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| ntroduction

The purpose of this study was to identify and count the pHatdgon and mea-
sure chlorophyll, total nitrogen, and total phosphoruglein water samples col-
lected from Judy Reservoir. Water quality and algal datahseen collected on
a weekly basis since October 2006; annual reports have leegncsthe Skagit
Public Utility District No. 1 in 2007, 2008, 2010 (JanuarydaDecember), and
2011.

This report will include a description of the water qualitydealgal data collected
from October 2006 through October 2012. The data will be rilesd in a series

of annotated figures, beginning on page Bppendix A, beginning on page 19,
contains an updated photographic record of our calculationestimating algal

biovolume. Appendix B, beginning on page 53, contains ugdiadbles of the

data that include all corrections and revisions to the dettarscluding biovolume

estimates for most types of algae.

M ethods

Skagit Public Utility District No. 1 personnel collected t@a samples from the
pump house at Judy Reservoir once a week from October 26, th@@6gh Oc-
tober 25, 2012. The samples were shipped on ice by couridreténstitute for
Watershed Studies laboratory the same day.

Samples for chlorophyll-a were collected in amber polykthg bottles, trans-
ported on ice, then measured in the lab using a fluorometeaimadetone extrac-
tion as described by Standard Method 10200 H. (APHA, 2012n@es were
measured in duplicate and the mean was reported.

Samples for total phosphorus and total nitrogen analysee wealected in 500
mL acid-washed polyethylene bottles. The samples wereepred upon arrival
in the laboratory then measured by methods as describedla Ta

1Three water quality parameters, nitrate, soluble phosplaaid turbidity, were collected dur-
ing the first year, but were discontinued in October 2007. d&ia for these parameters are in-
cluded in Appendix B but will not be discussed in this report.
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Samples for phytoplankton identification were collectegatyethylene bottles
and preserved with Lugol’s solution as described in Stathdiéethod 10200 A
(APHA, 2012). During the first year of monitoring, an improvaethod of con-
centrating the algae samples was introduced. The origiethod was used on
samples collected from October 26, 2006 through May 16, 200igae were
concentrated by filtering the sample through;28 Nitex mesh and counted us-
ing a Palmer counting cell. This method can miss cells sm#ien 10-2Qum,
so we adopted a revised method that uses a settling chambetato all cells.
Beginning in March 2007, samples were counted using a 25-06000-mL
settling chambet. Counts were made using a compound microscope at 200x or
400x. Multiple fields were counted on each slide, with the hanof fields being
determined by cell density.

Algal biovolume calculations were made following the prdaees outlined by
EPA (2008). When possible, at least 10 photographs werentakeach algal
species identified from the sifeThe images were calibrated using a stage mi-
crometer and biovolume was estimated based on a repragemg@bmetric shape
(e.g., ovoid, sphere, rectangle). To estimate phytoptankiovolume, the weekly
species counts were multiplied by the corresponding aeebamyolume for that
species.

2Samples were counted using both methods from March throuh2007.

3Algal species that were too rare to provide at least 10 images omitted from the biovolume
calculations. This has little effect on biovolume becaledpecies represent a small fraction of
the total count.
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Detection Limit/

Analyte Abbr. Method Reference (APHA 2012) Sensitivity
Algae counts NA SM10200 C. Membrane filtration NA

(Oct 2006 - May 2007)

Algae counts NA SM10200 C. Sedimentation NA

(Mar 2007 - Oct 2008)

Algae biovolume NA SM10300 C. Biovolume NA
Chlorophyll - lab Chl SM10200 H, Chlorophyll +0.1 mg/n¥
Nitrogen - total TN SM4500-NO3 I, flow inject, persulfategdst  10ug N/L
Phosphorus - total TP SM4500-P G., flow inject, persulfagest 5ug P/L

Table 1: Summary of analytical methods used by the Instituté/atershed Stud-
ies in the Judy Reservoir monitoring project.
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Annotated Figures
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Figure 1: Chlorophyll is the primary photosynthetic pigrhegnalgal cells and is
used to indicate the amount of algae in a sample. In typikaklachlorophyll lev-
els are high during the summer and fall, coinciding with stemifall algal blooms.
In Judy Reservoir, the chlorophyll concentrations wereasmmally high during
the winter as well, which was usually associated with chpyste blooms (see
Figure 6). The median 2006—2012 chlorophyll concentratvas 2.0ug/L. The
median chlorophyll concentrations were slightly lower @12 and 2012 com-
pared to previous years.

AllData 2007 2008 2009 2010 2011 2012
Median Chl (:g-L) 2.00 205 250 250 260 155 2.00

fpartial year — 2012 does not include November/December
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Figure 2: This boxplot shows median chlorophyll (centee)iand upper/lower
25% quartiles by season; the dashed lines show the minimaxiimm values
for each season. The extremely high winter chlorophylllewere unexpected;
the moderately high levels in the fall are similar to what bagn observed in
other regional lakes and reservoirs. The 2007/2008 and/2008 winter peaks
appear to have been caused by chrysophyte blooms. The phggtsalensity was
lower in the winter of 2009/2010, but increased again in tiv@av and spring of
2011/2012 (Figure 7).
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Figure 3: Carlson’s trophic state index (T;9) is often used to classify lakes based
on biological productivity (Carlson and Simpson, 1966)drrctive oreutrophic
lakes have high TSIsX50); unproductive opoligotrophic lakes have low TSIs
(<40); lakes falling between these ranges are labmEdtrophic. Trophic state is
usually measured during the summer, or whenever algae qtoqms are expected
to be high. In Judy Reservoir the highest TSIs usually oceuind the winter
(December-March), which is unusual for lakes in this regidaring most of the
year, the TSl was fairly low, with the median falling at the boundary beéne
mesotrophic and oligotrophic (median gk 37).
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Figure 4: Total phosphorus includes organic phosphorusgmorus associ-
ated with algae and other biota) and dissolved phosphorimdply soluble or-
thophosphate). Phosphorus is an important nutrient faeglgnd is generally
considered the nutrient that limits the amount of algae eka.l The median total
phosphorus concentration in Judy Reservoir was only5-8®/L (barely above
the detection limit of 5ug-P/L), and all but nine of the 286 samples wer&5
1g-P/L. Given the relatively high chlorophyll levels thatooie in the reservoir, the
low phosphorus may seem surprising, but algae are veryesffiai extracting this
nutrient from the water column.
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Figure 5: Total nitrogen represents the combined condgorisaof organic ni-
trogen (nitrogen associated with algae and other biota)disgblved inorganic
nitrogen (nitrate, nitrite, and ammonium). Based on daienf2006—2007, about
half of the total nitrogen in Judy Reservoir is inorganidir@te sampling was dis-
continued in 2007). Algae use inorganic nitrogen for grquthit is common to
see depletion of total nitrogen as algae take up nitratenduhie summer. Nitro-
gen rarely limits total algal growth, but low concentrasaf inorganic nitrogen
can favor the growth of cyanobacteria. Total nitrogen cotregions appear to
have decreased slightly, and the seasonal patterns havmbenore stable. This
may be related to changes in the source water entering taevoésor the lower
algal densities (see Figures 1 and 6).
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Figure 6: Algal density is determined by settling a knownwoé of water, then
counting and identifying the settled algae. The highestlatgunts usually oc-
curred from summer to late fall, which is typical for lakesor region, or in the
winter. High winter counts are unusual for most lakes, buiststent with occa-
sional high winter chlorophyll concentrations in Judy Reee (Figures 1 and 2).
Although the 2011 algal densities lacked extreme peakantdian density was
higher than 2007-2010. The data from 2012 are incomplez€2@42 median will

probably be lower after the November/December counts atedatb the data set.

AllData 2007 2008 2009 2010 2011 2012

Median density (cells/mL) 571 416 354 670 506 570

partial year — 2012 does not include November/December

888



Cyanobacteria (cells/mL)

Green Algae (cells/mL)

Chrysophytes (cells/mL)
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Figure 7: Cyanobacteria, green algae, and chrysophytedlyisominate the cell
counts in Judy Reservoir. Cyanobacteria (bluegreen “8idgeically bloom dur-
ing fall, and were especially dense in October 2007 and @ct2012. Green al-
gae had rather erratic counts, but were usually higher duhie@ summer and fall.
The chrysophyte counts were very high during the wintemgpsf 2007/2008 and
moderately high during the winter/spring of 2008/2009 a@d122012. Chryso-
phytes often bloom during cool temperatures, so the winlgorhs are not too
unusual. Of the three algae types, chrysophytes are mest tilk cause taste and
odor problems.



Dinoflagellates (cells/mL)

Cryptomonads (cells/mL)
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Figure 8: Dinoflagellates and cryptomonads are usuallydbssdant than other
types of algae (note scale difference in this figure comptrddgure 7), but the
species that are present in Judy Reservoir are often lagjeanAs a result, they
can contribute disproportionately to algal biovolume ahtbwphyll measure-
ments. The cryptomonad densities in 2011 were slightlydrighan in previous
years, but did not appear to have much effect on the 2011 agthgtl or biovol-
ume levels (see Figures 1 and 11).
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Figure 9: Freshwater algae range in size from very tiag (xm diameter) to

large enough to see without magnificationl(mm diameter). Algal biovolume is
calculated by measuring the size of the algal cell, calmgahe volume occupied
by that cell, then multiplying the individual “biovolume’yithe number of algal
cells inthe sample. The biovolume results matched chlofbmsults, decreasing
slightly in 2011 and 2012.

AllData 2007 2008 2009 2010 2011 2012

Median biovolume gm?*/mL x 10°) 4.2 26 42 83 6.9 31 3.4

Tpartial year — 2012 does not include November/December



Cyanobacteria (um?/mL)

Green Algae (um?®/mL)

Chrysophytes (um?®/mL)
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Figure 10: Cyanobacteria, green algae, and chrysophytesdlyislominate the
biovolume estimates as well as the cell counts. Severalespt@at are present in
the numerical counts do not yet have biovolume measuremEmse include two
large colonial speciesNoronichinia - cyanobacteriaBotryococcus - green algae)
and four diatomsAsterionella, Cyclotella, Navicula, andSurirella). Adding bio-
volume estimates for these six species may slightly alebtbvolume patterns.
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Cryptophytes (um®/mL)
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Figure 11: Cryptomonads (lower plot) were rarely commorhadudy Reservoir
samples, so they rarely contributed much to algal biovolestgnates. Dinoflag-
ellates occasionally formed blooms in the reservoir, arwdibse the dinoflagellate
cells are quite large, blooms can have an influence on biawelu
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Figure 12: This figure illustrates how variation in cell saftects biovolume. If all
of the species in an algal group are approximately the saree thie relationship
between density and biovolume is nearly linear (e.g., dagaflates). If, however,
the group contains species that are very different in sizés ghe case for green
algae and chrysophytes, there is little relationship betwdensity and biovolume.
Some types of algae, like the cyanobacteria, have manyesppoesent in Judy
Reservoir, but the different species have somewhat sirodushapes and sizes.
The cryptomonads are interesting because there are only agecies present,
and the cells are all basically the same shape (ovals), bytringe from tiny to
very large.
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Figure 13: Although algal counts, algal biovolume, and bdd@orophyll levels
are related, each measurement tells you something digtoifierent about the
amount of algae in a sample. Numerical counts show genettrpa in algal
population dynamics. For example, the Judy Reservoir sovealed unusually
high winter densities of chrysophytes (Figure 7). Chlordpimeasurements are
fast, inexpensive, and widely used to indicate trophicestiigure 3), but won’t
let you distinguish algae by type. Algal biovolume is the trtbgect measurement
of the “weight” of algae in the sample, but needs to be mealsiareeach species
separately. As a result, it is not unusual to see weak ralships like this when
you plot the measurements against each other.
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A Plankton Images

This appendix contains photographic images and biovoluguateons for most
of the phytoplankton in Judy Reservoir. Biovolume caldolas require measure-
ments from a minimum of ten cells, so only moderately comnaga tare used for
biovolume estimates.
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Cyanobacteria (bluegreen algaepreen algae
Anabaena e | Ankyra o
Aphanocapsa e | Botryococcus o
Chroococcus dispersus e | Chlamydomonas o
Chroococcus limneticus o Chlorella o
Chroococcus turgidus ° Cosmarium °
Gloeocapsa ° Crucigenia °
Merismopedia o | Crucigeniella o
Microcystis . Dictyosphaerium °
Pseudanabaena o Elakatothrix °
Unidentified bluegreen o Eudorina °
Wbronichinia ) Gloeocystis °
Oocystis °
Golden algae Pediastrum o
Bitrichia o | Scenedesmus °
Dinobryon bavaricum e | Sdenastrum o
Dinobryon sertularia ° Sphaerocystis °
Gloeobotrys o | Spondylosium o
Mallomonas e | Staurastrum o
Synura petersenii e | Tetraedron °
Synura uvella °
Unidentified golden . Dinoflagellates
Uroglena ° Ceratiumhirudinella e
Asterionella (diatom) o | Gymnodinium °
Aulacoseira (diatom) . Peridinium o
Cocconeis (diatom) o
Cyclotella (diatom) o | Cryptomonads
Fragilaria (diatom) o | Cryptomonas °
Navicula (diatom) o Komma/Chroomonas e
Sephanodiscus (diatom) e
Surirella (diatom) o
Synedra (diatom) °
Tabellaria (diatom) °
Unidentified diatoms o

Table 2: List of algae collected in Judy Reservoir, Octoli#&2- October 2012.
Algae with density measurements are identified using an opele (o); algae
that also have biovolume measurements are identified usobticacircle @).
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Figure 14:Anabaena spp. (cyanobacteria).

. 2
Ovoid biovolume = %w X (ngth> % (lenzgth>

Avg.width = 6.07 um
Avg.length = 7.97 um
Avg. biovolume = 159.3 ym?
Biovolume 95% CI = 124.1 — 194.5 ym?®
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Figure 15:Aphanocapsa (cyanobacteria).

. 2
Ovoid biovolume = %w X (ngth> % (len2gth>

Avg.width = 1.34 um
Avg.length = 1.54 ym
Avg. biovolume = 1.50 ym?
Biovolume 95% CI = 0.96 — 2.03 ym?®
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Figure 16:Aulacoseira (diatom).

width
2

2
Cylinder biovolume = 7 X ( ) x length
Avg.width = 6.6 um
Avg.length = 29.0 um
Avg. biovolume = 1,033 ym?®
Biovolume 95% CI = 769 — 1,296 ym?
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Figure 17:Ceratium hirundinella (dinoflagellate).

Ceratium biovolume

Avg. width
Avg.length
Ave. depth
Ave. diameter

Avg. biovolume
Biovolume 95% CI

4 diameter 2
§7r>< — x length | + | 7

44.3 pm

52.4 pm

43.2 pm

9.4 pm

72,215 pum?®

61,334 — 83,096 pm?

width

2
> X depth)
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C. turgidus

C. dispersus

Figure 18:Chroococcus dispersus (cyanobacteria)

) 2
Ovoid biovolume = %w X (ngth> X <len2gth>

Avg.width = 1.52pum
Avg.length = 2.20 um
Avg. biovolume = 2.95 ym?
Biovolume 95% CI = 2.26 — 3.64 um?®
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Figure 19:Chroococcus turgidus (cyanobacteria)

. 2
Ovoid biovolume = %w X (ngth> % (lenzgth>

Avg.width = 6.52 um
Avg.length = 7.22pum
Avg. biovolume = 187.5 ym?
Biovolume 95% CI = 143.0 — 232.1 pum?
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Figure 20:Cosmarium (green algae - desmid).

. 2
Ovoid biovolume = %7‘( X (ngth> % (len2gth>

Avg.width = 15.11 ym
Avg.length = 15.39 um
Avg. biovolume = 1,866 ym?
Biovolume 95% CI = 1,535 — 2,197 um?
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Figure 21:Crucigenia (green algae).

. 2
Ovoid biovolume = %7‘( X (ngth> % (len2gth>

Avg.width = 2.51 um
Avg.length = 2.11pm
Avg. biovolume = 11.06 pm?
Biovolume 95% CI = 4.22 — 17.90 yum?
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Figure 22:Cryptomonas (cryptomonad).

4 width\>  /length
-7 X X
3 2 2

Ovoid biovolume

Avg. width
Avg.length

Avg. biovolume
Biovolume 95% CI

8.85 um

17.51 pm

945.4 pm?®

226.7 — 1,664 ym?
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Figure 23:Dictyosphaerium (green algae).

. 2
Ovoid biovolume = %7‘( X (ngth> % (len2gth>

Avg.width = 6.64 um
Avg.length = 7.27 ym
Avg. biovolume = 169.2 ym?
Biovolume 95% CI = 138.2 — 200.2 ym?
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Figure 24:Dinobryon bavaricum (chrysophyte).

. 2
Ovoid biovolume = %7‘( X (ngth> % (len2gth>

Avg.width = 2.51 um
Avg.length = 8.06 um
Avg. biovolume = 122.4 ym?
Biovolume 95% CI = 43.2 — 201.5 ym?
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Figure 25:Dinobryon sertularia (chrysophyte).

. 2
Ovoid biovolume = %7‘( X (ngth> % (len2gth>

Avg.width = 1.63 um
Avg.length = 9.91 ym
Avg. biovolume = 17.2 ym?®
Biovolume 95% CI = 6.81 — 27.6 yum?®



Judy Reservoir 2012 Report Page33

Figure 26:Elakatothrix (green algae).

. 2
Fusiform biovolume = gw x (ngth> % (lens;th)

Avg.width = 1.64 um
Avg.length = 14.58 ym
Avg. biovolume = 11.81 pm?®
Biovolume 95% CI = 8.44 — 15.17 ym?
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Figure 27:Eudorina (green algae).

. 2
Ovoid biovolume = %w X (ngth> % (lenzgth>

Avg.width = 5.41pum
Avg.length = 5.99 um
Avg. biovolume = 180.2 ym?
Biovolume 95% CI = 69.6 — 290.7 ym?
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Figure 28:Gloeocapsa (cyanobacteria).

. 2
Ovoid biovolume = %w X (ngth> % (len2gth>

Avg.width = 6.0 um
Avg.length = 6.5um
Avg. biovolume = 124.6 ym?
Biovolume 95% CI = 104.7 — 144.5 ym?
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Figure 29:Gloeocystis (green algae).

. 2
Ovoid biovolume = %w X (ngth> % (len2gth>

Avg.width = 6.1 pum
Avg.length = 7.8 um
Avg. biovolume = 153.1 ym?
Biovolume 95% CI = 120.8 — 185.5 yum?
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Figure 30:Gymnodinium (dinoflagellate).

4 width\>  /length
-7 X X
3 2 2

Ovoid biovolume

Avg. width
Avg.length

Avg. biovolume
Biovolume 95% CI

50.4 pm

51.4 pm

70,953 pm?®

53,043 — 88,863 ym?
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Figure 31:Komma caudata (cryptomonad; a.k.€hroomonas acuta)

Ovoid biovolume

Avg. width
Avg.length

Avg. biovolume
Biovolume 95% CI

4 width\>  /length
=7 X X

3 2 2
3.84 pm

7.18 pm

78.2 pm?
<1—161.8 ym?®
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Figure 32:Mallomonas (chrysophyte).

4 width\>  /length
-7 X X
3 2 2

Ovoid biovolume

Avg. width
Avg.length

Avg. biovolume
Biovolume 95% CI
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Figure 33:Microcystis (cyanobacteria).
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Figure 34:0ocystis (green algae).
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Figure 35:Scenedesmus (green algae).
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Figure 36:Sphaerocystis (green algae).
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Avg.width = 1.53 um
Avg.length = 1.64 pum
Avg. biovolume = 2.57 ym?
Biovolume 95% CI = 1.71 — 3.43 yum?®
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Figure 37:Sephanodiscus (chrysophyte - diatom).
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Figure 38:Synedra (chrysophyte - diatom).
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Figure 39:Synura petersenii (chrysophyte).
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Figure 40:Synura uvella (chrysophyte).
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Figure 41:Tabellaria (chrysophyte - diatom).
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Figure 42:Tetraedron (green algae).
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Figure 43: Unidentified bluegreen (cyanobacteria).
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Figure 44: Unidentified golden (chrysophyte).
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Figure 45:Uroglena (chrysophyte).
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B Judy Reservoir Water Quality and Algae Data

Printed versions of this report include tables of the 20@3-22data, edited to
show detection limits. Online reports do not include cométhe original data,

but electronic data files are available from the Institutreiatershed Studies. In
addition, the IWS web site (http://www.wwu.edu/iws) fe@s “dynamic” plots

of the water quality data and tables containing the mostnteesults from the
lake.

These pages represent updated water quality data, algatisc@nd algal biovol-
ume estimates, and should serve as the verified data sourcestdts collected
from October 2006 through October 2012. Electronic copfab@verified data
are available from the Institute for Watershed Studies (JW&stern Washington
University, Bellingham, WA.

The code “NA’ has been entered into all empty cells in thei asta files to fill in
unsampled dates and depths, missing data, etc. Questionssgecific missing
data should be directed to the IWS director.

Unless otherwise indicated, the electronic data files haw@ Heen censored to
flag or otherwise identify below detection and above debecialues. As a result,
the ascii files may contain negative values due to lineaapriation of the stan-
dards regression curve for below detection data. It is ¢isdéinat any statistical

or analytical results that are generated using these datviemved by someone
familiar with statistical uncertainty associated with ansored data.
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