
Western Washington University
Western CEDAR

WWU Masters Thesis Collection WWU Graduate and Undergraduate Scholarship

Summer 2016

Detecting Fires: A Nationally Consistent, Rule
Based Approach
Jacob D. (Jacob Daniel) Lesser
Western Washington University, lesserj@wwu.edu

Follow this and additional works at: http://cedar.wwu.edu/wwuet

Part of the Environmental Studies Commons

This Masters Thesis is brought to you for free and open access by the WWU Graduate and Undergraduate Scholarship at Western CEDAR. It has been
accepted for inclusion in WWU Masters Thesis Collection by an authorized administrator of Western CEDAR. For more information, please contact
westerncedar@wwu.edu.

Recommended Citation
Lesser, Jacob D. (Jacob Daniel), "Detecting Fires: A Nationally Consistent, Rule Based Approach" (2016). WWU Masters Thesis
Collection. 532.
http://cedar.wwu.edu/wwuet/532

http://cedar.wwu.edu?utm_source=cedar.wwu.edu%2Fwwuet%2F532&utm_medium=PDF&utm_campaign=PDFCoverPages
http://cedar.wwu.edu/wwuet?utm_source=cedar.wwu.edu%2Fwwuet%2F532&utm_medium=PDF&utm_campaign=PDFCoverPages
http://cedar.wwu.edu/grad_ugrad_schol?utm_source=cedar.wwu.edu%2Fwwuet%2F532&utm_medium=PDF&utm_campaign=PDFCoverPages
http://cedar.wwu.edu/wwuet?utm_source=cedar.wwu.edu%2Fwwuet%2F532&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1333?utm_source=cedar.wwu.edu%2Fwwuet%2F532&utm_medium=PDF&utm_campaign=PDFCoverPages
http://cedar.wwu.edu/wwuet/532?utm_source=cedar.wwu.edu%2Fwwuet%2F532&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:westerncedar@wwu.edu

Detecting Fires:
A Nationally Consistent, Rule Based Approach

By

Jacob Daniel Lesser

Accepted in Partial Completion
Of the Requirements for the Degree

Master of Science

Kathleen L. Kitto, Dean of the Graduate School

ADVISORY COMMITTEE

Chair, Dr. Michael J. Medler

Dr. David O. Wallin

Dr. Douglas F. Smith

MASTER’S THESIS

In presenting this thesis in partial fulfillment of the requirements for a master’s degree
at Western Washington University, I grant to Western Washington University the non-
exclusive royalty-free right to archive, reproduce, distribute, and display the thesis in
any and all forms, including electronic format, via any digital library mechanisms
maintained by WWU.

I represent and warrant this is my original work, and does not infringe or violate any
rights of others. I warrant that I have obtained written permissions from the owner of
any third party copyrighted material included in these files.

I acknowledge that I retain ownership rights to the copyright of this work, including
but not limited to the right to use all or part of this work in future works, such as
articles or books.

Library users are granted permission for individual, research and non-commercial
reproduction of this work for educational purposes only. Any further digital posting of
this document requires specific permission from the author.

Any copying or publication of this thesis for commercial purposes, or for financial gain,
is not allowed without my written permission.

Jacob D. Lesser
 July 29, 2016

Detecting Fires:
A Nationally Consistent, Rule Based Approach

A Thesis
Presented to

The Faculty of
Western Washington University

In Partial Fulfillment
Of the Requirements for the Degree

Master of Science

By
Jacob Daniel Lesser

June 2016

iv

Abstract

One of the continuing challenges in wildland fire management is maintaining accurate
vegetation and fuel data of an adequate resolution on an ever-changing landscape. The
USGS’s LANDFIRE program produces national, mid-level resolution datasets of fuel,
vegetation, and fire regime data useful in the modeling of wildland fire behavior. One
of the most effective and least expensive ways for maintaining the accuracy of these
layers is to incorporate area updates by detecting landscape changes. While many
algorithms exist for detecting change and disturbances, these algorithms are often tuned
for a particular landscape and require very precise training data or rely heavily on scene
statistics. This research looks at a method for detecting wildland fire across a broad
array of landscapes using a collection of computer-generated rules built from hundreds
of thousands of points of training data. Verification of the results were assessed by
visual comparison to a time series of high spatial resolution imagery through Google
Earth and cross-referenced to fires from various historical databases. A majority of the
fires detected in this assessment were in either a conifer or grassland landscape. The
methods outlined in this thesis performed best in those two landscapes, detecting 73%
to 78% of conifer fires correctly and 79% to 83% of grassland fires correctly.

v

Acknowledgements

I would like to thank my thesis committee, Michael Medler, David Wallin and Gus
Smith for their enduring patience, support and advice on this long journey. I would
like to thank the fine people in the USGS’s Landfire program: Matt Rollins, Dan
Steinwand, Mike Coan, Jeff Eidenshink, Don Ohlen, Josh Picotte, Stephen Howard and
Kurtis Nelson. This research was a product of their vision and dedication to the
creation of a high quality LANDFIRE dataset. I would also like to thank my family and
friends for supporting me in this process and helping me stay focused. To my fellow
grad students: This was a shared experience and one which would never have been the
same without your comradery. Thank you for the experience and the friendship.
Finally, a special thanks to WWU’s Cross Country and Track and Field teams. You
provided me an outlet and helped me stay grounded. You all have my enduring
thanks!

vi

Table of Contents

Abstract .. iv

Acknowledgements .. v

Table of Contents ... vi

List of Figures .. viii

List of Tables ... ix

List of Abbreviations .. x

Introduction ... 1

Objective ... 4

Background .. 5

Why Change Detection is Important .. 5
History of Airborne and Spaceborne Imagery .. 7
Changes in the Computer Environment ... 9
Remote Sensing Techniques ... 11
Disturbance Detection with LandTrendr ... 13
Disturbance Detection with Vegetation Change Tracker (VCT) 14
Disturbance Detection with MIICA .. 14
Detecting Fire .. 15
Detecting Disturbance vs. Delineation of Disturbance Area 17
Utility of Research .. 18
Machine-Learning and Cubist .. 19

Methods .. 21

Study Area .. 22
Prep BARC Data: .. 24
Collect and Prepare Fire Perimeter Data .. 26
Identify Input Datasets .. 26
Extract Training Data .. 27
Build the Training Model .. 29
Using the Detection Model ... 29
Prep the Likelihood of Fire Raster for Analysis .. 30
Verify the Results ... 30

Results ... 35

vii

Discussion .. 41

Conclusions .. 44

Limitations and Future Research ... 44

References... 46

Appendix I .. 51

Appendix II .. 52

Appendix III ... 54

Appendix IV ... 56

Appendix V .. 66

Appendix VI ... 68

Appendix VII ... 72

viii

List of Figures

Figure 1 – Pigeon Camera from 1914. ... 7

Figure 2 – Sample Cubist rule .. 21

Figure 3 – Study area covering Western Montana and central Idaho 23

Figure 4 – Validation tool.. 32

Figure 5 – Google Earth ... 33

Figure 6 - An example of a correctly detected disturbance 34

ix

List of Tables

Table 1 – Landsat band wavelengths. ... 8

Table 2 – Summary table of results.. 36

Table 3 – FOD Comparisons ... 37

Table 4 – FOD detections stratified by size .. 38

Table 5 – Verification by Physiognomy .. 39

x

List of Abbreviations

BAER Burned Area Emergency Response
BARC Burned Area Reflectance Classification
CV Change Vector
dNBR Differenced Normalized Burn Ratio
dNDVI Differenced Normalized Difference Vegetation Index
EROS Earth Resources Observation and Science Center
FOD Fire Occurrence Database
Gb Gigabyte
GDAL Geospatial Data Abstraction Library
GIS Geographic Information System
LANDFIRE Landscape Fire and Resource Management Planning Tools
LEDAPS Landsat Ecosystem Disturbance Adaptive Processing System
Mb Megabyte
MIICA Multi-Index Integrated Change Analysis
MODIS Moderate Resolution Imaging Spectroradiometer
MRLC Multi-Resolution Land Characteristics
MTBS Monitoring Trends in Burn Severity
NBR Normalized Burn Ratio
NDVI Normalized Difference Vegetation Index
NIR Near-Infrared
NLCD National Land Cover Database
RCVMAX Relative Change Vector Maximum
RGB Red, Green, Blue
SWIR Shortwave-Infrared
USGS United States Geological Survey
UTM Universal Transverse Mercator
VCT Vegetation Change Tracker
WRS Path/Row Worldwide Reference System Path/Row

Introduction

The modern computer, running on silicon-based processors, was invented in the

early 1970’s. Since then, the computational power of a single computer has doubled

nearly every eighteen months1. The rapid expansion of low cost computing resources

has made the storage of large datasets and the analysis of data using computationally

intensive algorithms possible on inexpensive consumer hardware. In this research

thesis, I took advantage of this rapid growth in computing resources to develop a

process for detecting disturbances using a time series of Landsat imagery and a

machine-learning algorithm.

In this research, I extracted hundreds of thousands of points of spectral response

data from a three year, six image time series of Landsat satellite images. I extracted the

spectral data from Landsat in locations and time periods where wildland fire had

occurred within the past year. I also extracted data from areas where wildland fire had

not recently occurred. This data was combined into a training dataset and processed

with a machine-learning algorithm called Cubist (Quinlan, 2016) that employs a

1 According to Moore’s Law, it is the number of transistors on an integrated circuit that doubles every
eighteen months. However, the number of transistors on a chip and the chips computational power are
not strictly a 1:1 relationship. As you add more transistors to a chip, you have greater power
consumption and require greater heat dissipation. The higher heat associated with chips with more
transistors can have a negative impact on processing capabilities. However, generally speaking, the
number of transistors strongly correlates with processing power, or the number of calculations that can
be performed per second.

2

multivariate linear model algorithm. I used Cubist to analyze this dataset for temporal

patterns in spectral trajectories. Cubist turned those patterns into a series of rules. Each

rule described a multivariate linear model. A multivariate linear model is similar to a

linear regression model, but has some key differences. Primarily, multivariate linear

models have a linear model at each leaf, while a regression model has a simple numeric

output (Walsh & Milligan, 2005; Walton, 2008). The value of each equation, when

applied to each pixel in a new Landsat time series, can be used to predict the likelihood

of whether or not a fire had occurred in that location within the past year.

One major advantage of machine-learning algorithms, like Cubist, are their

ability to identify patterns within large and noisy datasets. These machine-learning

algorithms allow researchers to analyze “fuzzy” datasets where a percentage of the

input data are labeled incorrectly. Outliers in the data can be detected and ignored by

Cubist when building rules that describe the data. This allows researchers to use many

of the disturbance datasets available despite the variability in data quality and

reliability. These algorithms can therefore accept a percentage of incorrectly labeled

data. i.e. training data labeled as a wildland fire that was not actually a fire or data that

was not labeled as fire, even when it should have been. This is very important in

change detection models, because much of the available data are of varying quality.

Keeping large GIS databases such as the USGS’s LANDFIRE database up to date

are major undertakings. LANDFIRE is a joint program of the Department of

Agriculture and the Department of the Interior. LANDFIRE provides 30m pixel

3

resolution datasets for the whole US. LANDFIRE datasets include existing and

potential vegetation layers, surface and canopy fuel layers important for modeling fire

behavior, fire regime datasets that describe historical fire characteristics, and

topographic layers. The LANDFIRE program currently employs several analysts that

look at disturbance GIS data from a variety of federal, state and local sources as well as

disturbances detected with automated computer algorithms. LANDFIRE analysts

overlay these disturbance datasets on Landsat and other high-resolution imagery data

using Hexagon Geospatial’s ERDAS Imagine and ESRI’s ArcGIS computer software

programs. When those analysts manually confirm the location and type of disturbance

through visual interpretation of the data, they integrate the changes associated with that

disturbance back into the appropriate LANDFIRE layers (B. K. J. Nelson et al., 2016).

For example, when a fire burns through an area and removes dead and woody debris,

the analyst updates the fuel models in that area. When agricultural land is replaced

with a housing suburb, the analyst updates the underlying vegetation layer to reflect

those changes.

Much of the change information used today comes from Landsat and Landsat-

derived products. Landsat 7 currently transmits approximately 400 images a day to

Earth for processing while Landsat 8 transmits upwards of 700 images per day (U.S.

Geological Survey, 2015). Each image covers an area approximately 31,000 square

kilometers. Finding and identifying all changes by hand would require an inordinate

amount of time and staff. Instead, the LANDFIRE analysts currently rely on automated

4

change detection and disturbance detection modeling routines. When a disturbance is

detected by a computer algorithm, the analyst inspects that disturbance and attempts to

associate it with a known disturbance event (K. J. Nelson, Connot, Peterson, & Martin,

2013). If the detected disturbance cannot be associated with a known disturbance event,

the LANDFIRE analyst attempts to determine disturbance type (K. J. Nelson et al.,

2013). The disturbance can then be delineated and integrated back into the appropriate

LANDFIRE layers by the analyst. Currently, the USGS’s LANDFIRE program uses the

Multi-Index Integrated Change Analysis (MIICA) change detection algorithm, recently

replacing the Vegetation Change Tracker (VCT) algorithm, to perform LANDFIRE’s

automated change detection routines (B. K. J. Nelson et al., 2016).

Objective

The objective of this research thesis was to develop a tool using the machine-

learning algorithm Cubist that could supplement or replace the current MIICA

algorithm by providing more complete wildland fire detections. This tool will improve

the LANDFIRE analysts’ workflow by giving them the tools to quickly identify and

verify wildland fire disturbances while detecting fires not currently detected by existing

algorithms. Increased detection performance and better detection verification

workflows will help make LANDFIRE a better product.

Unlike the current MIICA method, this machine-learning technique can integrate

the analysts’ verification data back into the training dataset, improving Cubist’s rule

model and increasing the efficacy of the algorithm over subsequent iterations.

5

This thesis focuses specifically on the detections of wildland fire as a test case for

using the Cubist algorithm as a detection method for multiple disturbance types. In

order to aid the analysts in quickly verifying wildland fire detections, I built a web

based tool for looking at the detections and comparing against available ancillary data

and high-resolution imagery. This allows the analyst to quickly identify and flag false

detections while keeping the correct detections for further analysis. As false detections

are identified, these cases can be integrated back into the training dataset, potentially

improving future iterations of Cubist’s rule model.

Background

Why Change Detection is Important

An understanding of landscape composition (e.g. topology, vegetation, and fuel

dynamics) is critical for making well-informed land management decisions. Accurate

data about the landscape can give policymakers the tools to make better management

decisions about the land within their jurisdiction (Dale et al., 2000). High quality

vegetation, fuel, and topographic datasets also give wildland fire managers’ better

ability to model and predict fire behavior, giving them the tools to best allocate

resources and protect the lives of the firefighters under their charge (Rollins, 2009).

Mapping all the vegetation cover for the United States is an expensive and time

consuming endeavor (Rollins, 2009). The United States is nearly one billion hectares in

size. Of that, 259 million hectares, or about 28% of all land in the United States are

6

publicly owned, (Vincent, Hanson, & Bjelopera, 2014). It is not reasonable, nor feasible

to map all public and/or private land every year. However, the landscape is constantly

changing. Wildland fire burns fuel and resets successional stages of the landscape

(Wright, 1974). Insects damage forests making them more susceptible to fire and

disease (Parker, Clancy, & Mathiasen, 2006). Forests in the US are thinned and cleared

at the rate of 4.4 million hectares annually (Masek et al., 2011). New trees are planted at

the rate of 900,000 hectares annually (Masek et al., 2011). Farmlands are developed into

shopping malls and homes. New roads crisscross the landscape, allowing an ever

growing population to move into and develop more remote areas (Theobald & Romme,

2007; Tully, 2013). Keeping track of all this change is difficult, but important for

keeping data layers, such as LANDFIRE, up to date. While it is not feasible to remap

the landscape every year with current technology, personnel, and budgets, identifying

the changes on the landscape using big data analytics and machine-learning techniques,

and making inferences on how those changes affect the landscape, will allow data

managers to keep those critical data layers up to date.

7

History of Airborne and Spaceborne Imagery

People have been putting cameras into the air and pointing them at the ground

shortly after the camera’s invention (J Hannavy, 2013).

As early as the 1880’s, cameras were attached to kites,

balloons, and even the occasional pigeon (Cohen &

Goward, 2004; J Hannavy, 2013; Hildebrandt, 1908). In

these early days remotely sensed images were typically

one-band black and white photos (Olsen, 2007). Over

time, as cameras, film, and sensors became more sophisticated, we were able to capture

more data at higher resolutions and with color and infrared bands of information.

However, until late in the last century, most of these images were analyzed by hand by

specially trained analysts (Balchin, 1987). This did not scale well and it limited our

ability to analyze the ever growing amount of data. Mapping was one of the first

objectives of remote sensing, but soon, the potential of aerial imagery for military

applications were realized, driven in large part by the first two world wars (Lillesand,

Kiefer, & Chipman, 2015). The first 100 years of airborne and spaceborne imaging

applications were dominated by military and state spy craft objectives with images

coming from either spy-planes or military satellites (Downing, 2011). It wasn’t until

1972, and the birth of the environmental movement, that the first Land Remote-Sensing

Satellite (Landsat) was launched into low-earth orbit (Cohen & Goward, 2004). Landsat

1 was equipped with a 4 band multispectral camera tuned for environmental

monitoring (Table 1), starting an era of remote sensing for environmental monitoring

Figure 1 – Pigeon Camera from 1914.
Attribution: Bundesarchiv, Bild 183-
R01996 / CC-BY-SA 3.0

8

and landscape analysis (Cohen & Goward, 2004). With the launch of Landsat,

researchers were now able to use remotely gathered satellite images to begin analyzing

the natural features of the Earth. Much of this analysis in the early days continued to be

done by hand or with simple supervised and unsupervised classification techniques,

but with increased access to modern computers, researchers began developing

algorithms to detect features and classify landscapes automatically (Fleming, Berkebile,

& Hoffer, 1975; Mirajkar & Srinjvasan, n.d.). As computers and algorithms became

more sophisticated, more complex problems could be applied to a series of images to

detect temporal patterns of change, such as landscape disturbance. Initially these

algorithms were relatively simple, using a handful of carefully collected, collated, and

hand-tuned training points to describe all the features the analyst hoped to detect

(Fleming et al., 1975). This process of collecting training points was time consuming

and expensive as it often required field checking the training data points. It also

assumed the analysts’ biases in picking training points that they thought best described

the phenomena they were trying to identify. Once these training points were collected,

a series of classified images could then be compared and differences between the two

analyzed.

Table 1 – Landsat band wavelengths. The first three Landsat satellites used the Multispectral scanner and consisted of four
spectral bands of information at approximately 60m spatial resolution. Landsat 4 and 5 used the Thematic Mapper scanner. All
but the thermal band are recorded at a 30m spatial resolution. The thermal band (6) is recorded at 120m spatial resolution.
Landsat 7 uses the Enhanced Thematic Mapper Plus scanner. The spectral band information recorded by Landsat 7 mirrors that
of 4 and 5. However, Landsat 7 adds an additional panchromatic band (8) that records information at 15m pixel resolution.
Landsat 8 uses the Operational Land Imager and adjusts the spectral band information recorded from that of its predecessors.
Additionally, Landsat 8 adds a band (9) used for detecting cirrus clouds. Landsat 8 also includes two new thermal bands on a
different sensor not included in this table (U.S. Geological Survey, 2016). Landsat 6 carried the ETM sensor, but failed to
achieve orbit.

9

In the decades since, more Landsat satellites have been launched, each making

improvements and refinements over previous models. The latest version of Landsat,

Landsat 8, images the earth recording 7 bands of data at 30-meter spatial resolution,

plus two thermal bands at lower spatial resolution. In the versions between Landsat 1

and 8, the number of bands have increased and the wavelength intervals for each band

have been refined to optimize for environmental landscape analysis (Table 1) (U.S.

Geological Survey, 2016). This thesis primarily relies on Landsat 5 data because of its

long-term data availability and reliability.

Changes in the Computer Environment

The early 1970’s marked the beginning of the silicon-based processor era. In

1972, the top of the line Intel 8008 processor had 3,500 transistors, could access 16kb of

memory and perform 60,000 instructions per second (Betker, Fernando, & Whalen,

 Landsat 1-3
(MSS)

Landsat 4-5 (TM) Landsat 7
(ETM+)

Landsat 8 (OLI)

Band 1 N/A 0.45-0.52 0.45-0.52 0.43 - 0.45

Band 2 N/A 0.52-0.60 0.52-0.60 0.45 - 0.51

Band 3 N/A 0.63-0.69 0.63-0.69 0.53 - 0.59

Band 4 0.5-0.6 0.76-0.90 0.77-0.90 0.64 - 0.67

Band 5 0.6-0.7 1.55-1.75 1.55-1.75 0.85 - 0.88

Band 6 0.7-0.8 10.40-12.50 10.40-12.50 1.57 - 1.65

Band 7 0.8-1.1 2.08-2.35 2.09-2.35 2.11 - 2.29

Band 8 N/A N/A .52-.90 0.50 - 0.68

Band 9 N/A N/A N/A 1.36 - 1.38

10

1997). One 8008 processor cost over $650 in 2016 dollars (Betker et al., 1997). Since the

1970’s however, processing power has followed Moore’s law, (until very recently)

doubling every 18 months, while the cost per transistor has decreased by half every 1.1

years (Kurzweil, 2016)2. A midrange consumer-level Intel processor in 2011, the latest

for which Intel published numbers, had 1.16 billion transistors and cost about $300

(McGrath, 2011).

Prior to the 1980’s, most data storage was on magnetic tape. A high-end typical

tape storage disk in the mid 1970’s could store between 5Mb and 140Mb of data. A

typical Landsat 5 scene for all 7 bands is approximately 1.5Gb in size3. The limitations

in tape capacity meant computer storage and digital analysis of Landsat and other

aerial imagery was difficult, time consuming, and prohibitively expensive outside of

large research organizations and Universities. It wasn’t until the 1980’s that magnetic

storage hard drives became available, and early on, their capacity was tiny and their

cost high. The first consumer hard disk drives were released in 1980 with a total

capacity of 26Mb. The cost per Gb in hard drive storage in 1980 was $437,500, while in

2 Gordon Moore was the co-founder of Intel. In 1965, he predicted that the number of components on an
integrated circuit would double every year. He later refined that prediction to every two years. His
prediction, on average, held true until 2012. The typical transistor size in 2012 was as small as 22nm and
is approaching 10nm in 2016. The size of silicon based transistors are reaching their physical limit of
about 5nm. Any smaller than that, and the transistor starts to experience the effects of quantum
mechanics. However, researchers have been experimenting with new materials that will allow even
smaller transistors. Transistors made out of newer materials, such as graphene, have been produced in a
lab as small as 10 atoms think. As the end of the silicon era is approaching and new materials come into
use, Moore’s law will likely need to be revised.
3 1Gb is equal to 1024Mb. A typical Landsat image would require anywhere from 10 to 300 tapes.

11

2013, the cost per Gb was as low as 4.3 cents (Statistic Brain Research Institute, 2016).

Performing remote sensing analysis in the early days was extremely costly and slow

(Cohen & Goward, 2004).

Many of the machine-learning algorithms we use today are simply too resource

intensive to even be considered on the most sophisticated hardware of the early era of

environmental remote sensing. The rapid increase in computing power has allowed us

to build much more sophisticated, computational and data intensive algorithms. This

has given rise to the machine-learning era where we can feed large quantities of data

into the computer and let the computer, using sophisticated algorithms, identify

patterns that make up the processes we are trying to identify.

Remote sensing techniques have evolved over time and have gotten more

sophisticated as computing capabilities have increased. The quantity of available data

is ever growing. As of 2011, the growth rate of stored data worldwide was growing

25% annually at a compounding rate (Press, 2013). This rapid rate of data growth poses

many challenges in mining the large quantities of data for useful information and

patterns. However, as these big data tools evolve, a natural application for those tools

will be in the remote sensing arena.

Remote Sensing Techniques

Computer driven remote sensing originally relied on analysis of a single image

analysis using either supervised or unsupervised classification techniques (Lillestrand,

1972). Supervised classification relies on labeled training data to inform the spectral

12

signatures of the desired targets of discovery. Unsupervised classification breaks the

imagery up into areas of similar spectral signatures and leaves it up to human

interpretation as to what those areas represent. Overtime, the algorithms for both

supervised and unsupervised classification techniques have improved. Eventually

these techniques were expanded to multi-imagery comparisons looking for change

between imagery taken on two or more different dates (Singh, 1989). The simplest

analysis would be to subtract one band of data in one scene from the same band of data

from another scene from two spatially equivalent images. The difference of these

scenes would inform a potential change in landscape. This simple analysis, however,

doesn’t inform the type of change, and doesn’t account for seasonal differences between

images. More sophisticated techniques looking for patterns between multi-bands of

data from images on multiple dates have evolved to identify changes and trends and

allows the algorithm to identify only specified phenomena, if so desired.

The first several versions of the LANDFIRE data products relied on the

Vegetation Change Tracker (VCT) algorithm to detect change and inform updates to the

LANDFIRE dataset. VCT is algorithmically similar to Oregon State University’s

LandTrendr project (Kennedy, Yang, & Cohen, 2010), both being developed in 2008,

shortly after the Landsat archive became freely available. In the latest 1.3.0 version of

LANDFIRE, VCT was replaced by the Multi-Index Integrated Change Analysis (MIICA)

algorithm as the primary source of change detection data (B. K. J. Nelson et al., 2016).

13

Disturbance Detection with LandTrendr

LandTrendr is a change detection tool developed at Oregon State University in

cooperation with the U.S. Forest Service and NASA. Unlike many traditional change

detection routines that only look for change in a pair of scenes, LandTrendr looks for

change by analyzing the trends of individual pixels over the course of many years. Not

only does this allow the algorithm to pick up abrupt disturbances on the landscape such

as fire and clear-cuts, but also long-term trends of vegetation decline and regrowth

(Kennedy et al., 2010).

Trends are identified by stacking pre-processed Landsat scenes taken in the

summer months from multiple years and graphing the spectral values of a single band

or index (based on two or more bands) for those years. Best fit vertices are created

through a series of mathematical functions that simplify the vertices into generalized

trends (Kennedy et al., 2010). This is repeated for every pixel in a scene.

These trends are then compared to an idealized trend model for varying types of

change. If the trend shapes are similar enough within a statistical margin-of-error, then

the trend is labeled as a change. The model includes four idealized trend patterns:

simple disturbance, disturbance followed by revegetation, ongoing revegetation, and

revegetation to stable state. Everything else is labeled as not having changed. In

addition to labeling change, the year of disturbance, its intensity and the rate of

recovery were also labeled. While the LandTrendr model can automatically detect

disturbance and change directionality, it does not classify the cause of change. A

14

separate process where groups of pixels have been identified as changed are validated

and labeled by a human analyst comparing the LandTrendr output and high-resolution

satellite photos (Cohen, Yang, & Kennedy, 2010; Kennedy et al., 2010).

Disturbance Detection with Vegetation Change Tracker (VCT)

The Vegetation Change Tracker (VCT) was developed as part of the USGS’s

LANDFIRE program located at the EROS Data Center in Sioux Falls, South Dakota

(Vogelmann et al., 2011). It is algorithmically similar to that of LandTrendr. VCT is

able to accurately detect most stand-clearing disturbances including fire and clear-cuts

and many other disturbances that don’t have complete stand removal (K. J. Nelson et

al., 2013). The VCT algorithm is tuned specifically to forested environments but tends

to break down in non-forest environments (Jin et al., 2013). This is in part dependent on

VCT’s dependence on scene statistics and the brightness of many non-forested scenes

prevent the bright spots of fire from being detected (Jin et al., 2013).

Disturbance Detection with MIICA

In 2013 the LANDFIRE program switched its change detection algorithm to the

Multi-Index Integrated Change Analysis (MIICA) algorithm (B. K. J. Nelson et al., 2016).

This algorithm was developed by the Multi-Resolution Land Characteristics (MRLC)

consortium. MRLC produces the National Land Cover Database (NLCD) and

developed MIICA for the 2011 NLCD update, which was the last major NLCD update.

MIICA uses four spectral indices derived from a pair of Landsat scenes to find changes

15

between two dates in time. This algorithm performs better at detecting disturbances,

like wildland fire, in non-forested areas than the VCT algorithm.

The indices used in MIICA are the differenced Normalized Burn Ratio (dNBR),

the differenced Normalized Difference Vegetation Index (dNDVI), the Change Vector

(CV), and an index developed specifically for MIICA called the Relative Change Vector

Maximum (RCVMAX) index (Jin et al., 2013).

Detecting Fire

My research will focus on the development of an alternative approach for the

detection of wildland fire events. This approach may also be useful for detecting other

disturbance types. My research is facilitated by the availability of the US Forest Services

Fire Occurrence Database (FOD) of fire points for the years 1992-2013 (Karen C. Short,

2015). This is the most complete database of fire in the US. While this database is

certainly not a complete record of wildland fires in the United States, it is far more

complete than any other previous database (K. C. Short, 2014). To the best of my

knowledge, no similar databases of nationally complete data for both public and private

land exists for other disturbances of interest, such as clear-cuts, thinning, insect damage,

or other disturbances. The availability of this database was useful in verifying the

detection results.

There are many methods of fire detection and they serve different purposes.

Wildland fire can have significant impact on the human environment, so having rapid,

near real-time detection methods for fires is important for identifying active fires that

16

might require immediate human response. The primary, global, real-time detection

method for wildland fires relies on the Moderate Resolution Imaging

Spectroradiometer, more commonly referred to as MODIS, satellite data.

MODIS is an imaging platform aboard the Terra and Aqua EOS Satellites. Both

satellites are in near-polar orbits and are both sun-synchronous. The spatial resolution

and orbital paths of the two MODIS platform satellites enable the earth to be imaged

four times a day – twice at night and twice in the day. The high-temporal frequency of

global passes allows for detection of near real-time events and provides early warning

and analysis of a disturbance (Giglio, Csiszar, & Justice, 2006).

The MODIS fire detection system is an early-warning tool for detecting the

spatial location of fires across the planet. Fires can be detected at the sub-pixel level

(Giglio et al., 2006). However, given the 1 kilometer pixel resolution, it is not a good

tool for the assessment of fire perimeters or internal heterogeneity of fires. It is also not

a tool for detecting fire scars on the landscape. It is solely a real-time active fire

detection tool.

Other algorithms, such as VCT, LandTrendr, and the research developed in this

thesis, look for past fires based on a time series of Landsat imagery by looking for

changes in the recorded spectral data that is indicative of a fire scar.

17

Detecting Disturbance vs. Delineation of Disturbance Area

When looking for wildland fires and other disturbances with remote sensing

techniques, there are three levels of detail possible. The first level is the detection of the

disturbance. Detection of a disturbance will find the location of a change, but not

provide details about size and severity. The second level is delineation of the

disturbance perimeter. Delineation of the perimeter will provide details on size and

location of the disturbance, but will not provide detail about internal severity of

individual pixels within the disturbance. Finally, delineation with classification will

determine the location, spatial extent and internal heterogeneity of the disturbance by

classifying the level of disturbance of each individual pixel within the disturbance

perimeter.

While delineation and classification of disturbances is an important future goal

for this research, this thesis focuses on detection of wildland fire. This is in large part

due to the lack of complete historical fire records, including location, perimeter, and

severity of fires. This makes verification of fire perimeters and internal heterogeneity

difficult. The FOD database, which is the best fire occurrence database to date, only

includes point data, so shape and internal heterogeneity of the detected fires can’t be

compared to the outputs of my model. While delineation would be beneficial for the

advancement of wildland fire research, positive identification of previously unknown

fires is the first goal of this research. Detection of previously undetected fires will allow

18

the LANDFIRE analysts to manually delineate the disturbance and further improve the

LANDFIRE data products.

Utility of Research

Identifying wildland fires and other disturbances is important for a number of

reasons. It helps data managers, such as the USGS’s LANDFIRE team, keep fuel and

vegetation layers up to date by incorporating the changes associated with disturbances

into existing datasets. For example, this could include updates to fuel load and

classification layers as fuel is removed by fire. Incorporating the results of these

changes into the data layers can improve the accuracy and decrease the cost of

maintaining those datasets by eliminating the need to remap the data in its entirety.

Knowing the location and size of fires can help policy makers and researchers better

understand the wildland fire landscape. Good fire data, for example, can help

determine trends in the number of ignitions, total fire area, and severity of fire. These

are important pieces of information when studying the trends and impacts of climate

change. Having accurate fuel, vegetation and historical fire data is important for

informing wildland fire policy and modeling fire behavior. The goal of this thesis is to

develop a tool for quickly and accurately identifying past wildland fires. More

complete and accurate data can be used by LANDFIRE analysts to improve the

LANDFIRE data products.

19

Machine-Learning and Cubist

Machine-learning is the ability for computers to identify patterns without

explicitly being programmed to recognize a predetermined pattern (Samuel, 1959).

Machine-learning algorithms identify patterns in data and create models that predict

outcomes based on that pattern given similar data. These algorithms can continually

improve their models as more data is collected, classified, and input into the algorithm.

Generally speaking, machine-learning algorithms are broken down into two broad

types: supervised learning and unsupervised learning (Russell & Norvig, 2009).

Unsupervised learning algorithms analyze a dataset for structure without knowing

anything about the meaning of the dataset. Supervised learning is a technique where

data are labeled within a dataset by type and the data are analyzed for patterns

describing each of the labeled types.

There are many types of machine-learning algorithms, all with different

strengths and weaknesses. A non-exclusive list of machine-learning algorithms

includes decision trees, regression trees, neural networks, deep learning, Bayesian

networks, and genetic algorithms. For this thesis, I am using a machine-learning

algorithm called Cubist which is a multivariate linear model algorithm (Quinlan, 2016).

Cubist is an algorithm that builds a collection of rules based on the patterns

found within the data. Each rule describes a multivariate linear model. That linear

model can then be applied to each pixel value in a Landsat pixel stack that calculates a

numerical value. This numerical value describes the likelihood that a particular value is

20

correctly identified. The analyst can set a threshold to convert these numerical values

into a binary response. In this case, I set a threshold of 95. Values above 95 are

considered burned, while values below 95 are considered unburned. Cubist, according

to the documentation “… is a powerful tool for generating rule-based models that

balance the need for accurate prediction against the requirements of intelligibility.

Cubist models generally give better results than those produced by simple techniques

such as multivariate linear regression, while also being easier to understand than neural

networks” (Quinlan, 2016). Cubist is designed to quickly analyze datasets with millions

of records and up to 1,000’s of data fields. Cubist has been used for many data-mining

and GIS research projects including a process to update the National Land Cover

database (Fry, Coan, Homer, Meyer, & Wickham, 2009), to determine local effects of

Mercury emissions (Walsh & Milligan, 2005), to predict profit in dairy farms (Yli-

heikkil, Tauriainen, & Sulkava, 2015), to estimate vegetation canopy density (Huang,

Yang, Wylie, Homer, & Itss, 2001), and to forecast wind farm power production

(Wiener, Pearson, Lambi, Myers, & Goodrich, 2011), among many others.

There are some additional characteristics of Cubist that were factors in choosing

it for this research. There is an open source version of the code available. This allows

us to analyze and modify the code freely should the need arise. While open source code

is available, Cubist is a proprietary product produced by a company called RuleQuest.

This company sells and supports a version of the algorithm designed to work on

21

multiple processors. Paid professional support is often a requirement for larger

organizations when adopting new tools and software.

Another advantage to Cubist is the structure of the data models that it creates.

These models are well-structured plain text rules. This means that the models can

easily be opened up in a text editor and the rules analyzed by a human, they could then

be applied by hand if so desired.

Finally, the Cubist algorithm is fast. It is written in the C programming language

and is very fast and efficient when building and applying models. In fact, Cubist is the

fastest part of the toolset built for this research. Extracting Landsat data from the hard

drive and pulling it into the Cubist algorithm is the biggest bottleneck with this tool.

Methods

This section describes the detailed steps I performed in this research, from data

collection and processing, to result analysis and verification. Most of the steps were

rules="98"

conds="3" cover="68950" mean="0.1" loval="0" hival="100" esterr="0.2"

type="2" att="l3b1" cut="42" result="<="

type="2" att="l3b2" cut="35" result=">"

type="2" att="l1b3" cut="45" result=">"

coeff="1" att="l1b2" coeff="0.01" att="l1b3" coeff="-0.013" att="l1b6" coeff="-

0.008" att="yl1b2" coeff="0.02" att="l2b3" coeff="-0.03" att="l2b4" coeff="0.02"

att="l4b3" coeff="0.01" att="l4b4" coeff="-0.017" att="l4b5" coeff="-0.01"

att="l4b6" coeff="0.01" att="l5b5" coeff="-0.02" att="l5b6" coeff="0.02"

att="l6b2" coeff="-0.02" att="l6b5" coeff="0.013"

Figure 2 – Sample Cubist rule. This rule has three condition that must be met. The first band of the third scene in the Landsat
time series stack must be less than or equal to 42 while the second band of the third scene must be greater than 35 and finally, the
third band of the first scene must be greater than 45. If these conditions are met, then, then the linear model equation using the
listed coefficients and band values are used to calculate the result for each pixel

22

scripted using Python and rely heavily on the Geospatial Data Abstraction Library

(GDAL). Open source tools were chosen whenever possible to facilitate low-cost

repeatability of this research. Most of the scripts I developed are available in the

appendices. I processed the data on a distributed number of computers. The code is

separated in such a way that the analysis can be scaled in parallel across numerous

machines.

Study Area

I used Landsat 5 scenes as the remotely sensed data for this project. I collected

Landsat data individually by scene, with two scenes per year, for the years 2009

through 2011. Each scene covers an area defined by the Worldwide Reference System

(WRS) path/row boundaries.

23

Each WRS path/row is approximately 170 kilometers along its north-south

orientation and 183 kilometers along its east-west orientation. Each scene is

approximately 31,000 square kilometers in area. I collected pre-processed Landsat data

covering paths 39 through 41 and rows 26 through 30. This area covers parts of

Montana and Idaho (Figure 3). I extracted data from all WRS path/rows in the study

area but only applied the models built from that data to path 40, rows 26 through 29. I

built training datasets for each detection scene by combining the data from all

neighboring training scenes. The area where I verified detections covers an area about

124,000 square kilometers. The time period, or detection window, in which I’m trying

to identify fires is between the third and fifth scenes in the stack, which is

approximately September 2009 through September 2010.

Figure 3 – Study area covering Western Montana and central Idaho. Fire detections were verified in path 40, rows 26 through
29. Data used to train the model for detection scenes was collected from the neighboring scenes.

24

Prep BARC Data:

I used the Burned Area Reflectance Classification (BARC) datasets to identify

fires for labeling disturbance pixels in the dataset extracted for training the Cubist

algorithm. The Burned Area Emergency Response (BAER) team produces BARC rasters

for dozens of fires across the western United States every year. BARC data uses

Landsat’s near infrared (NIR) and shortwave-infrared (SWIR) bands to calculate a

normalized burn ration (NBR) index suitable for identifying fire severity using the

following equation:

𝑁𝑁𝑁𝑁𝑁𝑁 =
(𝑁𝑁𝑁𝑁𝑁𝑁 − 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆)
(𝑁𝑁𝑁𝑁𝑁𝑁 + 𝑆𝑆𝑆𝑆𝑆𝑆𝑅𝑅)

The BARC data compares the NBR index from a Landsat scene before the fire and the

NBR index from a Landsat scene after the fire. This comparison is called the

differenced normalized burned ratio (dNBR). Pixels with high dNBR values are

considered the highest severity areas of the fire while the lowest values are considered

unburned. The dNBR equation is as follows:

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 𝑁𝑁𝑁𝑁𝑁𝑁𝑝𝑝𝑝𝑝𝑝𝑝−𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 − 𝑁𝑁𝑁𝑁𝑁𝑁𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝−𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓

The BAER team rescales the dNBR burn severity index to a 0-256 scale. This is

then segmented into four classes, representing unburned area, low severity, medium

severity and high severity areas. Low severity pixels are defined as areas where surface

material is not completely consumed and still recognizable. Canopy and understory

vegetation is still usually green. Moderate severity pixels are areas where up to 80

percent of surface material is consumed by fire, vegetation is typically scorched and

25

appears brown. High severity pixels are areas where all of the surface material is

removed and vegetation, where it remains, is typically black in appearance (Parsons,

Robichaud, Lewis, Napper, & Clark, 2010).

The BARC data for each fire is evaluated by a BAER field team. Typical class

breaks for BARC data are 0 to 75 as unburned, 76 to 109 as low severity, 110 to 187 as

medium severity, and 188 to 255 as high severity (Parsons et al., 2010). Adjustments to

the class breaks for each fire are adjusted, if necessary, based on the field team’s

observations (Parsons et al., 2010). I downloaded all BARC data in the training area

from the BARC repository. Data formats are sometimes inconsistent in the repository.

Most fires include the BARC four class raster, but occasionally it is missing from the

BARC repository. In these instances, the BARC 256 data are provided, along with the

custom break points that are needed to convert the BARC 256 raster into the BARC four

raster. In these instances, I reclassified the BARC 256 raster into a BARC four raster.

Additionally, most BARC datasets are in the USGS Albers projection. Occasionally,

however, these datasets are provided in a local UTM coordinate system. In these cases,

I projected the data into Albers.

After ensuring the BARC data was processed consistently, I calculated the

outermost rectangular extent of each BARC fire that would encompass all BARC pixels

from that fire. This process identified the minimum extent of the fire in Albers

coordinates and inserted the coordinates into a computer file shared by all of my BARC

data for each year of interest.

26

The code for prepping BARC data is available in Appendix III.

Collect and Prepare Fire Perimeter Data

We also needed to extract pixels without a fire disturbance when training our

detection model. The BARC dataset is only available for a handful of fires in any given

year. In order to minimize the risk of extracting a point as an unburned training pixel

that was actually burned, we needed to know where all fires were located. I collected

fire perimeters from many national, state and local datasets (Appendix I). These

perimeters were combined into a single GIS database. At a bare minimum, I tried to

identify the year of the fire. If possible, I also included the start date and containment

date of the fire. As much attribute data was kept as possible from the datasets and

merged into a consistent schema. I was then able to use this dataset to mask out areas

of fire when extracting training data that represented unburned pixels. While this

dataset is not a complete historical record, it does reduce significantly the risk of

extracting training data incorrectly. This is largely due to the fact that there is much

more likely to be an historical fire record and perimeter data for larger fires.

Identify Input Datasets

My training data structure required two Landsat scenes for each year in the

analysis. One scene was a minimum vegetation scene and the other was a maximum

vegetation scene. The scenes were selected by hand by staff at the USGS for each WRS

path/row. Scenes were selected to minimize clouds, snow, and smoke. Surface

reflectance values for each Landsat scene were calculated at the USGS using the Landsat

27

Ecosystem Disturbance Adaptive Processing System (LEDAPS) before the data was

downloaded (USGS, 2016). This made the data between scenes more consistent by

minimizing variability due to atmospheric conditions. The thermal band from Landsat

was stripped from these scenes. In its place is a mask band that masks clouds, water,

snow, ice, and smoke. These steps were all performed by personnel or by automated

processes at the USGS.

Extract Training Data

For every WRS path/row, I created a dataset to train the Cubist model. This

dataset consisted of all the burned pixel data for each of the eight neighboring WRS

path/rows as well as a random sampling of unburned pixels. For each WRS path/row

in the training dataset, I built a 3-year Landsat time series stack. I used two scenes for

each year. One scene was a leaf-off scene and one was a leaf-on scene.

Because the Landsat satellite orbit drifts slightly in space, and because of limited

fuel, satellite thrusters are only burned infrequently as the drift becomes relatively

severe (NASA, n.d.). Because of this drift, the footprints of scenes from multiple passes

of the same WRS path/row do not line up perfectly with each other. For each scene, I

created a data mask. I calculated the minimum congruent extent for all six data masks

to determine the area from which I could extract training data. This prevented

extraction of values with no data from some scenes where data did not overlap.

I performed an intersection between my data mask and each BARC dataset

extent for each BARC fire in the year of analysis. When a BARC fire extent intersected

28

my data mask, I extracted all the pixel data for each Landsat scene where a BARC pixel

was classified as either medium or high severity. Additionally, I calculated the Julian

day of year for each Landsat scene and included that variable in my dataset. Finally,

the last variable in my dataset indicated that the pixel represented a burned location.

Burned pixels were given a value of 100. I saved all variables for each Landsat band,

Julian day of year, and burned pixel as a single row in a data file. I extracted data into

individual data files for each WRS path/row and year combination.

I also extracted data from unburned areas. I randomly selected rows within my

scene, and within each row, I randomly selected pixels to extract undisturbed data. For

each pixel chosen for extraction, I checked to see if it intersected any of my BARC data

or any fire perimeter in my fire perimeters database. If the pixel intersected a fire, and

the fire occurred in the year of analysis, and before the scene was taken, I removed the

pixel. This minimized training pixels as unburned pixels in areas where fire actually

occurred. I limited the number of unburned pixels extracted to the lesser of either 10

times the number of burned pixels extracted, or 1 million pixels. Spectral data variables

for unburned pixels were extracted, and Julian day of year was calculated, using the

same process for burned pixels. However, the final variable was set to 0 instead of 100

to represented unburned pixels.

The code for the extraction process can be seen in Appendix IV.

29

Build the Training Model

For each WRS path/row being analyzed, I combined the training data files from

all eight neighboring WRS path/rows. I did not include the training data from the WRS

path/row being analyzed in order to prevent biasing the results by detecting the same

fires used to train the model. I took this combined training data file for each WRS

path/row and applied the Cubist statistical algorithm. Cubist built a separate model

for each scene being analyzed that could then be used to identify likely fires.

The code for prepping the data and building the models can be seen in Appendix

V

Using the Detection Model

The detection process followed similar steps as the extraction process. I

extracted the pixel data for each pixel in my 3-year Landsat time series. I also converted

the date the scene was recorded by Landsat into the Julian day of year and included

that as a variable in my training dataset. However, instead of setting the

burned/unburned variable as either 0 or 100, I left it as unknown.

I then applied the Cubist model to every pixel which returned a value between

approximately 0 and 110. The higher the value, the more likely the pixel was burned

during the detection window. I then took the returned values calculated by the Cubist

model and applied them to a new single band likelihood of fire raster.

The code for applying the model to a new scene can be seen in Appendix VI.

30

Prep the Likelihood of Fire Raster for Analysis

The raster created from my Cubist model represented a likelihood value that

each pixel experienced a fire during the year of analysis. I used the Schowengerdt

method to set a standard threshold for determining the cutoff between burned and

unburned values by adjusting the threshold while looking at overlaid BARC data

(Singh, 1989). I set the threshold at the point around where the BARC fires were just

distinguishable. This value was typically around 95. I reclassed this raster, setting

every pixel with a value equal to, or above 95 as a burned pixel, and everything below

as unburned. Finally, I performed a raster sieve operation to remove single pixels from

my analysis. This removed a great deal of noise from the output. In this analysis, I only

looked for fire that was 2 or more adjoining or diagonal 30m2 pixels, or at least 0.5 acres

in size. This created my final output raster of pixels where the model had detected fire

in the detection window.

The code for preparing the results raster for analysis can be seen in Appendix

VII.

Verify the Results

Verification of the results was difficult. We have a good idea when and where

many, but not all, fires have occurred by using our history fire point database from the

USGS. However, this is only point data and does not provide perimeter delineation, or

more importantly, internal heterogeneity of the fire. We can supplement, to an extent,

with our custom fire perimeter database, but again, these are just perimeters and don’t

31

reflect the actual severity of the fire over each pixel. Neither of these databases are a

complete record of all fires that have occurred over the landscape in our study area and

over our study time period. BARC data are the only national, field verified, datasets we

have that show internal heterogeneity of the fire, and, because it is our training source,

output severity classifications should match the BARC input data if the model is trained

perfectly. However, only a handful of fires are processed as BARC datasets by the

BAER team. For these reasons, it is difficult to build an automated testing model to

verify each detected fire. I opted instead to do a visual analysis of each detection and

verify each detection by comparing to high resolution aerial imagery and, when

possible, cross-reference with my various historical fire databases. To facilitate the

verification, I created a custom web map application (Figure 4)

32

Figure 4 – Validation tool. This tool runs in a standard web browser and can be accessed from any internet connected computer.
The tool allows the user to view all detections as well as the Landsat data where the disturbances were detected. Ancillary data,
including fire history points with attribute data, BAER team data and Landsat orbital paths can all be toggled on and off
allowing the user to quickly determine the validity of a detection. Red dots represent fires in the FOD and are sized based on the
total burned area field in the FOD. The rasters in the black boxes are BAER data. The black box is the data mask in the BAER
raster. It is set slightly opaque and can be toggled on and off to see the disturbance in the imagery below. The fire information in
the top left corner is the attribute information for one of the FOD fires. The user can click on any FOD and see the basic
attribute information associated with that fire. The “unsure”, “correct”, and “incorrect” toggles on the right allow the user to
draw polygons on the map for each of those verification classes.

This application included all of the fire detections as well as all of the BARC data

and fire history points relevant to my detection time period. Landsat’s orbital path and

rows could be toggled to orient me to the relevant testing area. The final Landsat scene

in my detection time period was available for viewing using several band combinations,

including standard RGB, 543 and an NDVI index. This was used to look at the actual

data where a disturbance was detected. A high resolution basemap from ESRI was

included as well. This basemap was not time-stamped, and the date and time the

33

imagery was taken varied across the study area. However, this provided another clue

when identifying the disturbance.

When clicking on a historical fire point, attribute data for that fire, including the

name of the fire, the fire year, the containment date of the fire (if it existed in the

attribute data) and the fire size in acres were displayed in a popup along with a unique

integer identifier for that fire. This was used to cross-reference historical fires with my

Figure 5 – Google Earth. This screenshot of Google Earth shows one of the detected disturbance locations in high resolution.
This was a correctly detected fire. The time slider at the top left corner of the image could be adjusted allowing the user to view
all imagery available for different time periods. Looking at imagery before the detected disturbance and after the detected
disturbance allowed me to verify the disturbance time period.

34

detected fires.

 When clicking on a pixel on the map, the latitude and longitude for that location

was displayed. I copied the latitude and longitude values into Google Earth. I then

used Google Earth’s imagery to try and verify the fire disturbance and time period. I

adjusted the imagery time-slider in Google Earth to determine if a fire disturbance

occurred within or close to (depending on the dates of the imagery) the detected fire

disturbance.

After I verified the disturbance using Google Earth, I drew a polygon around the

disturbance in the verification app. I then entered in attribute information about that

detection, including whether or not the disturbance could be verified as correct or

Figure 6 - An example of a correctly detected disturbance in the validation tool. This was the Bielenaburg Complex fire in 2009.
The validation box in the center of the screen allowed me to manually enter in known attributes about the detection that I could
cross reference with my fire history attributes. Selected fire history attributes could be compared in the top left box. The detected
size is automatically calculated from the fire perimeter I drew around each detection.

35

incorrect. If I was unable to determine whether or not a verification was correctly

detected, I labeled the status as indetermined. There were many times when the spatial

or temporal resolution of the aerial imagery was not adequate enough to make a

determination. I included a note to provide a description of the details about an

incorrect classification or a classification that couldn’t be determined.

If I was able to cross-reference the fire with a historical known fire, I entered the

unique fire, fire size, and name into the attribute data of the detected fire.

Results

I evaluated all detections in four scenes in my study area. Path 40, rows 26

through 29. There were a total of 881 detections in those four scenes, or approximately

220 detections per scene on average. Each scene was approximately 31,110 square

kilometers in area. Of those 881 detections, I was able to verify 331 of them as fire

detections during the correct detection time window. 256 were clearly not fires, or fires

but outside of the detection time window. Another 224 detections could not be

determined clearly as fire or non-fire detections.

Of the incorrect detections, 103, or 40% were agricultural land. 39, or 15% were

clear-cut or thinned forests. 15, or 6% were fires, but from an early time period, outside

of our detection window. 16, or 6.5% were detections on barren land, often at high

altitude areas with perennial snow caps. The last 83, or 32% were not classified.

36

There were 224 fires that I was unable to verify as correctly or incorrectly

detected fire disturbances. Of those 224 detections, 31, or 14% were either clear-cut or

thinned forests or fires. 109, or 49% were determined as fire disturbances, but may or

may not have occurred before our detection time period window. Inability to identify

whether these fires fell within, or close to the correct time period was usually due to

inadequate high-resolution imagery around the detection window. 23, or 10% were

non-forested lands, usually either grass or shrublands. The spatial and temporal

resolution of the high-resolution verification imagery was usually too low to adequately

determine whether or not these were correctly detected fire disturbances. Finally, 61, or

27% were not classified. These disturbances usually occurred in areas where the spatial

or temporal resolution of the validation imagery was of poor quality, there were

obstructions such as shadows in the imagery that made an adequate determination

difficult, or it was in a non-forested area where determinations were difficult because of

the quick recovery of the vegetation type in low level fires.

Table 2 – Summary table of results.

Determination Note Count Percentage of
determination

Percentage of total

Correct 331 40.8%
Incorrect 256 31.6%

 Agriculture 103 40.2% 11.7%
 Barren 16 6.3% 2%
 Clear-cut or Thinning 39 15.2% 4.8%
 Wrong time period 15 5.9% 1.8%
 Other 83 32.4% 10.2%

Indetermined 224 27.6%
 Clear-cut or Thinning or

fire
31 13.8% 3.8%

37

 Fire, but possibly wrong
time window

109 48.7% 13.4%

 Non-forest 23 10.3% 2.8%
 Other 61 27.2% 7.5%

The Fire Occurrence Database has 204 fire records for the four scenes in my

study area and detection window. Of those 204 records, I was able to match 10 with my

fire detections. Those 10 matched detections accounted for 85% of the total acreage

burned in that time period according to the FOD database. The other 194 were very

small to small fires ranging from a few square meters in size to 300 acres, with a

majority of the fires being sub-acre and below the detection threshold.

Table 3 – FOD Comparisons. This table compares the fires I detected to the fires in the FOD database. I was able to match 10 of
the fires in the FOD database to the detected fires. This accounted for the majority of fire by area in the study area.

FOD fire detections Total Acreage Historical Fire Count
Detected 15,919 10

Not Detected 2,707 194
Total 18,626 204

I stratified the FOD database by fire size and compared my detections (Table 4).

Seven fires were greater than 1,000 acres. Of those seven fires, I detected six. The fire

not detected was the Gabe Creek fire. This was a lightning fire discovered July 30th

2009. It’s containment date was November 20, 2009 (Karen C. Short, 2015). This fire

straddled my detection window The majority of this fire occurred prior to the detection

window starting on September 16, 2009 (USDA Forest Service, 2009). I correctly

detected 3 of the 7 fires in the 50 to 300-acre size class. Only 1 fire smaller than 50 acres

was correctly detected. This was a lightning fire in the Salmon-Challis National Forest.

A full list of fires in the FOD greater than one acre in size is available in Appendix II.

38

Table 4 – FOD detections stratified by size. Most large fires were detected by the detection tool. However, most of the fires in the
FOD were very small and below the detection threshold of one half acre. There were no fires in the FOD between 300 and 1,000
acres in size.

Reported Fire
Size

Records Detected # of Records %
Detected

1000+ Acres 6 7 85.8%

50 - 300 Acres 3 7 42.9%

10 – 50 Acres 1 11 9%

5 – 10 Acres 0 5 0%

1 – 5 Acres 0 20 0%

<1 Acre 0 154 0%

Of the 331 fire detections that I was able to verify, only 10 could be associated

with fires in the FOD. The other 321 fires were not listed in the FOD. A majority of

fires in the FOD are below my detection threshold of half an acre.

Comparing the results from this research with the results from LandTrendr,

VCT, and MIICA are difficult for several reason. LandTrendr and VCT are only

designed to work in forested environments. The detailed analysis of those algorithms

was limited to those land classification types. I ran my tool across all land classification

types within my four WRS path/row study area. In order to better compare my results

to LandTrendr and VCT, I extracted the vegetation physiognomy from the LANDFIRE

existing vegetation layer at the centroid of each detection (Table 5).

39

Table 5 – Verification by Physiognomy

Physiognomy Correct Incorrect Indetermined % Correct
Agricultural 0 57 3 0%

Barren 4 9 2 31%
Conifer 178 65 130 73%

Developed 3 7 8 30%
Grassland 131 36 54 79%
Hardwood 1 1 1 50%

Open Water 0 1 0 0%
Riparian 1 1 2 50%

Shrubland 10 17 16 37%
Snow-Ice 0 2 0 0%

Sparsely Vegetated 2 14 6 13%

The two biggest physiognomy classes with detections were conifer and grassland

with 73% and 79% correct respectively. Those two classes also had the highest number

of verifications that were not conclusively labeled as correct or incorrect. 41% of the

indetermined detections in the conifer class were fires that could not be verified in the

detection window, while 81% of the indetermined detections in the grassland class were

fire where the detection window could not be verified. If higher temporal resolution

imagery were available to confirm that all of those fires were actually detected within

the detection window, then the percentage of correct detections in the conifer and

grassland classes would be 78% and 83% respectively.

LandTrendr is designed to detect multiple disturbance types, as well as stable

and recovering areas. However, it is only designed to work in forested areas.

LandTrendr had an overall omission rate between approximately 31% and 33% while

the commission rate for disturbances was between 41 and 48%. In the LandTrendr

40

study, 31 total fire disturbances were detected with an omission rate between 10% and

26% (Cohen et al., 2010). No commission rate for fires was provided in the study.

LandTrendr currently has a better detection rate of wildland fires in forested areas than

my tool, however, the number of wildland fire detections was much lower than in my

detection analysis. Furthermore, LandTrendr only detected 5 fires smaller than 1,000

acres, while my tool demonstrated numerous correct detections of small fires (Cohen et

al., 2010).

VCT is also designed to detect multiple disturbance types. In VCT’s accuracy

assessment, however, they did not give accuracy percentages by type. The overall

commission error for VCT detections is approximately 70% while the omission error is

approximately 60% (Jin et al., 2013). The overall accuracy of VCT in forested areas

currently performs better than my algorithm. However, VCT does not perform well in

non-forested types, while I have demonstrated moderate success in non-forested areas.

The only MIICA analysis available was a case study on two different WRS

path/rows. The results of the MIICA analysis are for all change classes, and not

explicitly broken out by disturbance type, so again, we cannot directly compare the

results to my research. In both case studies, there was a 0% commission error.

However, in the two case studies, the omission errors were 18% and 88% (Huang et al.,

2010). While MIICA is very good at reducing errors of commissions, it’s detection rate

seems spurious.

41

Discussion

It is difficult to directly compare my results against those of the LandTrendr,

VCT, and MIICA algorithms. LandTrendr and VCT only work in forested areas while

MIICA’s validation analysis was fairly minimal. Additional analysis comparing my

tool and these three algorithms would be required to ensure comparisons were done

using identical procedures. Regardless, my tool does demonstrate moderate success at

detecting wildland fire in both forested and non-forested areas.

I was able to detect a majority of the fire, by area, in the FOD database.

However, many of the medium size fires that I would expect to detect were not

detected. Further refinements to the training data will likely improve the detection rate.

I also detected many fires that I could not identify in the FOD. This suggests that many

fires do not have public records and that the FOD is incomplete.

The current training data needs improvement through further iterations of the

model to reduce commission errors. The most common commission errors occurred on

clear-cut and agriculture land. Clear-cuts can look relatively similar to severe, stand

removing fires. I had difficulty at times, determining whether an area with a fire

detection was a clear-cut or a fire, even when looking at imagery with a higher spatial

resolution then Landsat.

Agricultural land goes through significant spectral changes throughout a given

year. This confused the algorithm in several scenes. The error rate can be reduced by

42

adding the agricultural land and clear-cut forest commission error points back into the

training data specifically as "undisturbed" pixels. Increasing the number of fires used

for training the model would also help significantly improve the detection rate.

BARC data in some of my training areas were very sparse. Sometimes, I only

had one or two BARC fires, if any, for a given training scene. Also, since I was only

training off of the moderate and high severity pixels, those pixels were even more

limited. The lack of data in some parts of my study area decreased the accuracy of the

algorithm in those places. In future iterations, Monitoring in Trends and Burn Severity

(MTBS) data can be used to supplement BARC data. MTBS data is calculated for most

fires over 1,000 acres in size and classifies pixel severity similar to BARC data. It tends

not, however, to be field validated (Eidenshink et al., 2007).

Julian day of year was one of the few non-spectral variables used in this analysis.

Pixels in a given area can look quite different depending on the time of year. There is

usually less vegetation during winter months compared to summer months. Shadows

cast from trees and other objects will vary in direction and intensity based on the time

of year. Fire behavior and severity in any given area can look quite different early and

late in the season compared to the peak season. Julian day of year for each scene,

including the scene in which the fire is first detected can be an important clue when

building rule models to detect fire. The minimal amount of BARC data over parts of the

study area significantly limits the value of the day of year code for the analysis, as there

are relatively few fires to compare in any given region and at any given time. An

43

increase in the number of training fires would increase the value of the Julian day of

year variable for detecting fires.

Compounding events also provided obstacles in determining whether or not a

fire detection was correctly detected because of a fire. There are many fire detections

that appear to be fire that are clear-cut shortly after. It is difficult to ascertain whether

the detection was the initial fire, or the post clear-cut. Sometimes the reverse is also

true. Areas are clear-cut, and then the slash is burned. Greater temporal resolution in

the high-spatial resolution verification imagery would help more accurately determine

if these pixels are correctly being detected because of the fire, or incorrectly detected

because of the clear-cut.

There needs to be significant experimentation with training area zones. This

project used a rudimentary system to define areas where training data would be

extracted. It used training data from neighboring scenes. There are many ways in

which ecosystems can be segmented, such as LANDFIRE Zones, EPA Regions, and

other ecological boundary systems. Training data divvied up by regions of similar

characteristics may lead to better detection models for those same regions.

I would like to repeat this research using Landsat 8 data. Landsat 5, on which

this model was trained, is no longer in service, and Landsat 7's problems with the Scan

Line Compensator make its data less than ideal for analysis. Landsat 8 was only

launched in February 2013, and fully calibrated imagery for analysis was not available

until April 2013. There is not yet a rich time series of data available with Landsat 8 for

44

performing a similar analysis. However, by 2017 or 2018, there should be enough

Landsat 8 data available to repeat this experiment. I could also experiment with

combining Landsat 5 and Landsat 8 data in a time series. The spectral properties

recorded by Landsat 8 for each band differ slightly from Landsat 5 (Table 1), however,

the differences may be negligible when applying the fire detection rule models.

Conclusions

This tool shows promise for detecting fires and other disturbances. To be

effective, the model needs to go through several more iterations of training both for

disturbed pixels and undisturbed pixels. Many of the areas where the model classified

a disturbance incorrectly, such as agricultural pixels, should be relatively easy to train

out of the model. More fire training data would be extremely beneficial to improving

the accuracy of the model and MTBS data may be a good solution. Continued

development will be required to turn this into an effective tool ready for production.

Limitations and Future Research

This project represents over 1000 hours of development and testing. I have

begun to lay the foundation for a sophisticated machine-learning fire and change

detection tool, however, significant more time investment will be required to turn this

research into a full-production system. However, the road map for future work on this

research is fairly clear. The first step will be to build a better management system for

the training data. Once the training data are more optimally organized, the web based

45

validation tool can be expanded to convert user verifications back into training data,

either in the affirmative or the negative. This will allow analysts to quickly inspect and

verify disturbance detections. Once the verification is complete, the new data should be

integrated back into the training data model and the process rerun. Over time, this will

allow human analysts to constantly improve the training data set, enabling the

computer to make better detection rules. Over-time, through an iterative machine-

learning process we can create an accurate fire detection engine for all of the United

States, and elsewhere in the world.

46

References

Balchin, W. G. V. (1987). United Kingdom Geographers in the Second World War: A
Report. The Geographical Journal, 153(2), 159–180. http://doi.org/10.2307/634869

Betker, M. R., Fernando, J. S., & Whalen, S. P. (1997). The History of the Microprocessor.
Bell Labs Technical Journal, (1947), 29–56. http://doi.org/10.1002/bltj.2082

Cohen, W. B., & Goward, S. N. (2004). Landsat’s Role in Ecological Applications of
Remote Sensing. BioScience , 54 (6), 535–545. http://doi.org/10.1641/0006-
3568(2004)054[0535:LRIEAO]2.0.CO;2

Cohen, W. B., Yang, Z., & Kennedy, R. (2010). Detecting trends in forest disturbance and
recovery using yearly Landsat time series: 2. TimeSync - Tools for calibration and
validation. Remote Sensing of Environment, 114(12), 2911–2924.
http://doi.org/10.1016/j.rse.2010.07.010

Dale, V. H., Brown, S., Haeuber, R. A., Hobbs, N. T., Huntly, N., Naiman, R. J., …
Valone, T. J. (2000). Ecological Principles and Guidelines for Managing the Use of
Land. Ecological Applications, 10(3), 639–670. http://doi.org/10.1890/1051-
0761(2000)010[0639:EPAGFM]2.0.CO;2

Downing, T. (2011). Spies In The Sky: The Secret Battle for Aerial Intelligence During World
War II. Little, Brown Book Group.

Eidenshink, J., Schwind, B., Brewer, K., Zhu, Z., Quayle, B., & Howard, S. (2007). A
Project for Monitoring Trends in Burn Severity. Fire Ecology, 3(1), 3–21.
http://doi.org/10.4996/fireecology.0301003

Fleming, M. D., Berkebile, J. S., & Hoffer, R. M. (1975). Computer-aided analysis of
Landsat-1 MSS data: A comparison of three approaches, including a “modified
clustering” approach. LARS Technical Reports, 96.

Fry, J. A., Coan, M. J., Homer, C. G., Meyer, D. K., & Wickham, J. D. (2009). Completion of
the National Land Cover Database (NLCD) 1992 – 2001 Land Cover Change Retrofit
Product. U.S. Geological Survey Open-File Report. Sioux Falls, SD.

Giglio, L., Csiszar, I., & Justice, C. O. (2006). Global distribution and seasonality of
active fires as observed with the Terra and Aqua Moderate Resolution Imaging
Spectroradiometer (MODIS) sensors. Imaging, 111(July 1996), 1–12.
http://doi.org/10.1029/2005JG000142

Hannavy, J. (2013). Encyclopedia of Nineteenth-Century Photography. (J. Hannavy, Ed.)
(reprint). New York: Routledge.

Hildebrandt, A. (1908). Airships Past and Present (Translated). London: R. Oldenbourg.

47

Huang, C., Goward, S. N., Masek, J. G., Thomas, N., Zhu, Z., & Vogelmann, J. E. (2010).
An automated approach for reconstructing recent forest disturbance history using
dense Landsat time series stacks. Remote Sensing of Environment, 114(1), 183–198.
http://doi.org/10.1016/j.rse.2009.08.017

Huang, C., Yang, L., Wylie, B., Homer, C., & Itss, R. (2001). A Strategy for Estimating
Tree Canopy Density Using Landsat 7 ETM+ and High Resolution Images over
Large Areas. Third International Conference on Geospatial Information in Agriculture
and Forestry, CD–ROM, 1 disk.

Jin, S., Yang, L., Danielson, P., Homer, C., Fry, J., & Xian, G. (2013). A comprehensive
change detection method for updating the National Land Cover Database to circa
2011. Remote Sensing of Environment, 132, 159–175.
http://doi.org/10.1016/j.rse.2013.01.012

Kennedy, R. E., Yang, Z., & Cohen, W. B. (2010). Detecting trends in forest disturbance
and recovery using yearly Landsat time series: 1. LandTrendr - Temporal
segmentation algorithms. Remote Sensing of Environment, 114(12), 2897–2910.
http://doi.org/10.1016/j.rse.2010.07.008

Kurzweil, R. (2016). Micro Processor Cost per Transistor Cycle. Retrieved February 5,
2016, from http://www.singularity.com/charts/page62.html

Lillesand, T., Kiefer, R. W., & Chipman, J. (2015). Remote Sensing and Image Interpretation
(7th ed.). Wiley Global Education.

Lillestrand, R. L. (1972). Techniques for Change Detection. IEEE Transactions on
Computers, C-21(7), 654–659. http://doi.org/10.1109/T-C.1972.223570

Masek, J. G., Cohen, W. B., Leckie, D., Wulder, M. A., Vargas, R., De Jong, B., … Smith,
W. B. (2011). Recent rates of forest harvest and conversion in North America.
Journal of Geophysical Research: Biogeosciences, 116(2).
http://doi.org/10.1029/2010JG001471

McGrath, D. (2011). Intel details Sandy Bridge at ISSCC. Retrieved February 5, 2016,
from http://www.eetimes.com/document.asp?doc_id=1258749

Mirajkar, M. A., & Srinjvasan, T. R. (n.d.). Landsat photo-interpretation for preparation
of small scale soil maps through a multistage approach. Journal of the Indian Society
of Photo-Interpretation, 3(2), 87–92. http://doi.org/10.1007/BF02994475

NASA. (n.d.). Landsat 7 Science Data Users Handbook. NASA.

Nelson, B. K. J., Long, D. G., Connot, J. A., Jewell, S., Kimball, S. M., & Survey, U. S. G.
(2016). LANDFIRE 2010 — Updates to the National Dataset to Support Improved Fire
and Natural Resource Management.

48

Nelson, K. J., Connot, J., Peterson, B., & Martin, C. (2013). The LANDFIRE refresh
Strategy: Updating the National dataset. Fire Ecology, 9(2), 80–101.
http://doi.org/10.4996/fireecology.090280

Olsen, R. C. (2007). Remote Sensing from Air and Space. Bellingham, WA: SPIE - The
International Society for Optical Engineering.

Parker, T. J., Clancy, K. M., & Mathiasen, R. L. (2006). Interactions among fire, insects
and pathogens in coniferous forests of the interior western United States and
Canada. Thomas J. Parker. 2006; Agricultural and Forest Entomology - Wiley
InterScience. Agricultural and Forest Entomology, 8(3), 167–189.
http://doi.org/10.1111/j.1461-9563.2006.00305.x

Parsons, A., Robichaud, P. R., Lewis, S. A., Napper, C., & Clark, J. T. (2010). Field guide
for mapping post-fire soil burn severity. USDA Forest Service General Technical Report.
Fort Collins, CO.

Press, G. (2013). A Very Short History Of Big Data. Retrieved January 1, 2016, from
http://www.forbes.com/sites/gilpress/2013/05/09/a-very-short-history-of-big-
data/#7b638a9f55da

Quinlan, R. (2016). Data Mining with Cubist. Retrieved January 5, 2016, from
https://www.rulequest.com/cubist-info.html

Rollins, M. G. (2009). LANDFIRE: a nationally consistent vegetation, wildland fire, and
fuel assessment. International Journal of Wildland Fire, 18, 235–249.

Russell, S., & Norvig, P. (2009). Artificial Intelligence: A Modern Approach (3rd ed.).
Prentice Hall.

Samuel, A. L. (1959). Some Studies in Machine Learning Using the Game of Checkers.
IBM Journal of Research and Development, 3(3), 210–229.
http://doi.org/10.1147/rd.33.0210

Short, K. C. (2014). A spatial database of wildfires in the United States, 1992-2011. Earth
System Science Data, 6(1), 1–27. http://doi.org/10.5194/essd-6-1-2014

Short, K. C. (2015). Spatial wildfire occurrence data for the United States, 1992-2013
[FPA_FOD_20150323]. 3rd Edition. Fort Collins, CO. http://doi.org/10.2737/RDS-
2013-0009.3

Singh, A. (1989). Digital change detection techniques using remotely-sensed data.
International Journal of Remote Sensing, 10(6), 989–1003.
http://doi.org/10.1080/01431168908903939

Statistic Brain Research Institute. (2016). Statistic Brain Research Institute. Retrieved
February 5, 2016, from http://www.statisticbrain.com/average-cost-of-hard-drive-

49

storage

Theobald, D., & Romme, W. (2007). Expansion of the US wildland–urban interface.
Landscape and Urban Planning, 83(4), 340–354.
http://doi.org/10.1016/j.landurbplan.2007.06.002

Tully, J. P. (2013). The wildland-urban interface in the conterminous United States 2000-2010.
WWU Masters Thesis Collection. Paper 295. http://cedar.wwu.edu/wwuet/295.

U.S. Geological Survey. (2015). Acquisition. Retrieved December 5, 2016, from
http://landsat.usgs.gov/tools_acq.php

U.S. Geological Survey. (2016). What are the band designations for the Landsat
satellites? Retrieved December 5, 2016, from
http://landsat.usgs.gov/band_designations_landsat_satellites.php

USDA Forest Service. (2009). Wildland Fire Update. Flathead National Forest.

USGS. (2016). Landsat 4-7 Climate Data Record (CDR) Surface Reflectance Product Guide.
Sioux Falls, SD.

Vincent, C. H., Hanson, L. A., & Bjelopera, J. P. (2014). Federal Land Ownership: Overview
and Data. Congressional Research Service. Washington DC.

Vogelmann, J. E., Kost, J. R., Tolk, B., Howard, S., Short, K., Chen, X., … Rollins, M. G.
(2011). Monitoring landscape change for LANDFIRE using multi-temporal satellite
imagery and ancillary data. IEEE Journal of Selected Topics in Applied Earth
Observations and Remote Sensing, 4(2), 252–264.
http://doi.org/10.1109/JSTARS.2010.2044478

Walsh, K., & Milligan, M. (2005). Data Mining to Determine Local Effects of Mercury
Emissions. Younger Laboratories.

Walton, J. T. (2008). Subpixel Urban Land Cover Estimation: Comparing Cubist,
Random Forests and Support Vector Regression. Photogrammetric Engineering &
Remote Sensing, 74(10), 1213–1222.

Wiener, G., Pearson, J. M., Lambi, B., Myers, W., & Goodrich, K. (2011). An evaluation
of different data mining methods for forecasting wind farm power. Boulder, CO:
National Center for Atmospheric Research.

Wright, H. E. (1974). Landscape Development, Forest Fires, and Wilderness
Management. Science, 186(4163), 487–495.

Yli-heikkil, M., Tauriainen, J., & Sulkava, M. (2015). Predicting the profitability of
agricultural enterprises in dairy farming. In ESANN 2015 proceedings, European
Symposium on Artificial Neural Networks, Computational Intelligence and Machine

50

Learning. Bruges.

51

Appendix I

This table is a partial list of sources of historical fire perimeters

Number of Fires Source
405 Apache-Sitgreaves National Forests

359 Bitterroot National Forest
2 Bitterroot National Forest

86 Carson National Forest
322 Cibola National Forest
417 Clearwater National Forest
366 Coconino National Forest
459 Coronado National Forest
189 Flathead National Forest

53643 Geospatial Multi-Agency Coordination
440 Gila National Forest

3590 Idaho Panhandle National Forest
305 Kaibab National Forest
848 Kootenai National Forest
130 Lincoln National Forest
190 Lolo National Forest
554 Nez Perce-Clearwater National Forests
131 Prescott National Forest
248 Santa Fe National Forest
174 Tonto National Forest

5440 US Forest Service Region 1
340 US Forest Service Southwestern Region
237 Wyoming Wind River Bighorn Basin District

52

Appendix II

List of all FOD fires in the study area greater than one acre in size

Fire Name Fire
Detected

Fire
Size

(acres)

Land
Owner

Discovery
Date

Containment
Date

Cause

Fred Burr Creek False 1.1 Private 9/26/2009 9/27/2009 Miscellaneous
 False 1.2 Private 4/10/2010 N/A Debris Burning

Park Lake False 1.25 USFS 7/23/2010 9/15/2010 Lightning
 False 1.3 State 7/18/2010 N/A Miscellaneous
 False 2 Private 7/15/2010 N/A Miscellaneous
 False 2 Private 4/25/2010 N/A Debris Burning

Cigarette Fire False 2 Tribal 9/16/2009 9/16/2009 Smoking
Nelson Fire False 2 Tribal 4/4/2010 4/4/2010 Arson
Hibbs Fire False 2 Private 4/8/2010 4/8/2010 Railroad

Marco False 2 BLM 8/26/2010 8/27/2010 Equipment Use
 False 3 State 7/31/2010 N/A Lightning

Wallace Ditch False 4 USFS 4/2/2010 4/2/2010 Debris Burning
Falls False 5 USFS 8/5/2009 10/22/2009 Lightning

Bonita Ranger
Station Road

False 5 Private 9/29/2009 9/29/2009 Fireworks

 False 6 Private 7/16/2010 N/A Miscellaneous
 False 6 Private 7/16/2010 N/A Railroad
 False 7 State 5/2/2010 N/A Debris Burning
 False 10 Private 3/25/2010 N/A Debris Burning

White Calf Fire False 10 Tribal 7/19/2010 7/19/2010 Lightning
Yellowjacket

Creek
False 11 USFS 8/2/2009 10/22/2009 Lightning

 False 12 Private 4/17/2010 N/A Debris Burning
Dupont Deuce False 13 Private 10/23/2009 10/24/2009 Debris Burning

Haynes False 15 USFS 3/18/2010 4/1/2010 Miscellaneous
 False 19 State 8/1/2010 N/A Lightning

Star Falls False 20 USFS 9/18/2009 9/30/2009 Campfire
Jesse True 20 USFS 8/26/2010 8/31/2010 Lightning

 False 25 Private 4/24/2010 N/A Debris Burning
 False 49 Private 9/28/2010 N/A Debris Burning

Upper Railroad True 70 USFS 10/3/2010 10/25/2010 Lightning
 False 99 Private 5/15/2010 N/A Miscellaneous

North Lyons
Creek

False 104 Private 4/28/2010 N/A Debris Burning

Copper Creek False 109 State 9/22/2009 9/30/2009 Miscellaneous

53

Macdonald Pass True 170 USFS 9/25/2009 10/6/2009 Miscellaneous
Pig Fire False 200 Private 3/21/2010 3/21/2010 Debris Burning

Sand Basin True 305 USFS 8/23/2009 11/19/2009 Lightning
River Breaks True 1,862 USFS 9/28/2010 10/14/2010 Miscellaneous

Gabe Creek False 1,932 USFS 7/30/2009 11/20/2009 Lightning
Bielenburg True 1,950 USFS 7/12/2009 11/30/2009 Lightning

Davis True 2,015 USFS 8/26/2010 9/10/2010 Miscellaneous
Lily Lake True 2,120 USFS 8/13/2009 10/9/2009 Lightning

Cardinal Creek True 2,127 USFS 7/25/2010 11/9/2010 Lightning
Table Mountain True 5,280 USFS 9/13/2009 11/19/2009 Lightning

54

Appendix III

import os
import sys
import glob
import ConfigParser
import gdal
import osr

command line parameters
year = sys.argv[1]

Load configuration information from settings.ini
config = ConfigParser.ConfigParser()
config.read("settings.ini")

baer_dir = config.get("Directories", "BAER_DATA_DIRECTORY")

data_dir = os.path.join(baer_dir, year)
perimeter_file = open(os.path.join(data_dir, 'perimeter.txt'), 'w')

USGS Albers Projection
PROJ = 'PROJCS["Albers_Conic_Equal_Area",' \
 'GEOGCS["NAD83",DATUM["North_American_Datum_1983",' \
 'SPHEROID["GRS 1980",6378137,298.257222101,' \
 'AUTHORITY["EPSG","7019"]],' \
 'TOWGS84[0,0,0,0,0,0,0],' \
 'AUTHORITY["EPSG","6269"]],' \
 'PRIMEM["Greenwich",0,' \
 'AUTHORITY["EPSG","8901"]],' \
 'UNIT["degree",0.0174532925199433,' \
 'AUTHORITY["EPSG","9108"]],' \
 'AUTHORITY["EPSG","4269"]],' \
 'PROJECTION["Albers_Conic_Equal_Area"],' \
 'PARAMETER["standard_parallel_1",29.5],' \
 'PARAMETER["standard_parallel_2",45.5],' \
 'PARAMETER["latitude_of_center",23],' \
 'PARAMETER["longitude_of_center",-96],' \
 'PARAMETER["false_easting",0],' \
 'PARAMETER["false_northing",0],UNIT["meters",1]]'

output_srs = osr.SpatialReference(PROJ)

Find all files that are barc4
for fire in glob.glob(os.path.join(data_dir, '*', '*barc4_alb.img')):
 print fire

 # split file by the "_" separator and iterate through to
 # identify date in file path
 file_path = fire.split('_')
 for date in file_path:
 if date.startswith(str(year)):
 barc4_ds = gdal.Open(fire, 0)

 # Calculate Extent

55

 geoTransform = barc4_ds.GetGeoTransform()
 x1 = geoTransform[0]
 x2 = geoTransform[0] + (barc4_ds.RasterXSize * geoTransform[1])
 y1 = geoTransform[3]
 y2 = geoTransform[3] + (barc4_ds.RasterYSize * geoTransform[5])

 # make sure all extents are calculated in the same Projection
 input_srs = osr.SpatialReference()
 input_srs.ImportFromWkt(barc4_ds.GetProjectionRef())
 transform = osr.CoordinateTransformation(input_srs, output_srs)
 corner_nw = transform.TransformPoint(x1, y1)
 corner_sw = transform.TransformPoint(x2, y2)
 corner_nw = (x1, y1)
 corner_sw = (x2, y2)

 # Output information to csv file as file path, extent, date
 perimeter_file.write(
 fire + "," + str(corner_nw[0]) + "," +
 str(corner_nw[1]) + "," +
 str(corner_sw[0]) + "," +
 str(corner_sw[1]) + "," +
 date + "\n")

 # We don't want to output the same file multiple times if
 # the date appears in the file path multiple times
 break
perimeter_file.close()

56

Appendix IV

import os
import sys
import glob
import math
import random
import ConfigParser
import subprocess
from datetime import date
import random
import gdal
import ogr
import osr
import numpy as np

USGS Albers Projection
PROJ = 'PROJCS["Albers_Conic_Equal_Area",' \
 'GEOGCS["NAD83",DATUM["North_American_Datum_1983",' \
 'SPHEROID["GRS 1980",6378137,298.257222101,' \
 'AUTHORITY["EPSG","7019"]],' \
 'TOWGS84[0,0,0,0,0,0,0],' \
 'AUTHORITY["EPSG","6269"]],' \
 'PRIMEM["Greenwich",0,' \
 'AUTHORITY["EPSG","8901"]],' \
 'UNIT["degree",0.0174532925199433,' \
 'AUTHORITY["EPSG","9108"]],' \
 'AUTHORITY["EPSG","4269"]],' \
 'PROJECTION["Albers_Conic_Equal_Area"],' \
 'PARAMETER["standard_parallel_1",29.5],' \
 'PARAMETER["standard_parallel_2",45.5],' \
 'PARAMETER["latitude_of_center",23],' \
 'PARAMETER["longitude_of_center",-96],' \
 'PARAMETER["false_easting",0],' \
 'PARAMETER["false_northing",0],UNIT["meters",1]]'
Command line arguments to determine path, row, and year of data to extract
path = int(sys.argv[1])
row = int(sys.argv[2])
year = int(sys.argv[3])

Parse configuration information from the settings.ini file
config = ConfigParser.ConfigParser()
config.read("settings.ini")

Load configuration information from settings.ini
landsat_data_directory = config.get("Directories", "LANDSAT_DATA_DIRECTORY")
baer_dir = config.get("Directories", "BAER_DATA_DIRECTORY")
training_data_output_directory = config.get("Directories",
 "TRAINING_DATA_OUTPUT_DIRECTORY")
fire_history_path = config.get("Directories", "FIRE_HISTORY_DIRECTORY")

Processed Landsat data location
data_dir = os.path.join(landsat_data_directory, "p0" + str(path) +
 "r0" + str(row), 'HFA')
baer_dir = os.path.join(baer_dir, str(year))

57

outfile_path = os.path.join(training_data_output_directory, str(path) + "_" +
 str(row), str(year))

try:
 os.makedirs(os.path.dirname(outfile_path) + "\\")
except WindowsError:
 # directory already exists or other permissions/disk errors
 pass
except OSError:
 # Other operating system, and windows write errors
 pass

This is date order, but not necessarily leaf-on/leaf-off order.
Get three years of data (two scenes per year). Middle scene represents
the year from the command line argument and should represent the
year of disturbance
years = [year-1, year, year+1]

Only extract data where disturbance raster is one of these values
Baer data has the following classes.
We are only likely to pick up class 3 and 4
0 = outside perimeter
1 = unchanged / very low (Dark Green) | This means the area after the
fire
was indistinguishable from pre-fire conditions. This does not always
indicate the area did not burn.
2 = low severity (Cyan) | This severity class represents areas of surface
fire with little change in cover and little mortality of the dominant
vegetation.
3 = moderate severity (Yellow) | This severity class is between low and
high and means there is a mixture of effects on the dominant
vegetation.
4 = high severity (Red) | This severity class represents areas where the
dominant vegetation has high to complete mortality.
disturbance_values = [3, 4]

Create separate text files for each disturbance type and for undisturbed
data
outfiles = []
for disturbance_value in disturbance_values:
 outfiles.append(open(outfile_path + "_" +
 str(disturbance_value) + '.txt', 'w'))

undisturbed values
outfiles.append(open(outfile_path + "_0" + '.txt', 'w'))

coordinates of all baer pixels
coordinates = set()

Lists to store rasters and raster metadata
rasters = []
scene_dates = []
days_of_year = []

Identify Landsat rasters for analysis
for raster_path in glob.glob(os.path.join(data_dir, '*.img.gz')):

58

 # Only get the Landsat scene rasters. We could do something more elegant
 # with regular expressions, but this gets the job done well enough for
now
 if len(os.path.basename(raster_path)) == 27:
 # only get rasters within the year range we are extracting from
 if int(os.path.basename(raster_path)[12:16]) in years:
 # Open rasters while still gzipped. This is slower to read,
 # but probably faster and cleaner than extracting first
 if not os.path.isfile(raster_path[0:-3]):
 proc = subprocess.Popen(
 ['7-Zip\\7z.exe', '-o' +
 os.path.dirname(raster_path), 'e', raster_path],
 stdout=subprocess.PIPE,
 shell=True)
 out, err = proc.communicate()
 if err:
 print raster_path[0:-3]
 raise SystemExit
 proc, out, err = None, None, None
 rasters.append(gdal.Open(raster_path[0:-3], 0))
 # Extract date of scene from raster file path and store in a list
 scene_dates.append(int(os.path.basename(raster_path)[12:20]))
 raster_path = None

if len(rasters) > 10:
 print ("ERROR: More than 10 Rasters")

 for raster_path in glob.glob(os.path.join(data_dir, '*.img.gz')):
 if os.path.isfile(raster_path[0:-3]):
 os.remove(raster_path[0:-3])

 raise SystemExit

Calculate the day of year each scene was taken using the scene dates
for scene_date in scene_dates:
 scene_year = int(str(scene_date)[0:4])
 scene_month = int(str(scene_date)[4:6])
 scene_day = int(str(scene_date)[6:8])
 scene_doy = date(scene_year, scene_month, scene_day).timetuple().tm_yday
 days_of_year.append(scene_doy)

For now we'll assume all rasters in a scene have the same
extents/projections
and extract the geotransform data from the first raster
At some point if that changes, then we will have to project into a uniform
projection (if different) and compute the extent as the area where all
scenes
have data
scene_geotransform = rasters[0].GetGeoTransform()
scene_upper_left_x = scene_geotransform[0]
scene_pixel_width = scene_geotransform[1]
scene_upper_left_y = scene_geotransform[3]
scene_pixel_height = scene_geotransform[5]
scene_xsize = rasters[0].RasterXSize
scene_ysize = rasters[0].RasterYSize

loads a list of our rasters extent in the order [left,top,right,bottom]

59

extent = [
 scene_upper_left_x,
 scene_upper_left_y,
 scene_upper_left_x + (scene_xsize * scene_pixel_width),
 scene_upper_left_y + (scene_ysize * scene_pixel_height)
]

Create polygon of scene extent to intersect with baer/disturbance
data to identify disturbances overlapping the scenes
scene_geometry = ogr.Geometry(ogr.wkbPolygon)
ring = ogr.Geometry(ogr.wkbLinearRing)
ring.AddPoint(extent[0], extent[3]) # x1y1
ring.AddPoint(extent[2], extent[3]) # x2y2
ring.AddPoint(extent[2], extent[1]) # x2y1
ring.AddPoint(extent[0], extent[1]) # x1y2
ring.CloseRings()
scene_geometry.AddGeometry(ring)
ring = None

shp_driver = ogr.GetDriverByName("ESRI Shapefile")
fire_history_ds = shp_driver.Open(os.path.join(fire_history_path,
 str(year) + '.shp'))
print os.path.join(fire_history_path, str(year) + '.shp')
if fire_history_ds is None:
 print 'could not open fire history perimeters %s'
 % os.path.join(fire_history_path, str(year) + '.shp')
 raise SystemExit

fire_geometries = []
fire_history_lyr = fire_history_ds.GetLayer()
fire_history_lyr.SetSpatialFilter(scene_geometry)

numpy array to mask out disturbed pixels which we'll use to then extract a
sample of undisturbed pixels
mask = np.ones((scene_xsize, scene_ysize))

Keeps track of the number of disturbed pixels
count = 0

Read in fire extents and see if they intersect the scene geometry
with open(os.path.join(baer_dir, 'perimeter.txt')) as f:
 for line in f:
 # last character is a newline character, so we trim that off
 # and split into a comma separated list
 baer = line[:-1].split(',')
 baer_file_path = baer[0]
 baer_left = float(baer[1])
 baer_top = float(baer[2])
 baer_right = float(baer[3])
 baer_bottom = float(baer[4])
 baer_date = int(baer[5]) # yyyymmdd
 baer = None

60

Check if fire occurs between 3rd and 5th Landsat scenes in the
stack

 # ____ ____ ____ ____ ____ ____
 # | y1 | | y1 | | y2 | | y2 | | y3 | | y3 |
 # | l1 | | l2 | | l1 | | l2 | | L1 | | l2 |
 # |____| |____| |____| |____| |____| |____|
 # ^ ^
 # | fire |
 ##

 if baer_date > scene_dates[2] and baer_date < scene_dates[4]:
 data = []

 # Create polygon of the baer/disturbance extent
 baer_geometry = ogr.Geometry(ogr.wkbPolygon)
 ring = ogr.Geometry(ogr.wkbLinearRing)
 ring.AddPoint(baer_left, baer_bottom) # x1y1
 ring.AddPoint(baer_right, baer_bottom) # x2y1
 ring.AddPoint(baer_right, baer_top) # x2y2
 ring.AddPoint(baer_left, baer_top) # x1y2
 ring.CloseRings()
 baer_geometry.AddGeometry(ring)
 ring = None

 # If the baer/disturbance geometry intersects the scene geometry
 # then the scene likely has been disturbed so extract disturbed
 # pixels
 if scene_geometry.Intersects(baer_geometry):
 # Open baer/disturbance raster as read only
 baer_ds = gdal.Open(baer_file_path, 0)
 baer_geotransform = baer_ds.GetGeoTransform()
 baer_upper_left_x = baer_geotransform[0]
 baer_pixel_width = baer_geotransform[1]
 baer_we_rotation = baer_geotransform[2]
 baer_upper_left_y = baer_geotransform[3]
 baer_ns_rotation = baer_geotransform[4]
 baer_pixel_height = baer_geotransform[5]
 baer_xsize = baer_ds.RasterXSize
 baer_ysize = baer_ds.RasterYSize

 # Sometimes BAER data is in UTM projection instead of Albers
 # projection
 # Project BAER data into Albers, if necessary, using Nearest
 # projection Neighbor algorithm
 if "utm" in baer_file_path:
 print 'utm'
 # Define transformation from input projection to output
 # projection
 utm_proj = osr.SpatialReference(baer_ds.GetProjection())
 alb_proj = osr.SpatialReference(PROJ)
 transformation = osr.CoordinateTransformation(utm_proj,
 alb_proj)

 # Calculate geotransform of projected raster
 # top left corner
 (ulx, uly, ulz) = transformation.TransformPoint(
 baer_upper_left_x, baer_upper_left_y)

61

 # bottom right corner
 (lrx, lry, lrz) = transformation.TransformPoint(
 baer_upper_left_x + baer_pixel_width*baer_xsize,
 baer_upper_left_y + baer_pixel_height*baer_ysize)
 # bottom left corner
 (llx, lly, llz) = transformation.TransformPoint(
 baer_upper_left_x, baer_upper_left_y +
 baer_pixel_height * baer_ysize)
 # top right corner
 (urx, ury, urz) = transformation.TransformPoint(
 baer_upper_left_x + baer_pixel_width * baer_xsize,
 baer_upper_left_y)

 transformation = None

 # Identify the furthest left point and the top most point
 # Sometimes the rasters in a particular projection are
 # skewed relative to the new position in a way that makes
 # the bottom left corner "more left" than the top corner,
 # and similar with the top and bottom most values. By
 # detecting the left most and top most corners, we ensure
 # that we output a new projected raster with the correct
 # dimensions.
 lx = min(llx, ulx)
 rx = max(urx, lrx)
 ty = max(uly, lly)
 by = min(lry, ury)

 # Create empty raster in new projection
 # with the correct bounds
 mem = gdal.GetDriverByName('MEM')
 dest = mem.Create('', int(

 (rx - lx)/baer_pixel_width), int(
 (by - ty) / baer_pixel_height), 1,
 baer_ds.GetRasterBand(1).DataType)

 new_geotransform = (int(lx), baer_pixel_width,
 baer_we_rotation, int(ty),
 baer_ns_rotation, baer_pixel_height)
 dest.SetGeoTransform(new_geotransform)
 new_geotransform = None
 lr, rx, ty, by = None, None, None, None
 dest.SetProjection(alb_proj.ExportToWkt())

 # Reproject the image from the original dataset into the
 # new dataset using Nearest Neighbor. We use nearest
 # neighbor because it is most important to preserve
 # actual pixel values rather than altering them with an
 # algorithm that "averages" values
 gdal.ReprojectImage(baer_ds, dest,

 utm_proj.ExportToWkt(),
 alb_proj.ExportToWkt(),
 gdal.GRA_NearestNeighbour)
 utm_proj, alb_proj = None, None

 baer_ds = dest
 baer_geotransform = baer_ds.GetGeoTransform()

62

 baer_upper_left_x = baer_geotransform[0]
 baer_pixel_width = baer_geotransform[1]
 baer_we_rotation = baer_geotransform[2]
 baer_upper_left_y = baer_geotransform[3]
 baer_ns_rotation = baer_geotransform[4]
 baer_pixel_height = baer_geotransform[5]
 baer_xsize = baer_ds.RasterXSize
 baer_ysize = baer_ds.RasterYSize

 # The geometry of the new reprojected raster extent is
 # different and so needs to be recalculated
 baer_geometry = None
 baer_geometry = ogr.Geometry(ogr.wkbPolygon)
 ring = ogr.Geometry(ogr.wkbLinearRing)
 ring.AddPoint(ulx, uly) # x1y1
 ring.AddPoint(urx, ury) # x2y1
 ring.AddPoint(lrx, lry) # x2y2
 ring.AddPoint(llx, lly) # x1y2
 ring.CloseRings()
 baer_geometry.AddGeometry(ring)
 ring, ulx = None, None
 uly, urx = None, None
 ury, lrx = None, None
 lry, llx, lly = None, None, None

 disturbance_extent = scene_geometry.Intersection(
 baer_geometry).GetEnvelope()
 disturbance_min_x = disturbance_extent[0]
 disturbance_max_x = disturbance_extent[1]
 disturbance_min_y = disturbance_extent[2]
 disturbance_max_y = disturbance_extent[3]

 # Values to extract from Scene Data
 # NOTE: BAER imagery is not always snapped to LANDSAT
 # imagery. This can cause a 1 pixel shift between baer values
 # and underlying Landsat values. Since BAER data is for fires
 # over 40 acres, a few edge pixels shouldn't make too big of
 # a difference (sensitivity analysis)? This shouldn't cause
 # a problem detecting smaller fires.
 if (abs((scene_upper_left_x - baer_upper_left_x) %
 scene_pixel_width) < (scene_pixel_width / 2)):
 x_snap_factor = 1
 else:
 x_snap_factor = 0

 if (abs((scene_upper_left_y - baer_upper_left_y) %
 scene_pixel_height) < (scene_pixel_height/2)):
 y_snap_factor = -1
 else:
 y_snap_factor = 0

 print "snap factors: ", x_snap_factor, y_snap_factor

 # Subtract 1 from both x_size and y_size since we are
 # rounding up the starting locations (x_start, y_start)
 # using the math.ceil function. This ensures that we don't
 # run out of bounds on the East side of our Landsat rasters

63

 ls_x_start = int((disturbance_min_x - scene_upper_left_x) /
 scene_pixel_width) + x_snap_factor
 ls_x_size = int((disturbance_max_x - disturbance_min_x) /
 scene_pixel_width) - x_snap_factor
 ls_y_start = int((disturbance_max_y - scene_upper_left_y) /
 scene_pixel_height) + y_snap_factor
 ls_y_size = int((disturbance_min_y - disturbance_max_y) /
 scene_pixel_height) - y_snap_factor
 for raster in rasters:
 for band in range(raster.RasterCount):
 data.append(raster.GetRasterBand(band+1).ReadAsArray(
 ls_x_start, ls_y_start, ls_x_size, ls_y_size))

 # Values to extract from BAER
 baer_x_start = int((disturbance_min_x - baer_upper_left_x) /
 baer_pixel_width)
 baer_x_size = int((disturbance_max_x - disturbance_min_x) /
 baer_pixel_width)
 baer_y_start = int((disturbance_max_y - baer_upper_left_y) /
 baer_pixel_height)
 baer_y_size = int((disturbance_min_y - disturbance_max_y) /
 baer_pixel_height)

 if baer_x_start < 0:
 baer_x_start = 0
 baer_x_size -= 1

 if baer_y_start < 0:
 baer_y_start = 0
 baer_y_size -= 1

 data.append(baer_ds.GetRasterBand(1).ReadAsArray(
 baer_x_start, baer_y_start, baer_x_size, baer_y_size))

 for column in xrange(min(ls_x_size, baer_x_size)-1):
 for row in xrange(min(ls_y_size, baer_y_size)-1):
 l = []

 x = str(scene_upper_left_x +
 (0.5 * scene_pixel_width) +
 ((ls_x_start + column) * scene_pixel_width))

 y = str(scene_upper_left_y +
 (0.5 * scene_pixel_height) +
 ((ls_y_start + row) * scene_pixel_height))

 l.append(x)
 l.append(y)

 coordinates.add((int(float(x)), int(float(y))))

 for raster in xrange(len(data) - 1):
 l.append(str(data[raster][row][column]))

 for doy in days_of_year:
 l.append(str(doy))

64

 l.append(str(data[len(data) - 1][row][column]))

 # If any pixel has no value in the Landsat stack,
 # then ignore the entire pixel stack
 if all(i != '0' for i in l[2:-6]) and (
 int(l[-1:][0]) in disturbance_values):
 outfiles[disturbance_values.index(
 int(l[-1:][0]))].write((',').join(l) + '\n')
 count += 1

 l = None

 baer_x_start = None
 baer_x_size = None
 baer_y_start = None
 baer_y_size = None

 data = None

 baer_ds = None
 baer_date = None
 baer_file_path = None
 baer_left = None
 baer_top = None
 baer_right = None
 baer_bottom = None
 baer_date = None

 line = None

read undisturbed points
max_undisturbed = min(count*10, 1000000)
x_size = rasters[0].RasterXSize
y_size = rasters[0].RasterYSize

pixels = x_size * y_size
try:
 offset = pixels / max_undisturbed
except ZeroDivisionError:
 print 'no pixels to extract'
 for outfile in outfiles:
 outfile.close()

 rasters = None

 # Don't process undisturbed scenes with no disturbance pixels
 raise SystemExit

read one line at a time, take pixel sample by offset
for row in random.sample(range(0, y_size), int(math.sqrt(max_undisturbed))):

 data = []
 for raster in rasters:
 for band in range(raster.RasterCount):
 data.append(raster.GetRasterBand(band+1).ReadAsArray(
 0, row, x_size, 1))

65

 for column in random.sample(range(0, x_size),
 int(math.sqrt(max_undisturbed))):

 x = str(scene_geotransform[0] + (0.5 * scene_geotransform[1]) +
 (column * scene_geotransform[1]))
 y = str(scene_geotransform[3] + (0.5 * scene_geotransform[5]) +
 (row * scene_geotransform[5]))
 if (int(float(x)), int(float(y))) in coordinates:
 continue

 in_perimeter = False
 fire_history_lyr.ResetReading()
 for fire_perimeter in fire_history_lyr:
 geom = fire_perimeter.GetGeometryRef()
 pt = ogr.Geometry(ogr.wkbPoint)
 pt.SetPoint(0, float(x), float(y))
 # test
 if pt.Within(geom):
 in_perimeter = True
 break

 if in_perimeter is True:
 continue

 l = []
 l.append(x)
 l.append(y)

 for raster in xrange(len(data)):
 l.append(str(data[raster][0][column]))

 for doy in days_of_year:
 l.append(str(doy))

 l.append('0') # undisturbed class
 if all(i != '0' for i in l[2:-7]):
 outfiles[-1].write((',').join(l) + '\n')

for outfile in outfiles:
 outfile.close()
rasters = None

66

Appendix V

import os
import sys
import glob
import shutil
import csv
import ConfigParser

Load configuration information from settings.ini
config = ConfigParser.ConfigParser()
config.read("settings.ini")

training_data_path = config.get("Directories",
 "TRAINING_DATA_OUTPUT_DIRECTORY")

output_path = config.get("Directories",
 "COMBINED_TRAINING_DATA_OUTPUT_DIRECTORY")

c5_exe = config.get("Executables", "C5_EXE")
cubist_exe = config.get("Executables", "CUBIST_EXE")

c5_names_template = config.get("Templates", "C5_NAMES_TEMPLATE")
cubist_names_template = config.get("Templates", "CUBIST_NAMES_TEMPLATE")

years = [2008, 2009, 2010]
scenes = []

We can really add a lot of options in a more robust manner here
but this will work for now.
if "-x8" in sys.argv:
 path = int(sys.argv[2])
 row = int(sys.argv[3])
 output_folder = str(path) + "_" + str(row)

 for year in years:
 scenes.append([path+1, row, year])
 for year in years:
 scenes.append([path+1, row+1, year])
 for year in years:
 scenes.append([path+1, row-1, year])
 for year in years:
 scenes.append([path, row+1, year])
 for year in years:
 scenes.append([path, row-1, year])
 for year in years:
 scenes.append([path-1, row, year])
 for year in years:
 scenes.append([path-1, row+1, year])
 for year in years:
 scenes.append([path-1, row-1, year])

else:
 raise SystemExit

67

output_path = os.path.join(output_path, output_folder)
os.mkdir(output_path)
shutil.copyfile(c5_names_template, os.path.join(output_path,
'train_c5.names'))
shutil.copyfile(cubist_names_template, os.path.join(output_path,
 'train_cubist.names'))

c5_outfile = open(os.path.join(output_path, 'train_c5.data'), 'w')

for scene in scenes:
 print scene
 inpath = os.path.join(training_data_path, str(scene[0]) + "_" +
 str(scene[1]), str(scene[2]))

 for file in glob.glob(inpath + '_*.txt'):
 with open(file) as infile:
 c5_outfile.write(infile.read())
print inpath
c5_outfile.close()

with open(os.path.join(output_path, 'train_c5.data'), "rb") as infile, open(
 os.path.join(output_path, 'train_cubist.data'), "wb") as outfile:
 r = csv.reader(infile)

 for row in r:
 if row[-1] != '0':
 row[-1] = "100"
 outfile.write(",".join(row))
 outfile.write("\n")

os.system(cubist_exe + ' -f ' + os.path.join(output_path, 'train_cubist'))

68

Appendix VI

applyTree
applytree.py [path] [row] [year]
apply tree to set of scenes

import os
import sys
import glob
import shutil
import struct
import subprocess
import ConfigParser
import numpy as np
from datetime import date
import gdal

http://stackoverflow.com/a/4914089
def slices(s, *args):
 position = 0
 for length in args:
 yield s[position:position + length]
 position += length

path = int(sys.argv[1])
row = int(sys.argv[2])
year = int(sys.argv[3])

Load configuration information from settings.ini
config = ConfigParser.ConfigParser()
config.read("settings.ini")

landsat_data_path = config.get("Directories", "LANDSAT_DATA_DIRECTORY")
combined_training_data_output_directory = config.get(
 "Directories", "COMBINED_TRAINING_DATA_OUTPUT_DIRECTORY")
cubist_interpreter_exe = config.get("Executables", "CUBIST_INTERPRETER_EXE")

for each row in set of rasters
export row data to text file of cases
process cases with c5
import results into new raster

Processed Landsat data location
data_dir = os.path.join(landsat_data_path, "p0" + str(path) + "r0" +
 str(row), 'HFA')

Output location
output_dir = os.path.join(combined_training_data_output_directory,
 str(path) + "_" + str(row))
output_ds_path = os.path.join(combined_training_data_output_directory,
 str(path) + "_" + str(row), str(year) + ".img")

try:
 os.makedirs(output_dir)

69

except WindowsError:
 # directory already exists
 pass

This is date order, but not necessarily leaf-on/leaf-off order.
Get three years of data (two scenes per year). Middle scene represents
the year from the command line argument and should represent the
year of disturbance. This needs to match the years extracted as part
of extract.py
years = [year-1, year, year+1]

scene_dates = []
days_of_year = []

Identify Landsat rasters for analysis
rasters = []
for raster_path in glob.glob(os.path.join(data_dir, '*.img.gz')):
 # Only get the Landsat scene rasters. We could do something more elegant
 # with regular expressions, but this gets the job done well enough
 if len(os.path.basename(raster_path)) == 27:
 # only get rasters within the year range we are extracting from
 if int(os.path.basename(raster_path)[12:16]) in years:
 # Open rasters while still gzipped. This is slower to read, but
 # probably faster and cleaner than extracting first
 if not os.path.isfile(raster_path[0:-3]):
 proc = subprocess.Popen(
 ['7-Zip\\7z.exe', '-o' +

os.path.dirname(raster_path), 'e',
 raster_path], stdout=subprocess.PIPE, shell=True)
 out, err = proc.communicate()
 if err:
 print raster_path[0:-3]
 raise SystemExit
 proc, out, err = None, None, None
 rasters.append(gdal.Open(raster_path[0:-3], 0))
 scene_dates.append(int(os.path.basename(raster_path)[12:20]))

if len(rasters) > 10:
 print ("ERROR: More than 10 Rasters")
 raise SystemExit

for scene_date in scene_dates:
 year = int(str(scene_date)[0:4])
 month = int(str(scene_date)[4:6])
 day = int(str(scene_date)[6:8])
 doy = date(year, month, day).timetuple().tm_yday
 days_of_year.append(doy)
 scene_date, year, month, day, doy = None, None, None, None, None

Get raster properties
This assumes all rasters have identical extents and projections
driver = rasters[0].GetDriver()
geoTransform = rasters[0].GetGeoTransform()
projection = rasters[0].GetProjection()
xsize = rasters[0].RasterXSize
ysize = rasters[0].RasterYSize

70

Open output raster
output_ds = driver.Create(output_ds_path, xsize, ysize, 1, gdal.GDT_Byte)
output_ds.SetGeoTransform(geoTransform)
output_ds.SetProjection(projection)
output_band = output_ds.GetRasterBand(1)

Process raster data
filestem = os.path.join(output_dir, 'train_cubist')

Create day of year string outside of loop, since it should be constant
doys = []
for doy in days_of_year:
 doys.append(str(doy))
doys_str = (',').join(doys)

Get number of datapoints
datapoints = 0
for raster in rasters:
 datapoints += raster.RasterCount

The first two datapoints are the coordinates
datapoints += 2

The second to last set of datapoints are place holders for the year
datapoints += len(days_of_year)

The last datapoint is our unknown disturbance value labeled "?"
datapoints += 1

for row in xrange(0, ysize, 100):
 sys.stdout.write("%d\\%d \r" % (row, ysize))

 if ((row + 100) > ysize):
 num_rows = ysize - row
 else:
 num_rows = 100

 data = np.zeros((num_rows * xsize * datapoints), dtype="S10")
 coordsX = np.zeros((num_rows * xsize), dtype="S10")
 coordsY = np.zeros((num_rows * xsize), dtype="S10")

 # Generate the coordinate values.
 # TODO: Put directly into our output array instead of an intermediate
 # array
 i = 0
 for r in xrange(num_rows):
 for column in xrange(xsize):
 coordsX[i] = str(geoTransform[0] + (0.5 * geoTransform[1]) +
 (column * geoTransform[1]))
 coordsY[i] = str(geoTransform[3] + (0.5 * geoTransform[5]) +
 ((row + r) * geoTransform[5]))
 i += 1

 data[0::datapoints] = coordsX
 data[1::datapoints] = coordsY

 # Start at position 2 because pos 0 and 1 are the coords

71

 position = 2
 for raster in rasters:
 for band in range(raster.RasterCount):
 data[position::datapoints] = raster.GetRasterBand(
 band+1).ReadAsArray(0, row, xsize, num_rows).flatten()
 position += 1

 for doy in days_of_year:
 data[position::datapoints] = np.array([doy])
 position += 1

 data[position::datapoints] = np.array(["?"])

 np.savetxt(filestem + '.cases', data.reshape(
 (num_rows * xsize, datapoints)), "%s", delimiter=",")

 proc = subprocess.Popen([cubist_interpreter_exe, '-f', filestem],
 stdout=subprocess.PIPE, shell=True)
 out, err = proc.communicate()

 outline = ''
 count = 0
 lines = out.split('\n')
 for line in lines:
 if line != "predicted values:" and line != "":
 outline += struct.pack('B', int(float(line)))
 count += 1

 output_band.WriteRaster(0, row, xsize, num_rows, outline)

rasters = None

output_band.FlushCache()
output_band = None
output_ds = None

72

Appendix VII

import os
import sys
import glob
import ConfigParser
import subprocess
import ogr
import gdal
import numpy as np

Get command line variables
path = int(sys.argv[1])
row = int(sys.argv[2])
year = int(sys.argv[3])

Load configuration information from settings.ini
config = ConfigParser.ConfigParser()
config.read("settings.ini")

combined_training_data_output_directory = config.get(
 "Directories", "COMBINED_TRAINING_DATA_OUTPUT_DIRECTORY")
landsat_data_directory = config.get("Directories", "LANDSAT_DATA_DIRECTORY")
data_dir = os.path.join(landsat_data_directory,
 "p0" + str(path) + "r0" + str(row), 'HFA')

###

Create data mask where all input Landsat pixels are not NoData
###

def makeDataMask():

 first_ls_ds = gdal.Open('/vsigzip/' + glob.glob(
 os.path.join(data_dir, '*.img.gz'))[0], 0)
 driver = first_ls_ds.GetDriver()
 landsat_xsize = first_ls_ds.RasterXSize
 landsat_ysize = first_ls_ds.RasterYSize
 geoTransform = first_ls_ds.GetGeoTransform()
 proj = first_ls_ds.GetProjection()

 data_mask_data = np.ones([landsat_ysize, landsat_xsize])

 for landsat_path in glob.glob(os.path.join(data_dir, '*.img.gz')):
 print landsat_path
 landsat_ds = gdal.Open('/vsigzip/' + landsat_path, 0)
 # Assume NoData if band 1 is 0. This is probably always, mostly true
 landsat_data = landsat_ds.GetRasterBand(1).ReadAsArray(0, 0)
 landsat_data[landsat_data > 0] = 1
 data_mask_data = data_mask_data * landsat_data

 data_mask_path = os.path.join(combined_training_data_output_directory,
 str(path) + "_" + str(row),
 str(year) + "_data_mask.img")

73

 data_mask_ds = driver.Create(
 data_mask_path, landsat_xsize, landsat_ysize, 1, 1)
 data_mask_ds.SetGeoTransform(geoTransform)
 data_mask_ds.SetProjection(proj)
 data_mask_ds.GetRasterBand(1).WriteArray(data_mask_data)

 # This is not a pixel perfect vector as a lot of interpolation happens,
 # but it is good enough for our purposes of selecting fire points
 output_vect_path = os.path.join(
 combined_training_data_output_directory, str(path) + "_" +
 str(row), str(year) + "_data_mask.shp")
 print (output_vecto)
 proc = subprocess.Popen(['C:\Program Files\GDAL\gdal_polygonize.py',
 '-8',
 '-f', 'ESRI Shapefile',
 '-mask ' + data_mask_path,
 data_mask_path,
 output_vect_path],
 stdout=subprocess.PIPE, shell=True)
 out, err = proc.communicate()

###

Reclassify map cubist output with everything below the detection threshold
as 0 and everything equal to or above the detection threshold as 1
###

DETECTION_THRESHOLD = 90

detected_disturbance_path = os.path.join(
 combined_training_data_output_directory,
 str(path) + "_" + str(row), str(year) + ".img")

detection_mask_path = os.path.join(
 combined_training_data_output_directory,
 str(path) + "_" + str(row), str(year) + "_detection_mask.img")

Read in Raster
detected_disturbance_ds = gdal.Open(detected_disturbance_path, 0)

Get in raster properties
driver = detected_disturbance_ds.GetDriver()
detected_disturbance_band = detected_disturbance_ds.GetRasterBand(1)
detected_disturbance_data = detected_disturbance_band.ReadAsArray(0, 0)

reclass based on detection threshold
detected_disturbance_data[detected_disturbance_data<DETECTION_THRESHOLD] = 0
detected_disturbance_data[detected_disturbance_data>=DETECTION_THRESHOLD] = 1

Mask NoData
detected_disturbance_data[data_mask_data == 0] = 255
data_mask_ds.GetRasterBand(1).SetNoDataValue(255)

Write out new raster
detection_mask_ds = driver.CreateCopy(detection_mask_path,

74

 detected_disturbance_ds, 0)
detection_mask_ds.GetRasterBand(1).WriteArray(detected_disturbance_data)
detection_mask_ds = None

Sieve data to remove noise
destination_path = destination_path = os.path.join(
 combined_training_data_output_directory,
 str(path) + "_" + str(row), str(year) + "_detection_mask-x8-11.img")

11 pixels ~ 1 hectare
proc = subprocess.Popen(['C:\Program Files\GDAL\gdal_sieve.py',
 '-st', '11',
 '-8',
 detection_mask_path, '-of', 'HFA', destination_path
],
 stdout=subprocess.PIPE, shell=True)

out, err = proc.communicate()

###

Mosaic BAER data in path/row/year where the discover date is less than the
last detection year scene date
###

baer_dir = config.get("Directories", "BAER_DATA_DIRECTORY")
baer_dir = os.path.join(baer_dir, str(year))

scene_path = glob.glob(os.path.join(data_dir,
 '*' + str(year) + '????.img.gz'))[1]
scene_date = scene_path.split('_')[2][7:11]

scene_ds = gdal.Open('/vsigzip/' + scene_path, 0)
scene_geotransform = scene_ds.GetGeoTransform()
scene_upper_left_x = scene_geotransform[0]
scene_pixel_width = scene_geotransform[1]
scene_upper_left_y = scene_geotransform[3]
scene_pixel_height = scene_geotransform[5]
scene_xsize = scene_ds.RasterXSize
scene_ysize = scene_ds.RasterYSize

loads a list of our rasters extent in the order [left,top,right,bottom]
extent = [
 scene_upper_left_x,
 scene_upper_left_y,
 scene_upper_left_x + (scene_xsize * scene_pixel_width),
 scene_upper_left_y + (scene_ysize * scene_pixel_height)
]

scene_geometry = ogr.Geometry(ogr.wkbPolygon)
ring = ogr.Geometry(ogr.wkbLinearRing)
ring.AddPoint(extent[0], extent[3]) # x1y1
ring.AddPoint(extent[2], extent[3]) # x2y2
ring.AddPoint(extent[2], extent[1]) # x2y1

75

ring.AddPoint(extent[0], extent[1]) # x1y2
ring.CloseRings()
scene_geometry.AddGeometry(ring)
ring = None

baer_paths = []
Read in fire extents and see if they intersect the scene geometry
with open(os.path.join(baer_dir, 'perimeter.txt'), 'r') as f:
 for line in f:
 baer = line[:-1].split(',')
 baer_file_path = baer[0]
 baer_left = float(baer[1])
 baer_top = float(baer[2])
 baer_right = float(baer[3])
 baer_bottom = float(baer[4])
 baer_date = baer[5][4:] # mmdd
 baer = None

 if baer_date <= scene_date:
 # Create polygon of the baer/disturbance extent
 baer_geometry = ogr.Geometry(ogr.wkbPolygon)
 ring = ogr.Geometry(ogr.wkbLinearRing)
 ring.AddPoint(baer_left, baer_bottom) # x1y1
 ring.AddPoint(baer_right, baer_bottom) # x2y1
 ring.AddPoint(baer_right, baer_top) # x2y2
 ring.AddPoint(baer_left, baer_top) # x1y2
 ring.CloseRings()
 baer_geometry.AddGeometry(ring)
 ring = None

 # If the baer/disturbance geometry intersects the scene
 # geometry then the scene likely has been disturbed so
 # extract disturbed pixels
 if scene_geometry.Intersects(baer_geometry):
 print baer_file_path
 baer_paths.append(baer_file_path)

output_baer_mosaic_path = os.path.join(
 combined_training_data_output_directory,
 str(path) + "_" + str(row), str(year) + "_baer_mosaic.img")

proc = subprocess.Popen(['C:\Program Files\GDAL\gdal_merge.py',
 '-o', output_baer_mosaic_path,
 '-pct',
 '-ul_lr'] + [str(x) for x in extent] +
 baer_paths,
 stdout=subprocess.PIPE, shell=True)
out, err = proc.communicate()

Mask BAER data with our Data Mask
output_baer_mosaic_masked_path = os.path.join(
 combined_training_data_output_directory,
 str(path) + "_" + str(row), str(year) + "_baer_mosaic_masked.img")

merged_baer_ds = gdal.Open(output_baer_mosaic_path, 0)
merged_baer_band = merged_baer_ds.GetRasterBand(1)
merged_baer_data = merged_baer_band.ReadAsArray(0, 0)

76

baer_mask = merged_baer_data * data_mask_data
baer_mask[baer_mask == 1] = 0
baer_mask[baer_mask == 2] = 0
baer_mask[data_mask_data == 0] = 255

output_ds = driver.CreateCopy(output_baer_mosaic_masked_path,
 merged_baer_ds, 0)
output_ds.GetRasterBand(1).WriteArray(baer_mask)
output_ds.GetRasterBand(1).SetNoDataValue(255)
output_ds.GetRasterBand(1).FlushCache()

output_ds = None

