5-2013

TeachWashington NOYCE Teacher Scholarships/Stipends

Donald J. Burgess
Western Washington University, don.burgess@wwu.edu

Bruce Larson
Western Washington University, bruce.larson@wwu.edu

Follow this and additional works at: https://cedar.wwu.edu/secondaryed_facpubs

Part of the Science and Mathematics Education Commons

Recommended Citation
Burgess, Donald J. and Larson, Bruce, "TeachWashington NOYCE Teacher Scholarships/Stipends" (2013). Secondary Education. 8.
https://cedar.wwu.edu/secondaryed_facpubs/8

This Poster is brought to you for free and open access by the Teaching Programs at Western CEDAR. It has been accepted for inclusion in Secondary Education by an authorized administrator of Western CEDAR. For more information, please contact westerncedar@wwu.edu.
Project Summary

The goal of the TeachWashington Noyce Program is to contribute to a larger vision to permanently increase the number of secondary mathematics and science teachers prepared at Western Washington University without sacrificing the proven quality of our graduates.

Current Status

Year 1, 2, 3, & 4: 2009-2013
• 55 new Scholarships/Stipends ($10,000 each) were awarded, and seven “second year” scholarship were awarded (total of 62).
• 60 freshmen and sophomore mathematics and science majors were involved in summer internship positions.

Year 5: 2012-2013
• 9 new Scholarships/Stipends were awarded, and one “second year” scholarship was awarded for (total 10).

We received a one year no-cost extension. We anticipate 10-15 freshman and one “second year” scholarship were awarded for (total 10).

Project Activities

To build demand for the scholarships, we will focus on three activities:

1. Prepare and support 55 STEM students over five years to receive summer internships teaching mathematics and science at three local school districts. After completing a summer internship, students will be eligible to apply for Noyce Teacher Scholarships.

2. Recruit junior and senior STEM undergraduates. On campus, we will initiate aggressive recruitment and clear advising of current STEM majors who have not declared a teaching interest. We will work with local community colleges to recruit graduates pursuing a STEM major, and to identify candidates from under-represented groups.

3. Recruit STEM professionals who are considering a career change or have been or may be laid off, to consider teaching as a second career. We will foster relationships with area companies’ human resources departments to attract professionals who have the interest and ability to become teachers.

Evaluation

Project Strategies and Corresponding Evaluation Questions:

Recruiting STEM individuals for teaching careers:
• What strategies does the project employ to recruit scholarship recipients with high academic merit in STEM programs and diverse backgrounds?

Preparing STEM individuals for teaching careers:
• How well does the secondary education program prepare scholarship recipients for teaching careers?

Retaining STEM individuals in teaching careers:
• Do scholarship recipients teach in high need schools during the period in which they are fulfilling their service obligation?

• What is the quality of the science instruction provided to K-12 students by Noyce teachers?

Findings to date

Twenty-one Noyce Summer Interns, worked to improve K-12 students’ understanding of mathematics and science in the Bellingham, Mount Baker and Mount Vernon school districts during the summer of 2013. Sixteen interns completed the pre-survey in June 2013, prior to their summer internship, and fourteen completed the post-survey in October 2013 following their internship. Nine interns completed both a pre-survey and a post-survey.

On the post-survey, six of the fourteen interns stated that, as a result of their work with middle and high school students this summer, they had changed their thinking about what is needed to help students learn math and science. Interns who expressed that their thinking had changed most frequently wrote about the need to employ diverse instructional strategies when working with different students. One intern summed up this sentiment by saying: “Sometimes sticking to just a textbook is not enough—students don’t all learn math the same way. An example that works for one student will not always work for another. You should be able to adapt based on a student’s needs rather than sticking to the method of teaching you are most used to.”

On the post-survey, six out of the fourteen interns stated that, as a result of their work with middle and high school students this summer, they had changed their thinking about what is needed to help students learn math and science. Interns who expressed that their thinking had changed most frequently wrote about the need to employ diverse instructional strategies when working with different students. One intern summed up this sentiment by saying: “Sometimes sticking to just a textbook is not enough—students don’t all learn math the same way. An example that works for one student will not always work for another. You should be able to adapt based on a student’s needs rather than sticking to the method of teaching you are most used to.”

On the post-survey, six out of the fourteen interns stated that, as a result of their work with middle and high school students this summer, they had changed their thinking about what is needed to help students learn math and science. Interns who expressed that their thinking had changed most frequently wrote about the need to employ diverse instructional strategies when working with different students. One intern summed up this sentiment by saying: “Sometimes sticking to just a textbook is not enough—students don’t all learn math the same way. An example that works for one student will not always work for another. You should be able to adapt based on a student’s needs rather than sticking to the method of teaching you are most used to.”

On the post-survey, six out of the fourteen interns stated that, as a result of their work with middle and high school students this summer, they had changed their thinking about what is needed to help students learn math and science. Interns who expressed that their thinking had changed most frequently wrote about the need to employ diverse instructional strategies when working with different students. One intern summed up this sentiment by saying: “Sometimes sticking to just a textbook is not enough—students don’t all learn math the same way. An example that works for one student will not always work for another. You should be able to adapt based on a student’s needs rather than sticking to the method of teaching you are most used to.”

On the post-survey, six out of the fourteen interns stated that, as a result of their work with middle and high school students this summer, they had changed their thinking about what is needed to help students learn math and science. Interns who expressed that their thinking had changed most frequently wrote about the need to employ diverse instructional strategies when working with different students. One intern summed up this sentiment by saying: “Sometimes sticking to just a textbook is not enough—students don’t all learn math the same way. An example that works for one student will not always work for another. You should be able to adapt based on a student’s needs rather than sticking to the method of teaching you are most used to.”

On the post-survey, six out of the fourteen interns stated that, as a result of their work with middle and high school students this summer, they had changed their thinking about what is needed to help students learn math and science. Interns who expressed that their thinking had changed most frequently wrote about the need to employ diverse instructional strategies when working with different students. One intern summed up this sentiment by saying: “Sometimes sticking to just a textbook is not enough—students don’t all learn math the same way. An example that works for one student will not always work for another. You should be able to adapt based on a student’s needs rather than sticking to the method of teaching you are most used to.”

On the post-survey, six out of the fourteen interns stated that, as a result of their work with middle and high school students this summer, they had changed their thinking about what is needed to help students learn math and science. Interns who expressed that their thinking had changed most frequently wrote about the need to employ diverse instructional strategies when working with different students. One intern summed up this sentiment by saying: “Sometimes sticking to just a textbook is not enough—students don’t all learn math the same way. An example that works for one student will not always work for another. You should be able to adapt based on a student’s needs rather than sticking to the method of teaching you are most used to.”

On the post-survey, six out of the fourteen interns stated that, as a result of their work with middle and high school students this summer, they had changed their thinking about what is needed to help students learn math and science. Interns who expressed that their thinking had changed most frequently wrote about the need to employ diverse instructional strategies when working with different students. One intern summed up this sentiment by saying: “Sometimes sticking to just a textbook is not enough—students don’t all learn math the same way. An example that works for one student will not always work for another. You should be able to adapt based on a student’s needs rather than sticking to the method of teaching you are most used to.”

On the post-survey, six out of the fourteen interns stated that, as a result of their work with middle and high school students this summer, they had changed their thinking about what is needed to help students learn math and science. Interns who expressed that their thinking had changed most frequently wrote about the need to employ diverse instructional strategies when working with different students. One intern summed up this sentiment by saying: “Sometimes sticking to just a textbook is not enough—students don’t all learn math the same way. An example that works for one student will not always work for another. You should be able to adapt based on a student’s needs rather than sticking to the method of teaching you are most used to.”

On the post-survey, six out of the fourteen interns stated that, as a result of their work with middle and high school students this summer, they had changed their thinking about what is needed to help students learn math and science. Interns who expressed that their thinking had changed most frequently wrote about the need to employ diverse instructional strategies when working with different students. One intern summed up this sentiment by saying: “Sometimes sticking to just a textbook is not enough—students don’t all learn math the same way. An example that works for one student will not always work for another. You should be able to adapt based on a student’s needs rather than sticking to the method of teaching you are most used to.”

On the post-survey, six out of the fourteen interns stated that, as a result of their work with middle and high school students this summer, they had changed their thinking about what is needed to help students learn math and science. Interns who expressed that their thinking had changed most frequently wrote about the need to employ diverse instructional strategies when working with different students. One intern summed up this sentiment by saying: “Sometimes sticking to just a textbook is not enough—students don’t all learn math the same way. An example that works for one student will not always work for another. You should be able to adapt based on a student’s needs rather than sticking to the method of teaching you are most used to.”