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PROCEEDINGS OF THE 
AMERICAN MATHEMATICAL SOCIETY 
Volume 39, Number 2, July 1973 

S-ALGEBRAS ON SETS IN Cn 

DONALD R. CHALICE 

ABSTRACT. We give conditions which are necessary and sufficient 
for polynomial approximation of any continuous function on a 
compact subset of Cn. 

Let X be a compact set in Cn, complex n-space, P(X) the uniform 
closure of the polynomials on X, C(X) all continuous functions on X, 
m2n 2n-dimensional Lebesgue measure on Cn, and for any A in Cn let 
E(A)={z E Cn|Zi=Ai for some i}. 

A given set is a strong peak set if it is an intersection of peak sets and 
meets the boundary of each of them in a set which contains no nonempty 
perfect subsets. We say a Banach algebra A is an S-algebra if when x is in 
A and x, the Gelfand transform of x, vanishes at some p, then there 
exist xn in A such that xn vanish in (perhaps different) neighborhoods of p 
and j(xn-xI(--*0. For example, for any locally compact abelian group G, 
L'(G) is an S-algebra [6, p. 51]. The main question which motivates us 
here is: If A is a uniform algebra on a compact space X and A 'is an S- 
algebra, does A= C(X)? Our main result is the following. 

THEOREM. A necessary and sufficient condition that P(X)=C(X) is that 
(i) P(X) is an S-algebra, (ii) for almost all A E Cn with respect to m2', 

E(A) nX is a strong peak set, and (iii) each point of X is a peak point for 
P(X). 

We begin with some observations about uniform algebras which are 
S-algebras. 

LEMMA 1. Let A be a uniform algebra on a compact space X and suppose 
that A is an S-algebra. Then: (i) The maximal ideal space of A is X. (ii) 
A is normal. (iii) If each point of X is a peak point then A satisfies condition 
D [4, p. 86], i.e. iff E A and f (p)=O then there exist fn E A vanishing on 
neighborhoods of p such thatfInf-f. 

PROOF. (i) Let p be a homomorphism on A and y,u a representing 
measure for p with minimal closed support. If p, is not a point-mass then 
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some q#p lies in its closed support. Find f in A such that f(p)=1 and 
f (q)=O. Since A is an S-algebra we can assume thatf vanishes in a neigh- 
borhood of q. Thus fy,u is a complex representing measure for p, and 
since it dominates a (positive) representing measure for p [3, p. 33], we 
have a contradiction to the minimality of y. 

(ii) By part (i), to show normality of A we need only show regularity. 
But if poq then as above there is an f in A such that f vanishes on a 
neighborhood of p and f (q) = 1. If K is compact and q 0 K then by com- 
pactness one finds a functionf in A such that f=O on K and f(q)= 1. 

(iii) Suppose k peaks atp. Then there exist gn in A such that gn vanish on 
neighborhoods of p such that JJg,-(1-kn)jI---O. Hence, llf-fgnII < 
lIf(I -kn-gn)JJ + JJfkn J--O so thatfgn-?f. 

Part (iii) allows us to do spectral synthesis on the maximal ideal space 
of any uniform S-algebra as follows. 

LEMMA 2. Let A be a uniform algebra which is an S-algebra on X and let 
I be a closed ideal of A. If each point of X is a peak point for A then I 
contains every element f in A such that a{xlf(x)=O} rnhull(I) contains no 
nonempty perfect set. 

PROOF. Since A is normal and satisfies condition D, this is immediate 
from [4, p. 86]. 

We shall also need the following lemma which generalizes a result in [7] 
from one variable. A detailed proof is given in [1]. 

LEMMA 3. Let X be a compact set in C" and let , be a regular bounded 
Borel measure on X. Let 

A' z)= - 

J(Al - z) 
... 

(An- Zn) 
and 

N"(z) dFI I hal (A) 

Then N/,(z)< oo a.e. with respect to m2n and if 4(z)=O a.e. m2n then .=O. 

PROOF OF THE THEOREM. Let E1(X)= U {E(z)lz E X}. Let ,u be a 
measure on X such that , I P(X). We must show that ,u=O. Now clearly 
if z 0 E1(X) then ,u(z)=O. Now call E(X) the set of z for which E(z)fX 
is a strong peak set and for which N,(z)< oo. Since this only differs from 
E1(X) by a set of measure 0, we need only show that , vanishes on E(X). 
Now if A E E(X), we know that E(i) nX= nfli Ki with ki peaking on Ki 
and E(Q) naKi contains no nonempty perfect subset. Note that the hull 
of the closed ideal generated by (z1-j1) .. (zn-Aj) is E(i) fX so that, 
by Lemma 2, 1 -kni E the uniform closure of P(X)(z1-A)j * z* - A,) 
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302 D. R. CHALICE [July 

for any positive ni. Now choose ni so that k-*xE(C) boundedly pointwise 
on X. Then find g3 in P(X) such that I1gj(z1-)1>'* (Zn-)in)+ 1 -k7 I*O 
In other words, fj=l+gj(z1-,) - * ()Zn - n)--XE(A) boundedly point- 
wise on X. Since N,,(A)< oo, j,uj vanishes on E(i). Also as j--oo, 

f- 0 
(- z1)... (- Z) 

pointwise on X-E(i), and dominatedly. Hence 

(iQa X- )f9 dy O--0 as j oo, 
(l ZJ ). (A. -Z. 

so 'A(A)=O. Thus ,u=0 a.e. and, by Lemma 3, ,=O and the theorem is 
proved. 

For a uniform algebra A and a point x in M(A), the maximal ideal space 
of A, call the 0-germ at x the set of functions in A which vanish on a 
neighborhood of x. We close with an example of a uniform algebra A such 
that for each point x in a dense set in M(A) the 0-germ is dense in the 
maximal ideal determined by x. In other words the S-algebra condition is 
satisfied on at least a dense subset. McKissick [5] has proved the following. 

LEMMA 4. Let D be the open unit disk. Then there is a sequence {ak} 
in D, O<IakI I ak+1-l1, such that for any 8'> 0 there is a sequence {Jk} of 
open disks in D centered at {ak} respectively such that: 

(1) 21length(aJk)<8' 
(2) There exist rationalfunctions rn with poles at a,, ... , an such that 

rn-f uniformly on (U l' Jk)' andf=0 on D' whilef (0)= 1. 

Using the above lemma we prove the following. 

LEMMA 5. Let c=Iaj1/2. There is a constant M>O such that for any 
positive ., 6 there is a 6' and {Dk} a sequence of open disks in N(O, 6'/c)- 
N(O, 6'c) such that: 

(1) length(aDj)<6'C. 
(2) There exist rational functions {rn} with poles in D.... UD*, Dn such 

that rn--g uniformly on (U ' i D*)' and 
(i) Igl' Mon (U7 D)', 

(ii) g=o on N(02 6), 
(iii) I1-gI<e on N(O, b)'. 
In fact iff is the function obtained by Lemma 1 with e' a fixed constant 

(to be determined) independent of 8 and 6, then 6' can be chosen as 66(e) 
where 6(e) is a function such that lzlI<6(e) implies Il-f (z)I<e. 

PROOF. For disks {Jk} which we now choose in D let {Dk} be their 
respective images under the map 1/cz. Since IakI>2c, by taking a suffi- 
ciently small e' we can choose the open disks Jk guaranteed by Lemma 1 
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so that z E U Jk implies JzJ>c and so that I length(aDk) <1. Thus 
Dk ( N(O, 1/c2)-N(O, 1) for all k. Letf denote the limit on (U J4)' of the 
rational functions guaranteed by Lemma 1, and let M be the maximum of 
f on this set. Now since f(O)=1, Jzl<6(e) implies 11-f(z)1<e. Set 
6'=66(8) and let g(z)=f(6'/zc). Then redefining Dk as 6'Dk we have 
Dk c N(O, 6'/C2)-N(O, 6'), g(z) is obviously defined for z 0 Dk, and 

(1) E~ length(aDk)<6', 
(2) (i) gl <M on(UDk)', 

(ii) g(z)=O on N(O, 6'/c) since 16'/zcl> 1 there, and 
(iii) 11-g(z)1<e on N(O, 6/c)' since J6'/zcl<6(e) there. 

The statement of the lemma follows by replacing 6 in the above by 6c. 
COROLLARY. There is a constant M such that given positive 6', E there 

exist Dk and g as in the above lemma satisfying (1) and (2) if 6 is taken as 

Of course the above lemmas hold with 0 replaced by any point p. Also 
since the function f(z)=I;j 1I[0'(ak)(z-a)] used by McKissick in 
Lemma 1 has a b(8)<fle for some fixed # and small enough 8 we see that 
6(8) in the above statements can be replaced by 8. We now construct the 
example. Pick m> 1 such that 2mc> 1. Let Xml = D and Sm-, = . Define 
SncXv, {D 'n}, for n_m inductively as follows. Suppose that Sn-1= 
{al,.*.*, ak. Choose other points ak+,1 , at in Xn_1 so that each point 
of Xn_1 is within 1/2n of some ai, and let Sn={a,, , * * , at}. Let d denote 
the minimum distance between the points of Sn. Letting 6=8=d/(2n+jCl12) 
find {Dj }n1 open disks in N(aj, 68/c)-N(aj, 68c) such that 

-Z2=j length(Dk' n)<d2/4n+i< 1/2 Ij and (2) holds. Let Xn=Xn_- 
U j . Observe that since be4c<d we have SncXn. Note too that 
Z1k2;=1 length(aDj4)< 1/2n so that if we set X= fym Xn, we have 
excised a countable number of discs whose boundaries have total length 
< 1. Thus by Lemma 1 of [5], R(X)5 C(X). It is now clear that given any 
e>0 and any aj some N(aj, d/(2n+jCl/2)) c N(aj, 8) so there is a g in R(X) 
so that IIgII<M, g vanishes on a neighborhood of aj and 11-gl<8 on 
N(aj, 8)'. Thus the 0-germ at aj is pointwise boundedly dense in the 
maximal ideal at a, and so is dense. Since the {aj} are a dense subset of 
X the example has the required properties. 

Can the example be altered so that it is an S-algebra? One's first 
inclination is to cover the disk by smaller and smaller 6' neighborhoods 
given by the Corollary, but clearly it is not possible to do this and evenl 
retain : 6'< c?. However the example is rather simple-minded in that the 
same function is used over and over. Perhaps a choice of other functions 
will extend the example. Some questions raised by the above are: (1) If 
the 0-germ at p is dense in the maximal ideal determined by p, is p a peak 
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304 D. R. CHALICE 

point? (2) Is the example normal? (3) From an example of Cole (see also 
Basener [2]), it is well known that (iii) alone is not sufficient to imply the 
conclusion of the theorem. Are any of the hypotheses of the theorem 
redundant ? 

Wilken [8] has shown that if a uniform algebra A is an S-algebra on 
[0, 1] then A=C[O, 1]. In closing we also show the following. 

THEOREM. If A is a uniform algebra and A is an S-algebra on the unit 
circle T, then A=C(T). 

PROOF. Let p, q be peak points for A in T, so {p, q} is a peak set. Let 
f in A peak there. Then there are gn vanishing on neighborhoods of p 
and h. vanishing on neighborhoods of q such that 11(1 f <n)-gnI In 
and 11 (1 -f n)-hn I < 1/n with h. and g. in A. Then 1(1 -fh)2-hngnII <5/n. 
Let k,=O on one of the arcs [p, q] joining p to q and let k,=h,g, on the 
other arc [q, p]. Then because A is normal and hence local, kn are in A. 
But kn-*(,2,) boundedly pointwise. Thus if Ict E Al, (q,,) =1u[q,2,] E AJ'. 

Hence [q, p] is a peak set. Since every closed interval is an intersection of 
such peak sets, it follows that every closed set is a peak set and thus 
A=C(T). 
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