The vast majority of theses in this collection are open access and freely available. There are a small number of theses that have access restricted to the WWU campus. For off-campus access to a thesis labeled "Campus Only Access," please log in here with your WWU universal ID, or talk to your librarian about requesting the restricted thesis through interlibrary loan.

Date Permissions Signed

5-10-2016

Date of Award

Spring 2016

Document Type

Masters Thesis

Degree Name

Master of Science (MS)

Department

Environmental Sciences

First Advisor

Love, Brooke

Second Advisor

Olson, M. Brady (Michael Brady)

Third Advisor

Strom, Suzanne L., 1959-

Abstract

Accumulating evidence shows that ocean acidification (OA) alters surface ocean chemistry and, in turn, affects aspects of phytoplankton biology. However, very little research has been done to determine if OA-induced changes to phytoplankton morphology, physiology and biochemistry may indirectly affect microzooplankton, the primary consumers of phytoplankton. This is one of the first studies to explore how OA may indirectly affect microzooplankton ingestion, population growth and gross growth efficiency (GGE). I hypothesized 1) that the physiology, biochemistry and morphology of the phytoplankton Rhodomonas sp. would be directly affected by elevated pCO2 and 2) that pCO2-induced changes in Rhodomonas sp. would affect grazing, growth rates, and GGE in microzooplankton consumers. To test my first hypothesis, I cultured the ecologically important phytoplankton, Rhodomonas sp., semi-continuously for 17 days under three pCO2 treatments (400ppmv, 750ppmv and 1000ppmv). During this time I characterized Rhodomonas sp. cell size, C:N, cellular total lipids, growth rate, cellular chlorophyll a concentrations and carbohydrates. Rhodomonas sp. cell bio-volume and total cellular lipids were the only aspects of Rhodomonas sp. found to be significantly affected by pCO2. On average, Rhodomonas sp. cell bio-volume increased by ~60% and ~100% and total cellular lipids increased by 36% and 50% when cultured under moderate and high pCO2 treatments, respectively, compared to the ambient treatment. To test my second hypothesis, the pCO2-acclimated Rhodomonas sp. were fed to four microzooplankton species, two tintinnid ciliates (Favella ehrenbergii (recent name change to Schmidingerella sp.) and Coxliella sp.) and two heterotrophic dinoflagellates (Gyrodinium dominans and Oxyrrhis marina). Two experimental designs were used to test whether microzooplankton grazing and growth are affected by OA through changes in prey state. My data confirm my hypothesis that microzooplankton grazing is affected by OA-induced changes to their prey. In three out of the four grazers tested, short term ingestion rates were either higher or non-linear when grazers fed on moderate and high pCO2 acclimated Rhodomonas sp., compared to the ambient treatment cells. Using multiple linear regression models to test for the factors that explain the observed variation in microzooplankton short term ingestion rates across pCO2 treatments, prey cell bio-volume explained 43, 82 and 88% of the variability in short term grazing rates for O. marina, G. dominans and F. ehrenbergii, respectively. In contrast to the short term grazing results, I found that during long term grazing experiments, G. dominans and Coxliella sp. grazed ambient pCO2 acclimated Rhodomonas sp. significantly faster than moderate and high cultured cells. O. marina demonstrated a non-linear feeding response in both short and long term grazing experiments, where O. marina ingested moderate pCO2 acclimated Rhodomonas sp. faster than ambient and high pCO2 acclimated prey. Microzooplankton growth rates were higher for all microzooplankton species when feeding on Rhodomonas sp. cultured under moderate and high pCO2 compared to ambient pCO2 diets. G. dominans and Coxliella sp. were the only grazers that demonstrated a difference in GGE across treatments, showing increased GGE when feeding on prey cultured under elevated pCO2. These findings validate my hypothesis that OA-induced changes in Rhodomonas sp. morphology and biochemistry affects microzooplankton grazing and growth. If the alteration of phytoplankton morphology and nutritional quality observed in this study is wide spread across phytoplankton taxa under OA, and this, in turn, affects microzooplankton grazing and growth dynamics as seen here, it will serve as a mechanism to alter future biogeochemical processes in pelagic marine food webs.

Type

Text

DOI

https://doi.org/10.25710/kmdq-bj83

Publisher

Western Washington University

OCLC Number

949724423

Subject – LCSH

Zooplankton--Food; Zooplankton--Growth; Phytoplankton--Effect of water acidification on; Predation (Biology)

Format

application/pdf

Genre/Form

masters theses

Language

English

Rights

Copying of this document in whole or in part is allowable only for scholarly purposes. It is understood, however, that any copying or publication of this thesis for commercial purposes, or for financial gain, shall not be allowed without the author's written permission.

Share

COinS