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ON THE LOCATION OF CRITICAL POINTS OF POLYNOMIALS 

BRANKO CURGUS AND VANIA MASCIONI 

(Communicated by N. Tomczak-Jaegermann) 

ABSTRACT. Given a polynomial p of degree n > 2 and with at least two 
distinct roots let Z(p) = {z: p(z) = 0}. For a fixed root aC e Z(p) we 
define the quantities w(p, a) := min{la - vi v e Z(p) \ {al}} and T(p, a) := 

min{la - vi: v e Z(p') \ {a}}. We also define w(p) and r(p) to be the 
corresponding minima of w(p, a) and r(p, a) as a runs over Z(p). Our main 
results show that the ratios r(p, a)/w(p, a) and r(p)/w(p) are bounded above 
and below by constants that only depend on the degree of p. In particular, 
we prove that (1/n)w(p) < r(p) < (1/2sin(7r/n))w(p), for any polynomial of 
degree n. 

INTRODUCTION 

The attempt to locate the roots of polynomials has a long and golden history, 
from the Galois-Abel theory to present day numerical methods, and yet the inherent 
(nonlinear) difficulties have hampered the investigation of the geometrical side of 
the subject. The classical literature presents some well-rounded results on the 
relationship between the roots of a polynomial and those of its derivative, but no 
groundbreaking progress has been registered since then. After seminal work by 
Lucas, Grace and Haewood, J. L. Walsh has been at the forefront of this research 
for a good part of the last century, and his work (and not only his) is summarized in 
his excellent monograph [7]. After this, even more recent surveys (see for example 
the excellent chapter on polynomials in [2], or [1]) do not display any essential 
advance in knowledge (in terms of the geometry of the roots) compared to the 
standard reference book by Marden [3], which summarizes most of the classical 
work in the area. Generally speaking, it seems that the insight provided by Lucas' 
Theorem (which says that the convex hull of the roots of p contains all the roots 
of p') and a handful of other classical results are still the best that the modern 
researcher can rely on. 

In this paper we study how two specific quantities measured on a polynomial 
compare to each other. We present a local and a global version of these quantities 
(see Proposition 2 and Theorem 4 below). At the global level, one of the quantities 
(which we call w(p), see (4) below), measures the smallest distance between any 
two distinct roots of a polynomial p. The quantity w(p) is referred to as sep(p) in 
Mignotte's book [4], where an entire section is devoted to the separation of the roots 
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254 BRANKO CURGUS AND VANIA MASCIONI 

of a polynomial. Mignotte includes the proof of some delicate estimates involving 
w(p) but apparently no connection is made with the other quantity 'r(p) (see (5) 
below) which we study in this paper. The quantity -r(p) measures the smallest dis- 
tance between any root of p and any of the "new" roots of the derivative p' (that is, 
the roots that are not already roots of p). While the first inequality in Proposition 2 
and Theorem 4 is closely related to a result of Walsh [7], what we found interesting 
was the discovery that the quantities -r(p) and w(p) are actually (loosely speaking) 
proportional. Moreover, the bounds in Theorem 4 are the best possible. To keep 
the exposition self-contained, and also because the explicit definitions of w(p) and 
r(p) are absent from Walsh's writings, we will provide a new and more direct proof 
of the first inequality as well. The second inequality in Theorem 4 contained a 
surprise, in that its proof seemed to flow smoothly until we realized that a special 
case of polynomials of degree rt = 5 escaped the direct power of known techniques, 
and this is why the work needed to cover the gap takes on the larger part of this 
proof. While we duly apologize for the brute force approach to this special case, we 
believe that the difficulty is a symptom of the number of truths that still remain 
to be uncovered in the subject. 

1. THE INEQUALITIES 

By C we denote the set of all complex numbers. For w E C and r > 0 by D(w, r) 
we denote the closed disk centered at w with radius r; that is, D(w, r) = I{z E C: 
z - wl < r}. Sometimes we shall use the expression "circle D(w, r)" to refer to 
the boundary {z E C : Iz- = r} of D(w, r). For two distinct complex numbers 
u and v, by ?(u, v) we denote the line passing through u and v. For a polynomial 
p, we define Z(p) to be the set of all roots of p. 

We are going to make repeated use of the following lemma which is a special 
case of the famous Two-Circle Theorem due to Walsh [7, Theorem 1, p. 59] (also 
see [3, Exercise (19,4)] and [5] for an interesting alternate discussion). We quote 
the version we need for easy reference: 

Lemma 1. Let a be any given point in the complex plane and p a polynomial of 
degree n. Let n1 roots of p lie in the disk D(a, rl), and let the other n2 = n -n 
roots of p lie outside or on the circle D(a, r2). Then, if r = (nlr2 - n2r,)/n > ri, 
we have that exactly n1 - 1 roots of p' lie in D(a, ri) and exactly n2 lie outside or 
on the circle D(a, r). 

Let p be a polynomial and assume that p has at least two distinct roots, or 
equivalently, Z(p') \ Z(p) $& 0. Let a be a root of p. Define 

(1) w(p, a) := min{loa-vl : v E Z(p) \{al}} 

and 

(2) r(p,a) := min{ola-v| : v E Z(p') \{a}} 
In the following proposition we prove two inequalities for these quantities. The 
first inequality in (3) below was obtained by Walsh (see [7, ?3.1.1, Corollary to 
Theorem 1]) as a corollary to his Two-Circle Theorem. Here we give a simpler 
direct proof. 

Proposition 2. Let p be a polynomial of degree n, n > 2, and assume that p has 
at least two distinct roots. Let a be a root of p with multiplicity kQ, 1 < k, < n -2. 
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ON THE LOCATION OF CRITICAL POINTS OF POLYNOMIALS 255 

Then 

(3) k w(p, a) < T(p,ao) < 1 w(p, a). n~wpa sin (n ~) 

If n > 2 and ko = n-1, then r(p, a) = w(p, a). 
n 

Proof. Fix a1 E Z(p). To prove the first inequality we only need to consider the 
case when w(p, a,) > r(p, a,). This assumption implies that 

T(p,al)=min{la1-vJ : vEEZ(p')\Z(p)}. 

Let k1 be the multiplicity of a1, and let a2, . . . , a, be all the other roots of p (each 
with its corresponding multiplicity kj, j = 2,... , m). Let zo E Z(p') \ Z(p) be such 
that ao1 - = z r(p, a,). Then we have 

P'(zo) m kj ki _ kj 
p(zo) J1 o-a-j zo-1 - 2 z,-a j=1~~~~~~~.= 

and hence 

- : zo -ajI 7()1) j=2 |Z 

Consider that for every j E {2, ... , m} we have 

I zo - ajI > a1 - aj - I zo - a1 > w(p, a1) - r(p, a), 

and therefore 

ki n-k, 
T(p, a,) w(p, a,) - T(p, a,) 

which is equivalent to 

1 W(p, a) < '(P, a,). n 

Next we prove the second inequality in (3). Let n > 2 and fix a = a,1 E Z(p) 
and let a2 E Z(p) be such that w(p, a,) = la, - a2l > 0. Let q = n + 1-k -k2, 
where k1 and k2 are the multiplicities of a1 and a2 and k1 < n - 2. Let K be 
the segment joining a1 and a2, and define the star-shaped region S(K, 7r/q) to be 
the set of all points w in C for which the angle at w of the triangle with corners 
W, a1,,a2 is greater or equal to 7r/q. By a result of Marden (see [3, Ex. (25,1)]), 
p' has at least one root u =,o a1 in the region S(K, r/q). So, we immediately 
have that r(p, a,) < la, - ul. Now, it is a simple exercise in polar coordinates 
to determine that a point z of S(K, r/q) that is most distant from a1 satisfies 
l1 -zl = (sin(7r/q))-1oa1 - a2l, and this readily implies 

'T(P, ?t1) < 1lo - ul < i (1r a2(,') <; , w(p,,8). sin ,q,) sn(7k) 

This proves (3). The last statement is easily verified since in this case p(z) = 
(z - a)n- l (Z-3) and consequently w(p, a) = a - 1 and r(p, a) = n 1 a - 

The proposition is proved. F 
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256 BRANKO CURGUS AND VANIA MASCIONI 

Lucas' Theorem states that all the roots of p' lie in the convex hull of the roots 
of p, the so-called Lucas polygon of p. The importance of the first inequality in 
(3) is that it provides an improvement to Lucas' Theorem, which we state in the 
following corollary. This improvement was observed by Walsh in [7, ?3.4], but it 
does not appear in the books [3], [2] and [1]. The idea behind this improvement is 
extensively used in the proof of Theorem 4 below. 

Corollary 3. Let p be a polynomial of degree n, n > 2, and assume that p has at 
least two distinct roots. Let a be a root of p with multiplicity k,. The set Z(p')\Z(p) 
is contained in the "Swiss cheese"-like region obtained by removing the interiors of 
all the disks D(av r(p, a)), a E Z(p), from the Lucas polygon of p. 

Next we define the global analogues of the quantities defined in (1) and (2). Let 
p be a polynomial of degree n, n > 2, and assume that p has at least two distinct 
roots. Define 

(4) w(p) := min{|w-vl : w,v E Z(p),w # v} 

and 

(5) T(p) := mint lw -vl : w E Z(p), v E Z(p') \ {w}} 
Clearly, r(p) = min{T(p, a): a E Z(p)} and w(p) = min{w(p, a): a E Z(p)}. 

Theorem 4. Let p be a polynomial of degree n, n > 2, and assume that p has at 
least two distinct roots. Then 

(6) w (p) < 'r(p) <2sin(7w/n) W(p) 

Remark 5. The inequality (6) is the best possible. This follows from the following 
two examples: for the polynomial p(z) = Zn-l(Z- 1) we have w(p) = 1 and 
-r(p) = n and for the polynomial p(z) = - 1 we have w(p) = 2 sin(7r/n) and 
T(p) = 1. 

Proof of Theorem 4. The first inequality follows immediately from Proposition 2. 
Indeed, letting a E Z(p) be such that -r(p, a) = -r(p), (3) immediately implies 

1 1 
- w (p) w (p, a) < r(p, a) =T(p) n n 

Next we prove the second inequality in (6). Let Zl, Z2 E Z(p) be such that 
W(P) = I Zl-Z21 > 0. By the Grace-Heawood Theorem (see [3, Theorem (23,1)]), 
p' must have a root in the closed disk D(c, r), where 

Zl+ z2 I Zl- Z21 ot 
(7) c- t 2 2, r= | 122 cot 
Let w E D(c, r) be such that p'(w) = 0. Since the center c of the disk D(c, r) is 
the middle point of the segment joining z1 and Z2, it is immediate to see that the 
maximum of the set 

{min{| z-zll, I z-Z21} z E D(c,r)} 
is achieved at two diametral points of D(c, r), and by Pythagoras' Theorem this 
maximum is exactly 

I Zl-Z21 +cot2 (F) 
- I Z -z 21 

zl21 1 
2 sin(7n) 
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Since we have I Zl-Z21 = w(p), it follows that if w is different from z1 and from Z2, 
then 

(8) T(p) < min{| w-zl,|w-z2j}?< (:) 

On the other hand, if w = z1 or w = Z2, then 

(9) T(p) < I Z1 - Z21 = W(P) 

It follows from (8) and (9) that the second inequality holds whenever z1 and Z2 

are simple roots of the polynomial p or 2 sin(7r/n) < 1, that is, whenever z1 and 
Z2 are simple roots of the polynomial p or n > 6. Since we assume that p has two 
different roots, if n = 2, the roots z1 and Z2 are simple roots. Therefore, the second 
inequality in (6) holds for n = 2. Note that if n = 2 the inequality is trivially 
verified as w(p)/2 = 'r(p) = | - z21/2. 

The above argument leaves open the cases of n E {3, 4, 5} in which z1 or Z2 

(chosen as above to satisfy I Zl-Z21 = w(p)) is not a simple root of p. Next we give 
a proof for each of these cases. 

Let n = 3, W(p) = Zl- z21 and assume that z1 is a double root and Z2 is a 
simple root of p. Clearly in this case p has no other roots and therefore p(z) = 
(z _ Z1)2(Z - Z2) (up to a constant multiple). A direct calculation shows that p' 
has roots z1 and (z1 + 2z2)/3. Therefore -r(p) = w(p)/3, and the second inequality 
in (6) is true. 

Let n = 4, W(p) = Zl- z21 and assume that z1 has multiplicity k1 and Z2 

multiplicity k2, with k1 + k2 > 3. By a result of Marden (see [3, Theorem (25,1)]), 
p' has at least one root w (different from z1 and Z2) in the disk D(c, r), where 

c -Zl+ Z r= Zl- 
21cot I-I 

2 1 2 22 

where q = n + 1 - k- k2. Note that the disc D(c, r) may have a different radius 
from the one considered in the first part of the proof, but still the same argument 
applies to show that 

(10) T(p)<min{Iw-zlH,Iw-z21} <w(p) 1 
2 sin(7) 

(2q) 

Since n = 4 we have 

2q = 2(5-k1 - k2) < 2(5-3) = 4 = n, 

meaning that 
1 1 

(11) sin (jf) -sin (Q) 

The inequalities (10) and (11) yield the second inequality in (6). 
The rest of the proof deals with the case n = 5. Let w(p) = - Z21 and assume 

that the multiplicity of zi as a root of p is k1 and the multiplicity of Z2 is k2, with 
k1 + k2 > 3. 

If k1 + k2 > 4, then, as before, the second inequality in (6) can be deduced from 
Marden's result [3, Theorem (25,1)] since in this case we have 2q = 2(6 - k1 - k2) < 
5 = n. 
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258 BRANKO CURGUS AND VANIA MASCIONI 

Now consider the case when k1 + k2 = 3 and assume that z1 is a double root 
of p and Z2 a simple root of p, and p' has no other root but z1 in the disk D(c, r), 
where 

Zl+Z2 IZl-Z21 Cot7 
2 2 5 

We need to prove that -r(p) < w(p)/2 sin(7r/5) (notice that -r(p) < w(p) is now 
trivial, but 2sin(7r/5) > 1). 

After rotation, scaling and translation, we only need to consider the case of 

p(Z) = Z 2(Z-_1) (Z-Ola)(Z-_ ) 

where a, 3 are different from 0 and 1, and w(p) = 1, that is Io, a 31 > 1. Put 

ft 2 = 
1 

- -(1 0.850650808352 2 sin(7w/5) -7 

and note that the inequality we want to prove is just -r(p) < ,. We prove this by 
contradiction and henceforth assume that 

'7-(p) > f 

Define the following "circular triangles" in the upper half-plane: 

A := cl(D(1/2, 7/6) \ (D(0, 1) U D(1, 1))), 

U D(1/2, v/3/2) \ (D(0, t) U D(1, ft)), 

where cl denotes the closure in C. Let A* := {I : a E A} and U* be the corre- 
sponding conjugate sets in the lower half-plane; see Figure 1. 

Claim 1. The points a and 3 cannot both be outside A U A*. 

Proof. Assume that both a and 3 lie outside the region A U A*. Apply Lemma 1 to 
the disk D(1/2, 1/2) and parameters n1 = 3, r, = 1/2, n2 = 2. The disk D(1/2, 1/2) 
contains exactly three roots of p (the double root at 0 and the simple one at 1). 
Let r2 be such that 

min{l Oa-1/21, | !-1/21} > r2 > 
7 

Note that under these assumptions Lemma 1 implies that the circle D(1/2, 1/2) 
contains exactly two roots of p'. This means that it must contain a non-zero root 
of p' (call it v). Now, 

= 2 <2 

which contradicts our assumption -r(p) > ft. 

Since our arguments in the rest of the proof are symmetric with respect to the 
line Re(z) = 0, in the following we will assume that 

E AA. 

Claim 2. The set Z(p') n (U u U*) is nonempty. 
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2 

u 

o . 
0 1 

U* 

-1 

-1 0 1 2 

FIGURE 1. A, U and U* 

2 

Bis above t(ct ,c(ct)) 

0~~~~~~~~~~~VC 

1 

O i nt.ersect 0 R 

-1 0 1 2 

FIGURE 2. Claim 3 

Proof. Applying again Marden's result [3, Theorem (25,1)] to the double root of p 
at z = 0 and to the simple one at z = 1, we obtain that there exists a nonzero root 
of p' inside the disk D(1/2, (1/2) cot(7r/6)) = D(1/2, V'3/2). Since no such root can 
be at a distance < p, from 0 and 1, the claim follows. g 

Claim 3. Let W be the region that is bounded by and lies below the lines Jm(z) = 
-5 /5/18, Re(z) + 2 Im(z) = 0 and Re(z)-2 Im(z) = 1. Then W does not contain 
any roots of p'. 

Proof. Assume that there exists a root u of p' in W. Since the argument in the 
proof of this claim is symmetric with respect to the line Re(z) = 1/2, without loss 
of generality, we will let Re(a) < 1/2. Put 

A1 = {z E A: Re(z) < 1/2}. 
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260 BRANKO CURGUS AND VANIA MASCIONI 

Since u is in the convex hull of Z(p) by Lucas' Theorem, we must have that d 

lies in W. In particular, with a := (4 + i 2v5)/9, we have that 

la - o > V5-/2, 
and therefore 3 is outside the disk D(a, v/-/2). Consider the disk D(a, v5/3), and 
observe that its boundary passes through the point 1 and through the leftmost point 
of region Al, that is, the point (-1 + i4V5)/9. It is easy to see that region Al and 
point 0 are contained in D(a, V5/3). By Claim 1, this means that a C D(a, V5/3). 
Applying Lemma 1 to the disk D(a, v5/3) with the following parameters: n, = 
4,rl = v5/3, n2 = 1, r2 = V/2+E, wheree > 0 is chosen so that a-31 > V5/2?+, 
we conclude that D(a, V5/3) contains exactly three roots of p'. Now, one of the 
three roots must be z = 0, since it is a double root of p. As r(p) > ,u, the other 
two roots (say, vl, v2) must actually lie in the region 

V(a) := D(a, f5/3) \ (D(O, t) U D(1, t) U D(a, ,)). 

The regions V(a), a C A1, have the same rightmost point. That is the point b at 
the intersection of circles D(a, x75/3) and D(1, p): 

b:=- (45-3 V52 146222V)+i6 (6+6V + 73O?11O-) - 60 60 
This point is calculated using Mathematica's Solve command. All the calculations 
and the figures of this paper are done using Mathematica. 

Consider the region A, n D(b, p). Since the maximum of the set 

{I Z- (I: z E A, n D(b, /1), ( E V(ax) 
is attained at the point b C V(a), and since we assume that r(p) > ,t, no root of p 
lies in A, n D(b, p). Thus, we must have 

a C A1 \ D(b, p) =: A2 

Clearly V(a) lies entirely above the line through 1 and a for each a C A2. 
Let tb be the tangent line to the disk D(1, t) at the point b. Define ae 

(-1 + i4v"- )/9 (this is the leftmost point of region A, and therefore of A2). Com- 
paring the slopes of the lines ?(a,e b) and tb, we see that these two lines coincide. 
Thus, tb passes through the point ae, A calculation shows that the intersection of 
the circles D(0, 1) and D(b, p) lies above tb. Therefore, A2 lies above tb. 

For a C A2, define the point c(a) as the intersection of circles D(a, t) and 
D(1, p) that has a larger imaginary part. Since c(a) is on the circle D(1, P) it lies 
below tb. Therefore, for each a C A2 the line ?(a, c(a)) separates the region V(a) 
from the triangle with vertices 0, 1 and a. By Lucas' Theorem, for a given a C A2, 
3 has to lie above the line ? (a, c(a)). 

Next we prove that the slope m(a) of the line ?(a, c(a)) is > -1/2 for each 
aE C A2. Instead of the region A2 we will consider the larger region A3 which is 
bounded by the unit circle from below, the line Im(z) = 7/6 from above, the arc 
of the circle D(c(ae), ,u) from the left and by the arc of the circle D(b, p) from the 
right; see Figure 2. For an arbitrary a C A3 let a' C A3 be such that Im(a') = 7/6 
and the distance from a' to c(a) is Mu. Clearly the slope of e(a, c(a)) is larger 
than the slope of the line t(a/', c(a)). Thus to get the minimum for the slopes of 
m(a) for a C A3, it is sufficient to consider a's on the the top edge of A3: this is 
a line segment and we call it A4. Since the line segment joining a and c(a) has 
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ON THE LOCATION OF CRITICAL POINTS OF POLYNOMIALS 261 

the constant length ,u, the slope m(a) is minimal (for a C A4) when c(a) has the 
smallest imaginary part. Since lm(c(ae)) < Im(c(a)) for all a C A4, we conclude 
that the line t(a/ , c(ae)) has the minimum slope, which we calculate to be 

-21 + 4 5 + /-10 + 18 V-7 8 1 
-0.473778 > 2 

+/-349? 9vg?+42 V-10+18V5-8 -50+90xv5 2 

Therefore, each line ?(a, c(a)), a C A2, intersects the line Re(z) + 2 Jm(z) = 0 in 
C+; see Figure 2. Since we concluded that 3 must be above the line t?(a, c(a)) and 
since the half-plane above t?(a, c(a)) does not intersect W, and we also concluded 
that 3 C W, we have the desired contradiction. O 

Claim 4. The set Z(p') n U is nonempty. 

Proof. This claim is an immediate consequence of Claims 2 and 3, as all we need 
to verify is that U* C W, where W is the region defined in Claim 3. Now, W 
and U* are both symmetric with respect to the line Re(z) = 1/2, and the topmost 
segment delimiting W is wider than the interval [0,1]. Since, on the other hand, 
U* is narrower, all we need to check is that the topmost point 1/2 - jy2 -i 1/4 of 
U* lies below the line Jm(z) =-5v5/18. But this is immediate since V - /4> 
5v/5/18. E 

Claim 5. Let a C A. Then Re(a) < 0 or Re(a) > 1. If Re(a) < 0, then there is a 
root u of p' in U such that Re(u) > 1/2, and if Re(a) > 1, then there is a root u of 
p' in U such that Re(u) < 1/2. 

Proof. By Claim 4 we know that there exists a root of p' in U. Consider the set 
B := {z C A: 0 < Re(z) < 1}. 

Clearly the maximum of the set 

{ z- : z C B, ( C U} 
is attained at the opposite corners of the sets B and U and can be calculated to be 

- -~ 3 18+4V 5 
g 0.810705. 

This number is smaller than ,u. Since we assume that r(p) > ,u, no roots of p can 
be in B, thus Re(a) < 0 or Re(a) > 1. If Re(a) < 0 and if v C U is such that 
Re(v) < 1/2, then the distance between a and v is less than ,u. Therefore, no 
such v can be a root of p'. Since there is a root of p' in U it must have real part 
> 1/2. The case Re(a) > 1 follows by a symmetric argument with respect to the 
line Re(z) = 1/2. D 

Put 

Al = {z E A: Re(z) < 0} and Ur :=-{ C UC : Re(u) > 1/2}. 
Since our arguments in the rest of the proof are perfectly symmetric with respect 

to the line Re(z) = 1/2, we will henceforth assume that a C Al. As a consequence 
of Claim 5 this implies that there is a root u of p' in Ur. Note that the three corners 
of the region Al are 

1 4 v . 10 
_ +i , 3 
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and the corners of the region Ur are 

1 .1 1/1\ 1 .1 ~~~~~~~~~~~1 vf3 

2 2 5 2 Vf5 2 5(?v? 2 2 
-? i- -(5?2V5), 1-?gi2592)-2i 

In the following claim we will locate 3, the fifth root of p. To do this, define the 
pair of concentric disks 

Ci = D(0, 10/3), C2 = D(0, 10/2), 
let Li be the line passing through the points 

1 +i / (5+12 ) and 1, 
2 2 5 \ 

and let ?2 be the line parallel to Li through the point 0, that is the line through 
the points 

0, and --i- -(5+2v5). 
2 25 

Since there is a root of p' in Ur and the region Ur lies above the line fl, while the 
roots 0, 1 and a of p lie below or on ti, Lucas' theorem implies that 13 must be 
above the line fl. 

Claim 6. d 3 C2. 

Proof. Let us assume the contrary, that is, 3 , C2. Since Al c Cl, Lemma 1 can 
be applied to the disk Cl, with ri = 1/3, n, = 4, n2 = 1. Choosing any r2 that 
satisfies 

2> !3r2 > /2 
yields that Ci contains exactly 4 of the roots of p (since a aI < 10/3), while d lies 
outside circle D(O, r2). Under these hypotheses the implication is that circle Ci 
contains exactly 3 roots of p' (one of which is z = 0). Since 3 is above the line li, 
these roots must be above the line ?2. Thus they are in the half-disk of Ci above 
the line ?2 and also outside of the disks D(0, p) and D(1, p). Call this region T. 
The region T consists of two pieces: one in C+ the other in C-; see Figure 3. Note 
that the corners of the region W are the points 

1- 18 (2 + i) -0.24226 - i0.62113 and 1 5(2-i) 1.24226 - i0.62113. 

Since the intersection of ?2 with the circle D(1, p) in C- is 

1 .1 2 
- -- 1+ 0.5 - i 0.688191, 

and the intersection of the circles Ci and D(1, ,u) in C- is 

8 (145 - 9v) - i 8 (1457 + 261/5) 0.693752 - i 0.793611, 

we conclude that the entire piece T n C- is contained in the region W, which, by 
Claim 3, is free from the roots of p'. Thus, these roots must be in T n C+. The 
maximum of the set 

{Iz- I: z C Al, ( C TnC+} 
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te2 
Al1 

1 ", 

TnC 

-1 0 1 2 

FIGURE 3. Claim 6 

2 

G 

Al 

1~~~~~~~ 

0 

U2 

-1 0 12 

FIGURE 4. The final contradiction 

is 

1/3 1 9 

9 127 - -2 2914+522V5>0.829387<bt. 

Thus, T n c+ is free from the roots of p'. Contradiction! O 

Next we arrive at the final contradiction of this proof. By Claim 6, 3 C 02. Due 
to w(p) = 1, d is not allowed to be in the interior of D(O, 1) U D(1, 1) U D(a, 1). 
Therefore, since 3 lies above fl, it must be in the circular triangle which is inside 
C2, outside D(1, p) and D(a, p) and above the line f1. Note that a C Al and that 
the disk D(a, ,) changes with a. It is easy to see that this circular triangle is 
largest when a is at the leftmost point of Al, that is a = a, := (-1 + i4V5)/9. 
Let G be the circular triangle inside D(O, 5/2), outside D(1, 1) and D(ae, 1), and 
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above the line li; see Figure 4. The region G is the largest allowable region for 
/3. By Claim 5, there exists u C Ur which is a root of p'. Considering the lowest 
corners of G and Ur, we see that the maximum of the set 

liv-n lVCUrE, E G} 
is 

2S 2 +/ + - /15+ 64 ~ 0.800581 . 

This number is smaller than ,u. Thus u -31 << ,. Since 3 C Z(p) and u C Z(p'), 
this implies that r(p) < ,u. Since we assumed that r(p) > Mu, we have reached the 
final contradiction and the theorem is proved. C] 
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