Document Type


Publication Date



ABSTRACT The extent of variation in reptile field metabolism, and its causal bases, are poorly understood. We studied the energetics of the insectivorous lizard Callisaurus draconoides at a site in the California Desert (Desert Center) and at a site at the southern tip of the Baja Peninsula (Cabo San Lucas; hereafter, Cabo). Reproducing Callisaurus were smaller at Cabo than at Desert Center. The allometry of metabolism with body mass can account for most differences in whole-animal metabolism. There was no significant effect of sex or source population on mass-adjusted metabolic rate in the laboratory (resting metabolism, measured by closed-system respirometry) or in the field (field metabolism, measured with doubly labeled water). The mass-adjusted resting metabolism and field metabolism of gravid females and the field metabolism of juvenile lizards were not significantly different from those of nonreproductive adults. Temperature had a significant effect on resting metabolism (Q10 = 2.7); fed lizards had resting metabolism that was 22% higher than that of fasted lizards; field metabolism was positively correlated with growth rate in juveniles; and field metabolism of adults increased from spring to late summer at Desert Center by 25%, probably because of longer activity period length and slightly higher activity period body temperature. We calculated from water influx and field metabolism that juveniles allocated 18% of their metabolizable energy intake to growth and that most energy deposited into eggs was transferred from energy stores rather than ingested in the weeks prior to laying.

Publication Title

Physiological Zoology





First Page


Last Page


Required Publisher's Statement

© 1998, University of Chicago Press. View original published article in Physiological Zoology.

Included in

Biology Commons