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Lazutkin coordinates and invariant curves for outer 
billiards 

Edoh Y. Amiran 
Mathematics Department, Western Washington University 
Bellingham, Washington 982259063 

(Received 25 April 1994; accepted for publication 1 June 1994) 

The outer billiard ball map (OBM) is defined from and to the exterior of a domain, 
R, in the plane as taking a point, q, to another point, q, , when the line segment 
with endpoints q and q, is tangent to the boundary, GS2 (with a chosen orientation), 
and the point of tangency with the boundary divides the segment in half. Let C be 
an invariant circle for the OBM on a, with 6~0 smooth with positive curvature. 
After computing the loss of derivatives between $0 and C, it is shown via KAM 
theory that in this setting the OBM has uncountably many invariant circles in any 
neighborhood of the boundary. One is also led to an infinitesimal obstruction for the 
evolution property, an obstruction which, among closed smooth convex curves, is 
only removed for ellipses. 0 199.5 American Institute of Physics. 

I. INTRODUCTION 

This paper concerns smooth bounded planar domains whose boundary has strictly positive 
curvature. The outer billiard ball map (OBM) is defined from and to the exterior of such a domain 
as taking a point, q, to another point, q, , when the line segment with endpoints q and q, is tangent 
to the boundary, $0 (with a chosen orientation), and the point of tangency with & divides the 
segment in half. 

An invariant circle for the OBM on a smooth convex domain is a smooth, strictly convex 
curve, C, homotopic to &‘I with the property that every point of C is returned to C under glancing 
reflection at the boundary. When any invariant circle for the OBM on any invariant circle is also 
an invariant circle for the boundary we say that the curves satisfy the evolution property. 

Invariant circles for the outer billiard map were first discussed by Moser’ where their exist- 
ence far away from the boundary was proved. The general observation there is that the OBM is 
similar to the usual billiard map, with the advantage that the invariant curves for the OBM do not 
become singular as their distance from the boundary increases. It has been generally believed that 
the OBM and the billiard map have similar behavior, and indeed Tabachnikov2 has observed that 
the OBM is “dual” to the usual billiard map. Tabachnikov has also observed that Lazutkin’s 
construction of invariant circles3 should apply. Lazutkin’s estimates for the billiard ball map 
depend on the smoothness of a certain parameter for invariant curves (Mather’s H for twist maps). 
Here this parameter is analyzed directly, making the previous statement complete. The analysis 
also allows one to calculate expansions for the radius of curvature of an invariant circle directly, 
which yields a characterization of the transitivity property for the OBM. What is perhaps most 
interesting is that the smoothness of the invariant circles for the OBM is no better than that of the 
invariant circles for the usual billiard map, despite the better behavior of the former at infinity. 

More technically, here coordinates which make direct use of the relation between a geometric 
criterion for the invariance of a closed convex curve and the rotation number of the OBM on the 
curve are used to show, via Lazutkin’s theorem,3 that any sufficiently smooth boundary with 
positive curvature has uncountably many invariant circles in any neighborhood of the boundary. 
The same coordinates are used to calculate the relation between the curvatures of the boundary 
and of an invariant circle explicitly (following Ref. 4) and this relation leads to an infinitesimal 
obstruction for the evolution property. Among smooth curves with positive curvature this obstruc- 
tion is only removed for ellipses. 
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Edoh Y. Amiran: Invariant curves for outer billiards 1233 

FIG. 1. q,=B(q) and the invariant curve C. 

The main results are Theorems 3, 5, and 6, which detail the relation between the curvature of 
an invariant circle and the curvature of the boundary, and formulate its consequences. 

II. THE OUTER BILLIARD MAP AND INVARIANT CURVES 

Let RCR2 be a bounded open region with a smooth boundary, &l, whose curvature is strictly 
positive. Then & can be parametrized by tangent angle, 4. Choosing the counterclockwise ori- 
entation and the (1 ,O) direction as the reference for measuring the tangent angle, such regions are 
determined by their radius of curvature. 

Let q be a point in R*\fi. Give da an orientation, say counterclockwise. Then there is a unique 
line through q tangent to XI, at some point 4, so that the line segment 2 has the direction of the 
tangent to & at 4. There is a unique q 1 ~R*\sl with q 1 # q lying on the same tangent line and 
k~~=kr-+~ (h t e norm being calculated in R*). The outer billiard ball map, B, is defined as 
taking q to q , . See Fig. 1 for this definition, Definition 2.1, and the two lemmas of this section. 

An invariant circle for the map B is a closed smooth curve in R’\ln which is isotopic to aa 
and invariant under B. Such curves are characterized by Lemma 1, where the area parameter, A, 
is the analogue of Lazutkin’s parameter for billiards and Mather’s H for twist maps. 

Lemma I: A closed smooth curve C in R*\sl is invariant under B iff the area of the region not 
containing fi and enclosed by C and a chord tangent to &l at 4 is independent of 4. 

Proof:Letq,q,,and+beasaboveandsetr=Iq-41 andZ=Iq,-+I.Denotingtheareaof 
the enclosed region by A, 

dA 1 
@= 5 (P-r*), 

cl 
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1234 Edoh Y. Amiran: Invariant curves for outer billiards 

It is well known that B preserves the Euclidean two-form. This is needed later for a theorem 
about the existence of invariant circles, so for completeness we include an elementary proof of this 
fact. 

Proposition 2: B preserves the Euclidean area. 
Proof: Let points in R*\sl be described by coordinates (&-) as above. The corresponding 

Euclidean coordinates, (x,y), are 

4 4 
x= 

I 
x(u)cos(u)du+r cos(cj), y= 

0 I 
x(u)sin(u)du+r sin(+), 

0 

from which one directly obtains dx//dy = r d+ dr. 
Let (q$ ,r,)=B(+,r), and let 1 be as above. Define the functions a and b by E=a(qS,+,) and 

rl = b(hW. 
Since I= r, 

dr,Ad& = - $- -$--I dlAd+. 
1 

Denote the R2-coordinates of the points q5 and +t (on 6&k) by (x,y) and (x1 ,yt), respectively. 
Then 

x+1 cos(qb)=xI-rrl COS(C$~) and y+l sin(+)=y,-r, sin(+t), 

from which 

a(hfi%)= 
-(Y,-y)cos(~,)+tx,-x)sin(~,) 

sin( A- 4) 

and 

Denoting the angle in R* between the segment &#+ and &l at 4 by t9 and the angle between &$t 
and 6Q at q5t by 8,) a direct calculation shows that 

ab da -1 sin f3t --- =- 
a+ a+, sin e . 

Directly from the geometry one observes that I sin 8=rt sin et, which completes the proof. 
cl 

Ill. RADII OF CURVATURE 

Dejnition 3.1: For CCR*\sl an invariant circle for the outer billiard map, B, on 30, we say 
that &‘I! is the A-involute of C if the area bounded by C and a chord to m (as described in 
Lemma 1) is A. We call A the area parameter for C. 

Let x denote the radius of curvature of C and p denote the radius of curvature of a, both 
given in terms of tangent angle [with respect to a fixed direction, say (LO)]. Assume that C is an 
invariant curve for B. Then p can be obtained from x and the area parameter A using the geometric 
description from Sec. II. We now examine this calculation. 

Fix a value, 4, for the tangent angle, and consider the chord tangent to m at q5 This chord 
meets the invariant circle C at q5-0, and at q5+6$ (by convention both thetas are positive). 
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Edoh Y. Amiran: Invariant curves for outer billiards 1235 

Choose x-y coordinates (in R2) so that the x axis is along the chord, the origin is at q5-- B, , 
and the y axis is perpendicular to the chord and oriented so that points in the region with area A 
have a positive y coordinates. Then in terms of x 

4 4 x(4)= J ~-e x(u)cos(u)du, y(4)= I x(u)sin(u)du, 
I 4-4 

and using Stokes’ theorem to calculate the area (A = Jx dy), 

s 02 A=.- -e x(4+ub(~) du. 
1 

Moreover, since y =0 along the chord, 

I 
e2 

-* x(++u)sin(u)du=O. 
I 

(3.1) 

(3.2) 

Using (3.2) we solve formally for 6$ as a function of 8, : 

~2-~,~~x-~Xf~~+~x-2(Xf)2~~+(-~x-~Xf-~x-3(Xf)3+~x-2XfX~-~x-~X(3))~;( 

+(&x-2xf + g~-~(xf)~- $~-~xfxff+ &x-2X(3))e:+0(e6), (3.3) 

where each x above is evaluated at 4. 
Then using the above in (3.1), the area has the expansion 

(3.4) 

We invert this last relation to obtain 

e,-(~)1/3X-2/3A1/3+(~)2/3~x- 7’3~rA2’3+ ($)(&-‘+ %x-~(x’)~- &x-~,$‘)A + O(A4’3). 

(3.5) 

To calculate the radius of curvature of the boundary, p, we use the distances, r and 1, of 4- 0, 
and ++ f9, from 4. Then 

I 
4 

p(u)cos(u)du-r COS(C$)=X~+ I 
4-4 

x(u)cos(uMu, 
0 0 

s 4 
p(u)sin(u)du-r sin(+)=yo+ I 4- 81 

,y(u)sin(u)du, o 
0 

I o’p(u)cos(u)du+l cos(+)=xo+ 
I 

++e2 
x(u)cos(uMu, 

0 

and 

I + 
p(u)sin(u)du+Z sin(+)=yo+ I ee, 

x(u)sin(u)du. 
0 0 

Using these and r= I we obtain 
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and for r and 1 

and 
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P( 4) = f(r cot( 4) + 1 4 e,)), 

de1 
rW=xW- Wsin(4) 1 -w I 1 

de2 
W)=x(f4+ e2)sin(e2) 1 + w . [ I 

(3.6) 

(3.7) 

Replacing the expressions for r and I in (3.6) and using (3.3) and (3.5), we have 

p~x+(~)2/3(-~x-113-~x-7~3 (x’)2+ ~x-4/3X”)~2/3+(;)4/3(- .Lx-5/3- ~x-11/3(x’)2 

-II_ -1713 
405x 

(x’)4+ &x-8/3Xn+ ~x-14/3(X’)2X”- &x-11/3(X~)2- ~x-11/3x~x(3) 

+ &y-8’3~(4))A4’3 + cI(A~‘~). (3.8) 

Here p and x and the derivatives of x are all evaluated at 4. 
All calculations above were checked by hand, but the calculations involving power series 

were also carried out using Mathematics. 
As a result of the calculations above we are in position to show the following. 
Theorem 3: Assume that the boundary of a table for the outer billiard map is smooth with 

radius of curvature p>O and is the A-involute of the invariant circle C with radius of curvature x. 
Then if x is viewed as fixed, p is a smooth function of Au3 and the coefficient of A2ni3 in the 

expansion of p(A) is an ordinary differential operator in x of order exactly 2n. 
Proof: Equations (3.2) and (3.3) and the implicit function theorem show that 6’, is a smooth 

function of 8,. Then (3.1) and (3.4) and the implicit function theorem show that 0, is a smooth 
function of A us, and (3.6) and (3.7) show that p is a smooth function of A 1’3. Moreover, changing 
the orientation of the table would change the roles of f9t and 0, and hence, in the equations above, 
change their signs. In particular, this would make A negative in (3.4). However, a change of 
orientation would not change p or x so the series for p must be even in A 1’3. 

It is clear that the highest derivative appearing in the expansions obtained from (3.6) and (3.7) 
is the highest derivative in the expansions for x(4- 0,) and x(4+ 6) in (3.6) and that this deriva- 
tive does not cancel in (3.7) because e2- S,+O(@ and because of the dOjldc# terms having 
opposite signs in (3.7). Hence if we truncate the series after the terms involving A2n’3, the 
coefficient in the expansion of p(A) with the highest derivative is an ordinary differential operator 
in x of order exactly 2n. 0 

This theorem is used in Sec. IV. 

IV. THE AREA PARAMETER AND THE ROTATION NUMBER 

The main objective of this section is to show that there is a smooth coordinate change on the 
outer billiard table, to coordinates (&v), so that for each poorly approximated rotation number in 
a neighborhood of 0 there is an invariant circle with that rotation number, and each such curve has 
v=constant on it. In other words, one can “construct” invariant circles using KAM techniques (as 
in Refs. 3 and 5) so that the coordinates depend smoothly on the rotation number. 

The rotation number is, essentially, 8, + 6 of Sec. III, and the smoothness follows from the 
computations there and from the role that the area A plays in characterizing the invariant circles 
(Lemma 1). The remainder of this section supplies the justification for these (yet vague) state- 
ments. 
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Let S’ denote the circle with unit radius and f:S’ -+S’ be a homeomorphism isotopic to the 
identity. Then the rotation number off at $ESI is 

p(g)=& lim f 
‘z-m 

i If’w-f-‘wl~ 

where the distance is measured by tangent angle along S’ with a fixed orientation. 
Poincare showed that for maps of the circle the rotation number is well defined (Ref. 6 or 7) 

and independent of the starting point $ (see section 6 of Ref. 7). 
When & is twice differentiable and has positive curvature and C is an invariant circle for the 

OBM, the OBM restricted to C is diffeomorphic to a map on the circle (through the identification 
of points with the same tangent angles) and thus has a rotation number that is independent of the 
starting point on C. (Since in absolute value the rotation number of a map on the circle and its 
inverse are the same,6 the rotation number is independent of the choice of orientations.) 

Since the rotation number is the same for all points in C, it is equal to its average. Let 
(+‘,r’) =B( +,r) and let ej(+) be the angles formed with the invariant circle, ‘C, by the chord 
tangent to the boundary at q5. Then, 

1 
77=% ]02b2w+ et(+))= &. /02b2w+ wm. (4.1) 

However, ej are smooth functions of A”‘, and, after substituting p+ O(A2’3) for x in (3.5) 
and then in (3.3), we have 

B (4.2) 

In fact, (3.1) and (3.2) show that the coefficients of the term Am’3 in the expansions for ej 
depend on, at most, m derivatives of x. By Theorem 3, x is smooth in Au3 with coefficients of 
A2m’3, depending on at most 2m derivatives of x. Thus (4.2) and the implicit function theorem 
establish the following theorem. 

Theorem 4: Assume that the boundary of a table for the outer billiard map is smooth with 
radius of curvature p>O and is the A-involute of the invariant circle C with radius of curvature x. 

Then if x is viewed as fixed, p is a smooth function of $ and the coefficient of 4” in the 
expansion of p is an ordinary differential operator in x of order exactly 2n. 

Now the series for p in powers of $ with coefficients depending on x and its derivatives can 
be truncated and inverted, yielding an error of the type 0( v2k) for any desired k and depending 
on finitely many, say T, derivatives of p. Say 

k 

Xk(4)-.P(+)+ c Crr~(d~~~* (4.3) 
m=l 

The coordinate & is defined on the entire outer billiard table and 

are coordinates with T fewer derivatives than p, and on an invariant circle, they are the original 
(x,~) coordinates, up to an 0( ~7’~~~) error. These coordinates are smooth in 9 
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1238 Edoh Y. Amiran: Invariant cutves for outer billiards 

Lazutkin used KAM theory to show that the error above can be corrected near a family of 
invariant circles. His result, which transfers exactly to our setting in view of Theorem 4, is the 
following. 

Corollary 5: When p is C’ with 

and (r>3, there is, with a chosen constant O<a<l, a Ck system of coordinates (5,~) defined for 
OSvSa so that 

(1) v=O is the boundary of the outer billiard table, 
(2) .EJ is periodic with period 2rr, and 
(3) for any OG*a with 

the curve V= 77 is an invariant circle for the OBM. 

V. CALCULATION OF AN EQUATION FOR THE TRANSITIVITY PROPERTY 

Let p denote the radius of curvature of Xl. Assume that for each A in some nonempty interval 
[0, T], there is an invariant curve with radius of curvature x s.t. p= V(A ,,Y). Also assume that for 
each AE [0, r] and n>O there are E,=E(A,n), F,=F(A,n), and vn= v(A,n) with 

W,X)=P, V(4,x)=vn, and V(F,,V,)=~, 

so that in addition Eo=R, Fo=O, and as n+* E,--+O while F,+A (v,,-+x as n--+m). Such a 
curve, Jfi, is said to satisfy the transitivity property for the OBM. 

A curve with the transitivity property has an integrable OBM; an invariant circle passes 
through every point sufficiently near the boundary. In contrast, Gutkin and Katok’ have shown that 
a curve with p=O at some point is not integrable. 

Recall from Theorem 3 that 

V(A,x)- 5 Vj(X)A2i’3, 
j=O 

with Vj(X) an ordinary differential operator. We also know that V(O,x)=x so V. is the identity. 
Interpreting V(E, ,V(F, ,x))= V(A,x) in the sense of power series, we obtain 

V,(X)+(V,(X))(E~‘~+F~‘~)+(V~~~(X))E~’~F~’~+(V~(X))(E~‘~+F~’~) 

=Vo(~)+V,(~)A2’3+V2(,y)A4’3+O(A6’3), 

where V\‘““(,y) is the coefficient of A* in V,&+V,(X)A~). 
As n approaches infinity, 

(5.1) 

A2’3-E~‘3+F~‘3+E~‘3g(k)(aE~‘3+bF~’3)+O(A6’3). 

Thus (5.1) with A approaching 0 yields a =0 and 

V:W”~tA>)=V,(X(A))GOItA))+2V2(XtA)) CG(x)=bgtx)l. 

(5.2) 
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Edoh Y. Amiran: Invariant cutves for outer billiards 1239 

Above, g and G depend on the curve, but are independent of the tangent angle, and the radius of 
curvature is evaluated at the same point (tangent angle). 

Since as A +O, X(A) +p, 

After solving for VI and V, from the geometric description (see Sec. III) and calculating V\wo, 
this equation becomes 

Equation (5.3) must be satisfied by any C5 convex curve on which the OBM has the transi- 
tivity property. It is satisfied by the radius of curvature of any ellipse and its rotations. 

We are set to complete the proof the following theorem. 
Theorem 6: The only closed planar curves with positive curvature that satisfy the transitivity 

property for the outer billiard map are ellipses. 
Proo$ We have a fourth-order differential equation in the radius of curvature with one unde- 

termined parameter (G). The solutions in which we are interested represent closed curves, so two 
conditions must be satisfied (one for each coordinate). Thus, loosely speaking, we obtain a three- 
parameter family of solutions which match with ellipses and their rotations. We need to show that 
the closure conditions are not automatically satisfied. 

More precisely we argue as follows. Notice that the left-hand side of (5.3) is homogeneous of 
degree -5/3 under dilations of R2 (i.e., scaling of the radius of curvature), while the right-hand 
side is homogeneous of degree - l/3. It is clear from (5.2) that G>O, so we may assume that the 
region is so scaled that G(w) =(3/2)2/3/15 (thi s number is chosen so that circles are represented by 
the unit circle). Next note that if a curve is closed and its radius of curvature is positive, then its 
radius of curvature is bounded below by a positive number, and thus a solution to Eq. (5.3) 
develops no singularities as 4 increases. It follows that the solutions to (5.3) representing such 
curves vary smoothly with the initial conditions. 

Since we are only interested in closed curves, we may assume that the curve has a maximum 
at tangent angle 0, so p’(O)=0 [and p”(O)=~o]. Retaining the assumption that G(~)=(3/2)~~/15, we 
are left with three initial conditions, p(O), p”(O), and P(~)(O). For any (positive) value of p(O), say, 
there is an ellipse with that radius of curvature at its minimum and G=(3/2)u3/15. 

Since the solution varies smoothly with initial conditions, it suffices to fix p(O) and vary p”(0) 
and P(~)(O) from those of the ellipse to check that the resulting curves are not closed (their radius 
of curvature is not periodic with period 2179. This will show that the closure conditions are not 
automatically satisfied. 

Numerically calculated solutions (see the end of this section) show that when either p”(0) or 
P(~)(O) are varied the solution does not have period 27r and that, moreover, when p”(0) is varied 
p’(O) and ~‘~‘(0) move in the same direction while when P(~)(O) is varied p’(O) and P(~)(O) move in 
opposite directions. Thus varying p”(0) and P(~)(O) simultaneously still results in a solution that 
represents a curve which is not closed. Since there are no singularities, there are no isolated 
solutions and this completes the proof. 

0 
In satisfying G=(3/2)u3/15 we use the fact that for an ellipse with major axis 2a and minor 

axis 2b the radius of curvature is 

a2b2(a2 sin( +)2+ b2 cos( +)2)-3’2, 

and the constant is 
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4O 1 2 , 3 4 5 I 6 7 

FIG. 4. An increase in p”(O). 

G= &($)2/3u-2/3b-2/3a 

The graphs in Figs. 2-4 represent solutions to Eq. (5.3) computed by Matlab with a fourth- 
and fifth-order Runge-Kuta-Fehlberg solver and an error tolerance set at 0.001 (the extra digit is 
reported for roundoff). In Figs. 2-4 p is represented by a solid line, p’ by a dashed line, p” by a 
dotted line, and pC3) by a line of dashes and dots. 

Figure 2 corresponds to p(O)= 1.953 1, p’(O)=O, p”(O)= -8.44573974609, and pC3)(0)=0 and 
the (periodic) solution is an ellipse with parameters a= 1.25, b=O.& Figure 3 corresponds to 
p(O)= 1.9531, p’(O)=O, p”(O)=-8.44573974609, and pC3)(0)=5. For this case p(2~)=1.9531, 
p’(27r)= -0.5187, p”(27$=-8.2622, and pC3)(27r)= 18.2086. Figure 4 corresponds to p(O) 
=1.9531, p’(O)=O, d’(O)=O, and pC3)(0)=0. For this case p(27~)=1.6130, p’(27r)=1.6053, 
$‘(2~)=2.8857, and pC3)(27r)=2.5541. 
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