasters[0].GetProjection() 
xsize = rasters[0].RasterXSize 
ysize = rasters[0].RasterYSize 
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# Open output raster 
output_ds = driver.Create(output_ds_path, xsize, ysize, 1, gdal.GDT_Byte) 
output_ds.SetGeoTransform(geoTransform) 
output_ds.SetProjection(projection) 
output_band = output_ds.GetRasterBand(1) 
 
# Process raster data 
filestem = os.path.join(output_dir, 'train_cubist') 
 
# Create day of year string outside of loop, since it should be constant 
doys = [] 
for doy in days_of_year: 
    doys.append(str(doy)) 
doys_str = (',').join(doys) 
 
# Get number of datapoints 
datapoints = 0 
for raster in rasters: 
    datapoints += raster.RasterCount 
 
# The first two datapoints are the coordinates 
datapoints += 2 
 
# The second to last set of datapoints are place holders for the year 
datapoints += len(days_of_year) 
 
# The last datapoint is our unknown disturbance value labeled "?" 
datapoints += 1 
 
for row in xrange(0, ysize, 100): 
    sys.stdout.write("%d\\%d  \r" % (row, ysize)) 
 
    if ((row + 100) > ysize): 
        num_rows = ysize - row 
    else: 
        num_rows = 100 
 
    data = np.zeros((num_rows * xsize * datapoints), dtype="S10") 
    coordsX = np.zeros((num_rows * xsize), dtype="S10") 
    coordsY = np.zeros((num_rows * xsize), dtype="S10") 
 
    # Generate the coordinate values. 
    # TODO: Put directly into our output array instead of an intermediate 
    # array 
    i = 0 
    for r in xrange(num_rows): 
        for column in xrange(xsize): 
            coordsX[i] = str(geoTransform[0] + (0.5 * geoTransform[1]) + 
                             (column * geoTransform[1])) 
            coordsY[i] = str(geoTransform[3] + (0.5 * geoTransform[5]) + 
                             ((row + r) * geoTransform[5])) 
            i += 1 
 
    data[0::datapoints] = coordsX 
    data[1::datapoints] = coordsY 
 
    # Start at position 2 because pos 0 and 1 are the coords 
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    position = 2 
    for raster in rasters: 
        for band in range(raster.RasterCount): 
            data[position::datapoints] = raster.GetRasterBand( 
                band+1).ReadAsArray(0, row, xsize, num_rows).flatten() 
            position += 1 
 
    for doy in days_of_year: 
        data[position::datapoints] = np.array([doy]) 
        position += 1 
 
    data[position::datapoints] = np.array(["?"]) 
 
    np.savetxt(filestem + '.cases', data.reshape( 
        (num_rows * xsize, datapoints)), "%s", delimiter=",") 
 
    proc = subprocess.Popen([cubist_interpreter_exe, '-f', filestem], 
                            stdout=subprocess.PIPE, shell=True) 
    out, err = proc.communicate() 
 
    outline = '' 
    count = 0 
    lines = out.split('\n') 
    for line in lines: 
        if line != "predicted values:" and line != "": 
            outline += struct.pack('B', int(float(line))) 
        count += 1 
 
    output_band.WriteRaster(0, row, xsize, num_rows, outline) 
 
rasters = None 
 
output_band.FlushCache() 
output_band = None 
output_ds = None 
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Appendix VII 

import os 
import sys 
import glob 
import ConfigParser 
import subprocess 
import ogr 
import gdal 
import numpy as np 
 
# Get command line variables 
path = int(sys.argv[1]) 
row = int(sys.argv[2]) 
year = int(sys.argv[3]) 
 
# Load configuration information from settings.ini 
config = ConfigParser.ConfigParser() 
config.read("settings.ini") 
 
combined_training_data_output_directory = config.get( 
        "Directories", "COMBINED_TRAINING_DATA_OUTPUT_DIRECTORY") 
landsat_data_directory = config.get("Directories", "LANDSAT_DATA_DIRECTORY") 
data_dir = os.path.join(landsat_data_directory, 
                        "p0" + str(path) + "r0" + str(row), 'HFA') 
 
#############################################################################
## 
# Create data mask where all input Landsat pixels are not NoData 
#############################################################################
## 
 
def makeDataMask(): 
 
    first_ls_ds = gdal.Open('/vsigzip/' + glob.glob( 
            os.path.join(data_dir, '*.img.gz'))[0], 0) 
    driver = first_ls_ds.GetDriver() 
    landsat_xsize = first_ls_ds.RasterXSize 
    landsat_ysize = first_ls_ds.RasterYSize 
    geoTransform = first_ls_ds.GetGeoTransform() 
    proj = first_ls_ds.GetProjection() 
 
    data_mask_data = np.ones([landsat_ysize, landsat_xsize]) 
 
    for landsat_path in glob.glob(os.path.join(data_dir, '*.img.gz')): 
        print landsat_path 
        landsat_ds = gdal.Open('/vsigzip/' + landsat_path, 0) 
        # Assume NoData if band 1 is 0.  This is probably always, mostly true 
        landsat_data = landsat_ds.GetRasterBand(1).ReadAsArray(0, 0) 
        landsat_data[landsat_data > 0] = 1 
        data_mask_data = data_mask_data * landsat_data 
 
    data_mask_path = os.path.join(combined_training_data_output_directory, 
                                  str(path) + "_" + str(row), 
                                  str(year) + "_data_mask.img") 
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    data_mask_ds = driver.Create( 
            data_mask_path, landsat_xsize, landsat_ysize, 1, 1) 
    data_mask_ds.SetGeoTransform(geoTransform) 
    data_mask_ds.SetProjection(proj) 
    data_mask_ds.GetRasterBand(1).WriteArray(data_mask_data) 
 
    # This is not a pixel perfect vector as a lot of interpolation happens, 
    # but it is good enough for our purposes of selecting fire points 
    output_vect_path = os.path.join( 
            combined_training_data_output_directory, str(path) + "_" + 
            str(row), str(year) + "_data_mask.shp") 
    print (output_vecto) 
    proc = subprocess.Popen(['C:\Program Files\GDAL\gdal_polygonize.py', 
                             '-8', 
                             '-f', 'ESRI Shapefile', 
                             '-mask ' + data_mask_path, 
                             data_mask_path, 
                             output_vect_path], 
                            stdout=subprocess.PIPE, shell=True) 
    out, err = proc.communicate() 
 
#############################################################################
## 
# Reclassify map cubist output with everything below the detection threshold 
# as 0 and everything equal to or above the detection threshold as 1 
#############################################################################
## 
 
DETECTION_THRESHOLD = 90 
 
detected_disturbance_path = os.path.join( 
    combined_training_data_output_directory, 
    str(path) + "_" + str(row), str(year) + ".img") 
 
detection_mask_path = os.path.join( 
    combined_training_data_output_directory, 
    str(path) + "_" + str(row), str(year) + "_detection_mask.img") 
 
# Read in Raster 
detected_disturbance_ds = gdal.Open(detected_disturbance_path, 0) 
 
# Get in raster properties 
driver = detected_disturbance_ds.GetDriver() 
detected_disturbance_band = detected_disturbance_ds.GetRasterBand(1) 
detected_disturbance_data = detected_disturbance_band.ReadAsArray(0, 0) 
 
# reclass based on detection threshold 
detected_disturbance_data[detected_disturbance_data<DETECTION_THRESHOLD] = 0 
detected_disturbance_data[detected_disturbance_data>=DETECTION_THRESHOLD] = 1 
 
# Mask NoData 
detected_disturbance_data[data_mask_data == 0] = 255 
data_mask_ds.GetRasterBand(1).SetNoDataValue(255) 
 
# Write out new raster 
detection_mask_ds = driver.CreateCopy(detection_mask_path, 
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                                      detected_disturbance_ds, 0) 
detection_mask_ds.GetRasterBand(1).WriteArray(detected_disturbance_data) 
detection_mask_ds = None 
 
# Sieve data to remove noise 
destination_path = destination_path = os.path.join( 
    combined_training_data_output_directory, 
    str(path) + "_" + str(row), str(year) + "_detection_mask-x8-11.img") 
 
# 11 pixels ~ 1 hectare 
proc = subprocess.Popen(['C:\Program Files\GDAL\gdal_sieve.py', 
                         '-st', '11', 
                         '-8', 
                         detection_mask_path, '-of', 'HFA', destination_path 
                         ], 
                        stdout=subprocess.PIPE, shell=True) 
 
out, err = proc.communicate() 
 
 
#############################################################################
## 
# Mosaic BAER data in path/row/year where the discover date is less than the 
# last detection year scene date 
#############################################################################
## 
 
baer_dir = config.get("Directories", "BAER_DATA_DIRECTORY") 
baer_dir = os.path.join(baer_dir, str(year)) 
 
 
scene_path = glob.glob(os.path.join(data_dir, 
                                    '*' + str(year) + '????.img.gz'))[1] 
scene_date = scene_path.split('_')[2][7:11] 
 
scene_ds = gdal.Open('/vsigzip/' + scene_path, 0) 
scene_geotransform = scene_ds.GetGeoTransform() 
scene_upper_left_x = scene_geotransform[0] 
scene_pixel_width = scene_geotransform[1] 
scene_upper_left_y = scene_geotransform[3] 
scene_pixel_height = scene_geotransform[5] 
scene_xsize = scene_ds.RasterXSize 
scene_ysize = scene_ds.RasterYSize 
 
# loads a list of our rasters extent in the order [left,top,right,bottom] 
extent = [ 
    scene_upper_left_x, 
    scene_upper_left_y, 
    scene_upper_left_x + (scene_xsize * scene_pixel_width), 
    scene_upper_left_y + (scene_ysize * scene_pixel_height) 
    ] 
 
scene_geometry = ogr.Geometry(ogr.wkbPolygon) 
ring = ogr.Geometry(ogr.wkbLinearRing) 
ring.AddPoint(extent[0], extent[3])  # x1y1 
ring.AddPoint(extent[2], extent[3])  # x2y2 
ring.AddPoint(extent[2], extent[1])  # x2y1 
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ring.AddPoint(extent[0], extent[1])  # x1y2 
ring.CloseRings() 
scene_geometry.AddGeometry(ring) 
ring = None 
 
baer_paths = [] 
# Read in fire extents and see if they intersect the scene geometry 
with open(os.path.join(baer_dir, 'perimeter.txt'), 'r') as f: 
    for line in f: 
        baer = line[:-1].split(',') 
        baer_file_path = baer[0] 
        baer_left = float(baer[1]) 
        baer_top = float(baer[2]) 
        baer_right = float(baer[3]) 
        baer_bottom = float(baer[4]) 
        baer_date = baer[5][4:]  # mmdd 
        baer = None 
 
        if baer_date <= scene_date: 
            # Create polygon of the baer/disturbance extent 
            baer_geometry = ogr.Geometry(ogr.wkbPolygon) 
            ring = ogr.Geometry(ogr.wkbLinearRing) 
            ring.AddPoint(baer_left, baer_bottom)  # x1y1 
            ring.AddPoint(baer_right, baer_bottom)  # x2y1 
            ring.AddPoint(baer_right, baer_top)  # x2y2 
            ring.AddPoint(baer_left, baer_top)  # x1y2 
            ring.CloseRings() 
            baer_geometry.AddGeometry(ring) 
            ring = None 
 
            # If the baer/disturbance geometry intersects the scene 
            # geometry then the scene likely has been disturbed so 
            # extract disturbed pixels 
            if scene_geometry.Intersects(baer_geometry): 
                print baer_file_path 
                baer_paths.append(baer_file_path) 
 
output_baer_mosaic_path = os.path.join( 
    combined_training_data_output_directory, 
    str(path) + "_" + str(row), str(year) + "_baer_mosaic.img") 
 
proc = subprocess.Popen(['C:\Program Files\GDAL\gdal_merge.py', 
                        '-o', output_baer_mosaic_path, 
                         '-pct', 
                         '-ul_lr'] + [str(x) for x in extent] + 
                        baer_paths, 
                        stdout=subprocess.PIPE, shell=True) 
out, err = proc.communicate() 
 
# Mask BAER data with our Data Mask 
output_baer_mosaic_masked_path = os.path.join( 
     combined_training_data_output_directory, 
     str(path) + "_" + str(row), str(year) + "_baer_mosaic_masked.img") 
 
merged_baer_ds = gdal.Open(output_baer_mosaic_path, 0) 
merged_baer_band = merged_baer_ds.GetRasterBand(1) 
merged_baer_data = merged_baer_band.ReadAsArray(0, 0) 
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baer_mask = merged_baer_data * data_mask_data 
baer_mask[baer_mask == 1] = 0 
baer_mask[baer_mask == 2] = 0 
baer_mask[data_mask_data == 0] = 255 
 
output_ds = driver.CreateCopy(output_baer_mosaic_masked_path, 
                              merged_baer_ds, 0) 
output_ds.GetRasterBand(1).WriteArray(baer_mask) 
output_ds.GetRasterBand(1).SetNoDataValue(255) 
output_ds.GetRasterBand(1).FlushCache() 
 
output_ds = None 


