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Decision Analysis

Evaluation of a Bayesian Network for Strengthening theWeight
of Evidence to Predict Acute Fish Toxicity from Fish Embryo
Toxicity Data
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Anders Madsen,||# and Scott E Belanger‡

†Norwegian Institute for Water Research (NIVA), Oslo
‡Procter and Gamble, Cincinnati, Ohio, USA
§Western Washington University, Bellingham, Washington, USA
||Department of Computer Science, Aalborg University, Aalborg, Denmark
#HUGIN EXPERT A/S, Aalborg, Denmark

ABSTRACT
The use of fish embryo toxicity (FET) data for hazard assessments of chemicals, in place of acute fish toxicity (AFT) data, has

long been the goal for many environmental scientists. The FET test was first proposed as a replacement to the standardized
AFT test nearly 15 y ago, but as of now, it has still not been accepted as a standalone replacement by regulatory authorities
such as the European Chemicals Agency (ECHA). However, the ECHA has indicated that FET data can be used in a weight of
evidence (WoE) approach, if enough information is available to support the conclusions related to the hazard assessment. To
determine how such a WoE approach could be applied in practice has been challenging. To provide a conclusive WoE for
FET data, we have developed a Bayesian network (BN) to incorporate multiple lines of evidence to predict AFT. There are
4 different lines of evidence in this BN model: 1) physicochemical properties, 2) AFT data from chemicals in a similar class or
category, 3) ecotoxicity data from other trophic levels of organisms (e.g., daphnids and algae), and 4) measured FET data.
The BN model was constructed from data obtained from a curated database and conditional probabilities assigned for the
outcomes of each line of evidence. To evaluate the model, 20 data‐rich chemicals, containing a minimum of 3 AFT and FET
test data points, were selected to ensure a suitable comparison could be performed. The results of the AFT predictions
indicated that the BN model could accurately predict the toxicity interval for 80% of the chemicals evaluated. For the
remaining chemicals (20%), either daphnids or algae were the most sensitive test species, and for those chemicals, the
daphnid or algal hazard data would have driven the environmental classification. Integr Environ Assess Manag 2020;00:1–9.
© 2020 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals, Inc. on behalf
of Society of Environmental Toxicology & Chemistry (SETAC)

Keywords: Fish embryo toxicity Acute fish toxicity Weight of evidence Bayesian network Hazard assessment

INTRODUCTION
Many different chemical legislations (such as the European

legislation for Registration, Evaluation, Authorisation and
Restriction of Chemicals [REACH] Regulation [EC] 1907/2006
[EC 2006]) place an emphasis on the need for acute fish
toxicity (AFT) data for the hazard assessment of chemicals.
These data are required in combination with acute toxicity

data from species of different trophic levels (i.e., algae and
invertebrates) and are the minimum data requirements to
perform an environmental risk assessment. However, the use
of vertebrate organisms for acute ecotoxicity assessments has
been challenged for ethical reasons and due to certain leg-
islations (such as EU 2010) that specify that the use of ver-
tebrate organisms should be avoided wherever possible.
Consistent with the European Union (EU) Directive on the Use
of Animals for Scientific Experimentation (EU 2010), REACH
also specifies that the use of vertebrate organisms should be
avoided wherever possible.
Russell and Burch (1959) first introduced the concept of

humane experimental techniques for animal testing when
they proposed the term “the 3Rs.” These 3Rs refer to Re-
duction (in numbers of animals), Refinement (of any proce-
dure), and Replacement (of vertebrate organisms). More
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recently, the traditional 3Rs have been expanded to include
3 additional Rs, namely that any alternative should be
Reliable/Robust and Relevant and gain Regulatory accept-
ance (OECD 1996; Lillicrap, Belanger et al. 2016). Hence-
forth, the traditional term of “3Rs” has since been refined and
replaced to be considered as the “6Rs” of (eco)toxicity testing
(Lillicrap, Belanger et al. 2016). For more than 20 y, scientists
have been developing alternative approaches to predict AFT
without the need to use fish. These include, but are not
limited to, the use of quantitative structure–activity relation-
ships (QSARs), in vitro test methods (e.g., the use of
fish cells to determine cytotoxicity; Fischer et al. 2019),
the use of other organisms such as invertebrates and
algae (Rawlings et al. 2019), and the use of nonprotected life
stages, in certain geographical regions, such as fish embryos
(Busquet et al. 2014).
The fish embryo test (FET) (German DIN 2001; ISO 2007),

was first considered as a promising alternative to the use of
juvenile fish (48‐h golden ide acute toxicity test) for as-
sessing effluent toxicity by the German Federal Agency of
the Environment. Subsequently, the method was submitted
to the Organisation for Economic Co‐operation and Devel-
opment (OECD) as a new test guideline for the purposes of
replacing the AFT test (OECD 1992). After significant inter-
national validation efforts (Busquet et al. 2014), an extension
of the test from 48 to 96 h in duration, and omission of the
term “replacement to fish acute toxicity” in the introduction
of the test guideline (TG), the FET test was finally accepted
as an OECD test guideline nearly 8 y later (OECD 2013).
However, its universal acceptance as a replacement to the
acute fish toxicity test (OECD 1992) has remained an issue
because regulators, such as the European Chemicals
Agency (ECHA), have not accepted it as a complete re-
placement (Sobanska et al. 2018). A conservative approach
to the acceptance of the FET test has been argued due to
the existence of some limitations (e.g., neurotoxic mode of
action [MoA]) and/or remaining uncertainties (e.g., deviation
of some narcotic substances) regarding the FET test
(Sobanska et al. 2018). Furthermore, it was concluded that
“the FET test alone is currently not sufficient to meet the
essential information on AFT as required by the REACH
regulation” (Sobanska et al. 2018). This is despite Sobanska
et al. (2018) and other authors (Belanger et al. 2013) de-
scribing a near perfect 1:1 correlation between toxicity
values (EC50 and LC50) from the FET and the AFT tests.
Nonetheless, Sobanska et al. (2018) stated that the FET test
“may be used within weight‐of‐evidence approaches to-
gether with other independent, relevant, and reliable
sources of information.” The use of weight of evidence
(WoE) has been specified for REACH as an option to meet
the information requirements of Annexes VII to X where
“Animal tests can be avoided if there is a weight of evidence
which points to the likely properties of a substance […] if
there is sufficient information from several independent
sources leading to the conclusion that a substance has
(or has not) a particular dangerous property, while the
information from each single source alone is regarded

insufficient to support this notion” (ECHA 2016). Under-
standing how this WoE may work in practice, to enable FET
data to be used in place of AFT data, has been a major
challenge. Therefore, we have previously developed a
Bayesian network (BN) that incorporates FET data with
multiple lines of evidence to provide a probabilistic estimate
for AFT (Moe et al. 2020). In contrast to Moe et al. (2020),
which describes both the model development and model
training, the purpose of the present paper is to evaluate the
performance of the BN for predicting AFT data from FET
data along with other lines of evidence.

A BN is a probabilistic modeling methodology that is in-
creasingly being used in ecological risk assessment (e.g.,
Landis et al. 2019) as well as more generally in environmental
research (e.g., Barton et al. 2012; Moe et al. 2016). Bayesian
approaches were used to integrate several biological lines of
evidence to predict human skin sensitization to chemicals and
is accompanied by a now elucidated adverse outcome
pathway (OECD 2012b; Jaworska et al. 2015). A BN can in-
tegrate large amounts of data and other information sources
by using discrete probability distributions and predicts the
probability of specified states of selected variables. With re-
gard to the FET–AFT BN, a specified state refers to, for ex-
ample, a given interval of LC50 values for AFT. The purpose
of the proposed BN model is to integrate information from
large ecotoxicological and physicochemical data sets and
apply it to predict AFT from data on FET tests, in combination
with other relevant information in a WoE approach. The fol-
lowing sections describe the model setup and the evaluation
of the model with a suite of different chemicals. It is envis-
aged that the use of the BN model will eventually fulfill the
requirements of the regulatory community to accept FET
data in place of AFT data.

MATERIALS AND METHODS

Chemical database selection

A database of ecotoxicity and other physicochemical
properties for a range of different chemicals was obtained
from Procter and Gamble. This database contained data for
237 substances and the following toxicity data:

• Algae: 264 EC50 values (duration 72 or 96 h, according
to OECD 2006). The data comprised 7 algal species: the
green algae Chlorella pyrenoidosa, Chlorella vulgaris,
Desmodesmus subspicatus, and Pseudokirchneriella
subcapitata; the diatom Skeletonema costatum; and the
cyanobacteria Anabaena flos‐aquae and Microcystis
aeruginosa.

• Daphnids: 1164 EC50 values (48 h, according to
OECD 2004). The 2 species used were Daphnia magna
and Daphnia pulex.

• Juvenile fish: 1459 LC50 values (24, 48, 72, 91, or 96 h,
according to OECD 1992). The data comprised 5 species:
Danio rerio (zebrafish), Lepomis macrochirus (bluegill),
Oncorhynchus mykiss (rainbow trout), Oryzias latipes
(medaka), and Pimephales promelas (fathead minnow).

Integr Environ Assess Manag 2020:1–9 © 2020 The Authorswileyonlinelibrary.com/journal/ieam
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• Fish embryo: 541 LC50 values (48, 72, 96, 108, or 120 h,
according to OECD 2013). Data were available for 4
species: D. rerio, O. latipes, P. promelas, and Clarias
gariepinus (African sharptooth catfish).

The complete data set (i.e., data available for all 237
chemicals) was used for training the BN model, but a subset
of chemicals was used to evaluate how accurately the model
could predict AFT. The criteria for selecting these chemicals
were that they had either a minimum of 3 FET and AFT data
points or a minimum of 1 FET and AFT data point and a
molecular weight >600 g/mol. This resulted in 28 candidate
chemicals. An additional exclusion criterion was applied to
remove any chemicals that had an extremely large spread of
AFT data (e.g., for Cd the data varied by 5 orders of mag-
nitude) or any chemicals that did not have any QSAR data.
Even after the selection and exclusion criteria were applied,
there were still some chemicals with quite a large spread of
AFT data (see Figure 1). In comparison, the FET data were
much less variable. The exclusion and selection criteria re-
sulted in 20 prioritized chemicals (see Figure 1), which were
subsequently used for the evaluation of the BN.

Description of the Bayesian network

The objective of this BN model is to predict the acute
toxicity of a chemical to juvenile fish, corresponding to the
interval of LC50 values from the AFT test, by integrating FET
data with other relevant physicochemical and toxicological
information. The application of this model is comparable to
a WoE process as described by Suter et al. (2017) in which
the assignment of prior and conditional probabilities to
different variables corresponds to assigning weights to
pieces of evidence. When predicting the AFT for a given

chemical, the calculation of posterior probability of each
toxicity interval corresponds to the weighing of the total
evidence for each hypothesis. The BN was implemented in
the software HUGIN Researcher version 8.7, developed by
HUGIN EXPERT A/S (http://www.hugin.com). The online web
interface was made available through the demonstration
web site (http://demo.hugin.com/FET). Parameterization and
a description of the model construct is described in detail in
Moe et al. (2020).
The BN model has 4 pathways (lines of evidence)

for predicting the AFT of a given chemical (see Figure 2).
These include data on 1) physical and chemical properties,
2) toxicity data to fish (AFT) from chemicals in the same
category, 3) toxicity to other species (algae and daphnids),
and 4) FET data. For the purposes of the present paper, it
was important that all substances that were evaluated had a
minimum of 3 values of corresponding FET and AFT data to
enable suitable comparisons between the predicted AFT
values and the observed AFT data.
Within each pathway (lines of evidence), discrete nodes

(e.g., limited membrane crossing) were assigned. Each node
has a conditional probability table (CPT) (e.g., see Table 1)
which is conditional on the parent node (i.e., the prior input
data point such as hydrophobicity). A full explanation of each
of the CPTs for each node has been previously described (see
Moe et al. 2020). The CPT values were obtained by 2 main
methods: counts of observations, reflecting the distributions
within the database, and expert judgment by the authors.
All 4 pathways were assigned the same weight when com-
bined in the predicted toxicity nodes. The toxicity intervals
used in the BNmodel were discretized to 5 toxicity levels: very
low (>100mg/L), low (5–100mg/L), medium (0.5–5mg/L), high
(0.5–0.01mg/L), and very high (<0.01mg/L).

Integr Environ Assess Manag 2020:1–9 © 2020 The AuthorsDOI: 10.1002/ieam.4258

Figure 1. Overview of the data spread for the AFT data and the FET data used in the validation of the BN. Numbers in parenthesis, after each chemical name,
are the number of data points (i.e., individual study data). AFT= acute fish toxicity; BN= Bayesian network; FET= fish embryo toxicity.
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It was recognized that variability within FET and AFT data
would need to be accounted for in the BN. In Busquet et al.
(2014), interlaboratory coefficients of variability (CVs) of the
FET test were estimated to approximately 26% for all
the substances evaluated in the international ring trial of the
OECD TG 236 (OECD 2013). With regard to AFT, in an
interlaboratory variability study (USEPA 2001), the CV was
estimated to 20%. Therefore, as a conservative approach,
the prior probabilities of all toxicity data in the input nodes
were set at levels corresponding to minimum 30% CV. The
BN predicts the toxicity level to juvenile fish for each
chemical by combining information from all 4 pathways, and
each of these pathways is described in the sections that
follow.

Pathway 1, toxicity to juvenile fish based on physicochemical
properties. Several descriptors of physicochemical proper-
ties can be used to estimate whether a chemical is likely to
partition through biological membranes and hence increase
the likelihood of cellular and/or molecular interactions with

the substance. One of the simplest metrics to determine
whether the substance is bioavailable is the molecular weight
(mw) or size of the molecule. These metrics have been in-
cluded as one of the endpoints for persistent, bio-
accumulative, and toxic (PBT) assessments within REACH, if
used in a WoE approach (ECHA 2017). As indicated in
Lillicrap, Springer et al. (2016), if the molecule has a physical
size >4.3 nm and the molecule is unlikely to fold along linear
structures (thus altering the length) or has a size (based on
maximum diameter or Dmaxaverage) larger than 1.7 nm, then it
is unlikely to pass across biological membranes. In addition, if
the substance has a molecular weight above a certain size,
then it should not be bioavailable, and according to ECHA
(2017) substances with an average maximum diameter
of >1.7 nm and a molecular weight of >1100 g/mol or
>700 g/mol should not be bioaccumulative or very bio-
accumulative, respectively (i.e., above these sizes they are
increasingly nonbioavailable). However, these cutoff criteria
should be considered with caution because not all molecules
behave the same way, and according to Arnot et al. (2010)
some of these assumptions may not have accounted for bi-
otransformation of the substance occurring (i.e., providing a
false positive assumption for bioavailability or not). For the
purposes of this node in pathway 1, we have chosen a mo-
lecular weight cutoff from 600 g/mol to assume that sub-
stances with a molecular weight >600 g/mol are less likely to
cross biological membranes. This is in line with Brooke et al.
(1986), who indicated bioaccumulation potential had an
upper limit of 600 g/mol.

In line with molecular weight, a measure of substance
hydrophobicity can also be used as an indicator for
assuming limited membrane‐crossing potential. Hydro-
phobicity may be expressed by a substance's solubility in
water being very low or based on the octanol–water parti-
tion coefficient (i.e., log Kow) being very high. For the pur-
pose of this second node of the first pathway, we have
chosen hydrophobicity to be based on log Kow and have

Integr Environ Assess Manag 2020:1–9 © 2020 The Authorswileyonlinelibrary.com/journal/ieam

Figure 2. Simplified illustration of the BN model with the 4 pathways (lines of evidence) contributing to predicting the AFT in a WoE approach. AFT= acute fish
toxicity; BN= Bayesian network; WoE=weight of evidence.

Table 1. Example of conditional probability table (CPT) for the
hydrophobicity and molecular weight nodes in pathway 1a

Hydrophobicity
(log Kow)

Molecular
weight (g/mol)

Probability for membrane
crossingb

Low Medium High

<5.5 <600 0% 25% 75%

<5.5 >600 25% 50% 25%

>5.5 <600 25% 50% 25%

>5.5 >600 75% 25% 0%

a It illustrates the approach used for parameterization of the CPTs for the
node “Limited membrane crossing”: The probability of a substance crossing a
biological membrane based on its physical properties (i.e., molecular weight
and hydrophobicity).
b The probabilities are based on expert judgment.

4 Integr Environ Assess Manag 00, 2020—A Lillicrap et al.



assigned a cutoff value of 5.5. This is in line with OECD TG
305 (OECD 2012a) in which substances with a log Kow> 5.5
are recommended to be experimentally assessed using a
dietary uptake exposure route, rather than an aqueous ex-
posure route, due to reduced bioavailability. To account for
the assumptions for potential membrane crossing, the
conditional probability table (Table 1) in the BN model has
3 states: low probability of crossing (for large molecules),
high probability (for small molecules), and medium proba-
bility to account for uncertainty in hydrophobicity or mo-
lecular size as a cutoff value (as detailed by Arnot
et al. 2010). Other indicators, such as the Lipinski's rule of 5
(Lipinski et al. 1997), may be possible for accounting for
limited uptake across biological membranes, but for the
purposes of this BN, and to avoid too much complexity
within the model, we have focused on only 2 molecular in-
dicators in this pathway.
The third node of this first pathway is the use of QSAR

data. The QSAR data are based on predicted values ob-
tained from the United States Environmental Protection
Agency (USEPA) Ecological Structure Activity Relationships
(ECOSAR 1.11) Class Program (https://www.epa.gov/tsca‐
screening‐tools/ecological‐structure‐activity‐relationships‐
ecosar‐predictive‐model) and the Danish QSAR Database
http://qsar.food.dtu.dk. The Danish QSAR database differs
from the USEPA ECOSAR model because it has 2 different
models (Leadscope and SciQSAR), which use different de-
scriptors. The Leadscope model is based on structural fea-
tures and numeric molecular descriptors (e.g., aLogP, polar
surface area, number of H bond donors, Lipinski score,
number of rotational bonds, parent atom count, parent
molecular weight and number of H bond acceptors), and the
SciQSAR model is based on molecular descriptors (e.g.,
molecular connectivity indices, molecular shape indices,
topological indices, electrotopological (Atom E and HE‐
States) indices, and electrotopological bond types indices).
All data passed the preestablished criteria that was as-

signed as follows: For ECOSAR 1.11, class‐specific QSAR
models were used to predict AFT (96 h) if the equations
passed set acceptability criteria (R2≥ 0.6, n≥ 4). If class‐
specific models were not available or did not meet these
criteria, results from the Neutral Organic QSAR model were
accepted. For the Danish QSAR database, extracted pre-
dicted values for Leadscope and SciQSAR fish 96‐h LC50
values (P. promelas, fathead minnow) were used. Data were
not used if the domain was listed as “OUT” in the Danish
QSAR model. Solubility restrictions were applied and pre-
dicted values were excluded if they were 10 × the solubility
values listed in the database. All QSAR fish LC50 results
were than averaged for each chemical.

Pathway 2, toxicity to juvenile fish predicted by read across
from chemical analogues with a similar MoA based on
structural alerts. Of the extensive list of existing substances,
there are already significant amounts of data that have been
generated for determining the acute toxicity to fish. These
chemicals can be categorized into functional groups that

may be considered similar, and it is possible to “read across”
from 1 substance to another in the same category. Read
across is already being used (and sometimes possibly mis-
used) by registrants within REACH and other chemical leg-
islations. However, it is quite reasonable to assume that
extrapolating data from 1 chemical to another can either be
logical or illogical, and for this reason, expert judgment is
needed when applying read across. To avoid incorrect ex-
trapolations being made, reliability frameworks (e.g.,
ECHA 2017) should be applied when assessing read across
predictions.
The data used to develop this BN model included

substances with different MoAs. Mode of action classes
based on structural alerts were assigned by ECOSAR
(v1.11), or by expert judgment if the chemical was outside
of the domain. These included nonpolar narcosis, polar
narcosis, uncoupler of oxidative phosphorylation, alkylation‐
or arylation‐based reactivity, carbonyl reactivity (aldehyde),
ester narcosis, organophosphate (OP)‐mediated acetylcho-
linesterase (AChE) inhibition, hydrazine‐based reactivity,
pyridinium compounds, carbamate‐mediated AChE in-
hibition, acrylate toxicity, diester toxicity, neurotoxicant:
cyclodiene‐type, neurotoxicant: pyrethroid, quinoline re-
activity, and respiratory blocker. Where a chemical fitted a
similar class of MoA based on structural alerts and corre-
sponding AFT data were available, the AFT data were ex-
tracted and incorporated into the BN model (see Moe
et al. 2020 for a full description of parameterization).

Pathway 3, toxicity to juvenile fish based on other species. The
third pathway of the BN model incorporates ecotoxicity data
from additional trophic levels. Environmental risk assessments
incorporate hazard data from algae, daphnids, and fish. For
that reason, we have included results from the algal inhibition
assay (according to OECD [2006] TG 201) and the D. magna
immobility assay (OECD [2004] TG 202). These trophic
levels have been shown to be more sensitive than the AFT
(Hutchinson et al. 2003; Jeram et al. 2005) and FET (Rawlings
et al. 2019) between 75% to 80% of the time. Given that
hazard classification and environmental risk assessment are
based on the most sensitive taxa, algae and daphnids tend to
routinely drive these assessments.
In pathway 3, we have assumed that the probability of

high toxicity to fish is conditional on the chemical not having
a species‐specific MoA. For instance, if the chemical results
in considerably different EC50 values for algae versus
daphnids, this suggests that there is potentially a species‐
specific MoA affecting either algae or daphnids. To define
what constitutes a difference, the ratio between the algae
and invertebrate data is first calculated. Cutoff values for the
ratio between the daphnid and algae data, as described in
the European Centre for Ecotoxicology and Toxicology of
Chemicals (ECETOC 2005), have been applied. For ex-
ample, if the ratio of the 2 EC50 values is between 0.5 and 2,
it can be assumed that these data are similar, and there is no
specific MoA affecting either species. In these instances, it is
reasonable that these EC50 values can be used toward

Integr Environ Assess Manag 2020:1–9 © 2020 The AuthorsDOI: 10.1002/ieam.4258
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extrapolating an LC50 value for fish. Therefore, the CPT
converts the EC50 values from algae and daphnids to LC50
values for fish with high precision (a narrow distribution).
Conversely, a ratio >2 or <0.5 indicates that one of the
species is more sensitive than the other, to a degree that
suggests a species‐specific MoA (e.g., herbicidal or in-
secticidal). In these cases, the probability that these EC50
data can be extrapolated to AFT LC50 data is low, and the
CPT therefore has a wide distribution (high uncertainty).
A full overview of the different conditional probabilities
used, and a justification for each selection, is detailed in
Moe et al. (2020), and an example of the prior probability
distributions applied for both algae and daphnids is in-
cluded in the Supplemental Data.

Pathway 4, FET based on experimental data. The fourth
pathway is the use of FET data. These data need to be de-
rived using the OECD TG 236 (OECD 2013) fish embryo acute
toxicity test (FET). The data are then discretized into 5 levels:

very low (>100mg/L), low (5–100mg/L), medium (0.5–5mg/L),
high (0.5–0.01mg/L), and very high (<0.01mg/L).

Predicted toxicity to juvenile fish based on all 4 nodes. All 4
pathways of the BN model feed into the final node, which
is an estimate of the predicted AFT based on molecular
properties, fish data from other chemicals in the same
category, ecotoxicity data from other species, and FET
data. The final probability node is discretized into the
same 5 categories for toxicity assignment as described in
Pathway 4.

RESULTS AND DISCUSSIONS
The results from the BN predictions of the 20 prioritized

chemicals are shown in Table 2. These results were com-
pared to the actual measured AFT data to evaluate the ac-
curacy of the predictions from the BN. The predicted toxicity
interval for juvenile fish, based on the 4 different pathways, is
also presented in Table 2. For the 20 chemicals evaluated

Integr Environ Assess Manag 2020:1–9 © 2020 The Authorswileyonlinelibrary.com/journal/ieam

Table 2. Summary of Bayesian network model predictions for the 20 selected chemicals

Chemical
Chemical class
(ECOSAR 1.11) Verhaar classification

Observed
juvenilea

Observed
embryoa

BN
prediction

Correct
predictionb

1,2‐Dichlorobenzene Neutral organic Nonpolar narcosis Low Low Low Y

1‐Octanol Neutral organic Nonpolar narcosis Low Low Low Y

2,4,6‐Trichlorophenol Phenol Polar narcosis Medium Medium Medium Y

2,4‐Dichlorophenol Phenol Polar narcosis Medium Low Low N (D)

3,4‐Dichloroaniline Aniline Polar narcosis Low Medium Low Y

4‐Chlorophenol Phenol Polar narcosis Medium Low Low N (D)

4‐Nitrophenol Phenol Polar narcosis Low Low Low Y

Carbamazepine Substituted urea Nonpolar narcosis Low Low Low Y

Dimethylsulfoxide Neutral organic Nonpolar narcosis Very low Very low Very low Y

Ethanol Neutral organic Nonpolar narcosis Very low Very low Very low Y

Juglone Quinone Alkylation/arylation
based reactivity

High High High Y

Malathion Esters (dithiophosphates) OP‐mediated AChE
inhibition

High Medium Medium N (D)

Naphthalene Neutral organic Nonpolar narcosis Medium Low Low N (A)

Parathion‐ethyl Esters
(monothiphosphates)

OP‐mediated AChE
inhibition

Medium Low Medium Y

Prochloraz Imidazole Pyridinium compounds Medium Medium Medium Y

Quinoline Neutral organic Quinoline reactivity Low Low Low Y

Tetradecyl sulfate Anionic surfactant Nonpolar narcosis Medium High Medium Y

Toluene Neutral organic Nonpolar narcosis Low Low Low Y

Triclosan Phenol Polar narcosis High High High Y

Triethylene glycol Neutral organic Nonpolar narcosis Very low Very low Very low Y

A= algae; AChE = acetylcholinesterase; BN= Bayesian network; D= daphnid; OP= organophosphate.
a The observed juvenile and embryo are data obtained from the database.
b For the chemicals for which there was an incorrect prediction, the most sensitive species is identified in parenthesis.
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herein, the BN model correctly predicted the toxicity interval
for 80% of the substances. An example of the BN model,
showing the distributions for each node for the chemical
tetradecyl sulfate (chemical category anionic surfactant), is
shown in the Supplemental Data. The AFT data obtained
from the database (based on 3 observations) for tetradecyl
sulfate indicated that it would be classified as causing me-
dium toxicity (i.e., LC50 0.5–5mg/L) to juvenile fish. The node
“Toxicity to embryo (level)” was almost 100% high toxicity
(i.e., 0.5–0.01mg/L), whereas the predictions from the other
lines of evidence were centered around low‐to‐medium
toxicity. The resulting predicted toxicity to juvenile fish had
the highest probability (41%) of the medium state (i.e., LC50
0.5–5mg/L), which was consistent with the measured AFT
data. In this case, using FET data alone would have over-
estimated the risk to juvenile fish, whereas FET data, in
combination with the other lines of evidence, resulted in a
more accurate prediction on toxicity to juvenile fish.
For the remaining 20% of the substances, where there was

an incorrect prediction, either the daphnid or algae data
were more sensitive in all cases. For the 3 substances, 2,4‐
dichlorophenol, 4‐chlorophenol, and malathion, daphnids
were most sensitive. These compounds are classified,
according to the Verhaar classification system, as having a
polar narcosis MoA for the 2 phenols, and OP‐mediated
AChE inhibition for malathion (Verhaar et al. 1992).
Given that malathion is an insecticide, it is not surprising that
daphnids were the most sensitive species. For the remaining
substance naphthalene, which is a neutral organic causing
nonpolar narcosis, algal growth inhibition was the most
sensitive endpoint. For these 4 chemicals, where there was
an incorrect prediction of the AFT, either daphnids or algae
would have driven the environmental classification.
It is important to note that it was not possible, within the

present study, to consult each study record for each data
point to perform a reliability evaluation. Therefore, the
comparisons between the BN predictions and the AFT data
herein assume that all data were reliable. However, it is
possible that some data may not be reliable, or that the
data could be questionable. As an example, AFT data
generated from different laboratories, and from different
species of fish, can vary by multiple orders of magnitude
(Belanger et al. 2013). In the initial exclusion exercise to
identify the prioritized chemicals used to validate the BN,
the AFT data for some substances, such as Cd, varied by
more than 5 orders of magnitude and were excluded from
the evaluations. The reason for such high variability may be
due to the applicability of the test, differences between
species sensitivities, or more likely, poor experimental
data. It may also be due to other confounding factors such
as when AFT data are based on nominal versus measured
concentrations. To illustrate this, Jonker et al. (2018) per-
formed an international ring trial on passive sampling
and attributed the large interlaboratory variability that was
observed to analytical chemistry. Only when 1 single lab-
oratory performed the analytical chemistry for the ring trial
was it possible to eliminate the large source of variability.

Furthermore, the appropriateness of the AFT test design
(OECD 1992) may also be questionable. For instance, for
hydrophobic substances (i.e., with a log Kow> 5.5) a 96‐h
duration may not be sufficiently long enough to ensure that
equilibrium within the fish and the exposure media has
been achieved. This means that for certain hydrophobic
substances, the AFT test may be underestimating the ac-
tual toxicity because a critical body burden has not been
achieved within the fish. Similarly, certain embryo toxic
substances, such as triazoles and glycol ethers, which cause
growth retardation and malformations in zebrafish embryos
(Hermsen et al. 2011), will not elicit the same response in
juvenile fish. Henceforth, given that the AFT is a relatively
crude test (i.e., do the fish live or die), or significantly un-
derestimates the toxicity due to the exposure duration
being too short, or there is a species‐specific MoA (e.g.,
herbicide or insecticide), the other baseline toxicity assays
(e.g., algae and invertebrates) are often more sensitive
than fish. To illustrate this point, where the BN did not
correctly predict the AFT (20% of the chemicals), it was
inconsequential because algae or daphnids were more
sensitive in all cases. At this stage, it should be noted that
the FET test is also not without its limitations. For example,
it has been shown that the FET test exhibits a weak re-
sponse to substances that have a neurotoxic MoA (Klüver
et al. 2015). However, Klüver et al. (2015) recommended
that substances with a neurotoxic MoA could be identified
using behavioral endpoints such as embryonic locomotion.
In the future, it might be possible that more sensitive
endpoints, such as behavior, may or should be in-
corporated into the OECD TG 236 (OECD 2013) to account
for specific MoA such as neurotoxicity.
Clearly, data from only 1 ecotoxicity test (e.g., algal tox-

icity, daphnid immobilization, or AFT) are insufficient to
provide adequate information to perform a hazard and risk
assessment or for the purposes of chemical classification.
Therefore, it is imperative that all environmental data be
incorporated to provide better confidence in performing
environmental risk assessments and for classification pur-
poses. To this end, the requirement to develop a WoE ap-
proach has been welcomed by the authors of the present
paper because we believe that our BN model is timely and
of greater importance than to simply predict AFT data from
FET data. Moreover, the use of our BN model will help to
improve future environmental risk assessments of chemicals
per se. However, the model that has been developed thus
far is based on currently regulatory accepted methods and
approaches, and there are many other lines of evidence that
could be incorporated to increase the predictive power of
the model. One example would be the use of cytotoxicity
data from the RT‐gill cytotoxicity assay, which has recently
been accepted as an international standard (ISO 2019).
Another line of evidence would be to incorporate in-
formation related to metabolism and neurotoxicity to inform
those substances that might require metabolic activation, or
that have a specific MoA that causes toxicity to older life
stages (e.g., juvenile) of fish. Furthermore, data from other
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sources of information (e.g., other species, chronic toxicity
data, or human safety information) or other QSAR models
could also refine the current model. With these additional
pieces of information, it is envisaged that the BN model
could improve the WoE to more accurately predict AFT
data, enabling FET data to be submitted in place of AFT
data for regulatory requirements such as REACH.

CONCLUSIONS
A BN has been developed and is able to predict AFT from

FET data, in combination with other lines of evidence. For a
subset of chemicals, the BN was able to accurately predict
the toxicity interval for 80% of the chemicals evaluated. In
these cases, the BN demonstrated that a sufficient WoE
could justify the use of FET data in place of AFT data. For
the remaining 20% of the chemicals, where an incorrect
prediction was made, either the daphnid or algae data were
more sensitive, and these data would have driven any en-
vironmental classification. Nonetheless, the current BN
model could benefit from additional lines of evidence to be
included, and a larger database of chemicals to further train
the model to reduce any uncertainties in the predictions. It is
recommended that BN models should be used more often
for determining WoE, and we encourage further dialogue
with the scientific and regulatory community to advance the
acceptance of such models to replace the use of AFT tests in
the future.
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SUPPLEMENTAL DATA
Figure SI‐1. Prior probability distributions applied in the

BN for the nodes [algae node name] and [daphnids node
name]. These prior probability distributions are derived from
the training set and correspond to the frequency dis-
tributions of toxicity values in the given concentration in-
tervals. BN= Bayesian network.
Figure SI‐2. Example of the BN model, showing the dif-

ferent distributions for each node for the chemical tetra-
decyl sulfate. BN= Bayesian network.
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