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Spawning, Development, and the Duration of Larval
Life in a Deep-Sea Cold-Seep Mussel

SHAWN M. ARELLANO1,2,* AND CRAIG M. YOUNG1

1Oregon Institute of Marine Biology, University of Oregon, P.O. Box 5389, Charleston, Oregon 97420
2Current address: Department of Biology, The Hong Kong University of Science and Technology,

Clear Water Bay, Hong Kong SAR.

Abstract. We describe culturing techniques and develop-
ment for the cold-seep mussel “Bathymodiolus” childressi,
the only deep-sea bivalve for which development has been
detailed. Spawning was induced in mature mussels by in-
jection of 2 mmol l�1 serotonin into the anterior adductor
muscle. The mean egg diameter is 69.15 � 2.36 �m
(�S.D.; n � 50) and eggs are negatively buoyant. Cleav-
ages are spiral and at 7–8 °C occur at a rate of one per 3–9
h through hatching, with free-swimming blastulae hatching
by 40 h and shells beginning to develop by day 12. When
temperature was raised to 12–14 °C after hatching, larvae
developed to D-shell veligers by day 8 without being fed.
Egg size and larval shell morphology indicate that “B.”
childressi has a planktotrophic larva, but we did not observe
feeding in culture. Wide distribution of this species through-
out the Gulf of Mexico and amphi-Atlantic distributions of
closely related congeners suggest that larvae may spend
extended periods in the plankton. Duration of larval life was
estimated for “B.” childressi by comparing calculated set-
tlement times to known spawning seasons. These estimates
suggest variability in the larval duration, with individuals
spending more than a year in the plankton.

Introduction

Earlier predictions that development in the deep sea
should be limited to brooding and direct development (e.g.,
Thorson, 1950) have now been negated (Pearse, 1994;
Young, 1994), and it is well-accepted that virtually all
known modes of development are found in the deep sea
(reviewed by Young, 2003). Ever since abundant life was

discovered at hydrothermal vents (Lonsdale, 1977; Corliss
and Ballard, 1977) and later at cold methane seeps (Paull et
al., 1984; Hecker, 1985) it has been recognized that larval
dispersal is a central issue in understanding the connected-
ness and colonization of these patchy and often ephemeral
habitats (Corliss and Ballard, 1977; Corliss et al., 1979;
Lutz et al., 1980, 1984). Moreover, it was soon recognized
that our traditional understanding of the relationships
among developmental mode, dispersal potential, and geo-
graphic range may not always hold true in these chemosyn-
thetic systems (Lutz et al., 1980, 1984) or even in the deep
sea in general (Young et al., 1999). For example, plank-
totrophic (feeding) larvae are generally presumed to dis-
perse for longer times and greater distances than lecithotro-
phic larvae or brooded embryos (Thorson, 1950; Wray and
Raff, 1991), but developmental and metabolic rates de-
crease with temperature (Clarke, 1983) and can result in an
extended dispersal potential for lecithotrophic larvae in the
cold deep sea (Lutz et al., 1984; Turner et al., 1985;
Gustafson and Lutz, 1994; Young et al. 1997; Le Pennec
and Beninger, 2000; reviewed by Young, 2003; O’Connor
et al., 2007). Laboratory studies describing developmental
modes, developmental rates, larval duration, and physiolog-
ical tolerances of larvae as well as current measurements in
the field are required to relate developmental mode to dis-
persal potential and geographic distribution (Lutz et al.,
1984; Turner et al., 1985).

Culturing larvae of deep-sea species was once thought
impossible (e.g., Turner et al., 1985) and is admittedly
difficult. Nevertheless, a number of deep-sea invertebrates
have been cultured at least through the early larval stages.
For example, numerous bathyal echinoderms have been
cultured to the four-arm pluteus stage (Mortensen, 1921;
Young and Cameron, 1989; Young et al., 1989), and two
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species have been reared to more advanced stages (Prouho,
1888; Young and George, 2000). It is much more difficult to
culture species from abyssal depths, where embryos often
require high pressures to develop (Young and Tyler, 1993;
Young et al., 1996a). Nevertheless, a few hydrothermal-
vent and cold-seep organisms have been cultured through
the early embryonic stages, with the abyssal vent organisms
requiring the use of pressurization techniques (Young et al.,
1996b; Eckelbarger et al., 2001; Pradillon et al., 2001,
2005; Marsh et al., 2001).

Mytilid mussels, which are among the most prominent
members of many reducing communities, inhabit a wide
depth range of cold-seep communities along the upper con-
tinental slope in the northern Gulf of Mexico. Five species
of mytilid mussels of the subfamily Bathymodiolinae have
been described from seeps in this region (Gustafson et al.,
1998). Among them, “Bathymodiolus” childressi Gustafson
et al., 1998, a mixotrophic mussel harboring methane-oxi-
dizing endosymbionts in the gills, resides at cold seeps over
a depth range from �540 m to 2200 m (Gustafson et al.,
1998). The unique morphology of “B.” childressi
(Gustafson et al., 1998) and a recent analysis of molecular
phylogeny (Jones et al., 2006) evoke uncertainty about the
placement of this species in the genus Bathymodiolus, lead-
ing to the use of quotation marks around the genus name of
“Bathymodiolus” childressi (Gustafson et al, 1998; Jones et
al., 2006). Within the Gulf of Mexico, there is no evidence
for genetic differentiation between “B.” childressi popula-
tions from the shallowest and deepest seep sites, nor is there
a relationship between genetic structure and geographic
distance across its range, suggesting widespread larval dis-
persal (Carney et al., 2006). Small egg size, postulated high
fecundity, and the shell apices of four vent bathymodiolin
mussels (reviewed in Tyler and Young, 1999) and three
seep bathymodiolin mussels including “B.” childressi
(Gustafson and Lutz, 1994, Gustafson et al., 1998) all
suggest that these species develop planktotrophically and
therefore may have high dispersal potential.

Neither the developmental mode nor larval duration of
“B.” childressi has been determined. Moreover, no descrip-
tions of either early embryology or complete larval devel-
opment have been published for any deep-sea mollusc (re-
viewed by Young, 2003; but see Van Gaest, 2006). This
study provides the first description of larval culturing tech-
niques and larval development through the early veliger
stage for any hydrothermal-vent or cold-seep bivalve and
includes a description of the larval shell that can assist in
identifying larvae collected from the plankton. We also
provide an indirect estimate of larval life span based on a
comparison of known spawning times with settlement times
estimated from field data on juvenile growth and recruit-
ment.

Materials and Methods

Collection sites

“Bathymodiolus” childressi adults were collected from
two cold-seep sites on the upper continental slope of Lou-
isiana. Mussels were sampled primarily from Brine Pool
NR1 (27°43�24��N, 91°16�30��W), a brine-dominated seep
located about 285 km southwest of the Mississippi Delta at
a depth of �650 m (MacDonald et al., 1990). When com-
pared to mussels at sites dominated by petroleum seepage
(MacDonald, 1998), mussels at the Brine Pool tend to have
faster growth and better physiological condition (Nix et al.,
1995; Bergquist et al., 2004). Occasionally, mussels were
sampled from Bush Hill (27°47�N, 91°30�24��W), an oil-
dominated seep at �540 m depth that is characterized by
large aggregations of vestimentiferan tubeworms associated
with clumps of “B.” childressi mussels (McDonald, 1998).
Mussels at this site grow relatively slower and are in poorer
physiological condition than those at Brine Pool (Nix et al.,
1995; Bergquist et al., 2004).

Collection and maintenance

The Johnson-Sea-Link I and II submersibles (Harbor
Branch Oceanographic Institution) were used to collect
samples. Collections were made with the submersible’s
hydraulic clamshell scoop and placed in a thermally stable
acrylic box for transport to the surface. Additionally, mus-
sels were placed in plastic mesh cages at the Brine Pool and
recovered later using acoustic releases (see Tyler et al.,
2007). Once on deck, the mussels were immediately trans-
ferred to clean, cold seawater and maintained in a cold room
(7–8 °C) until they were transported back to the Oregon
Institute of Marine Biology (OIMB). When shipboard main-
tenance time was lengthy (up to 2 weeks), aquaria contain-
ing mussels were bubbled with methane gas periodically
and aerated constantly, and seawater was changed regularly.

Aquaria for long-term maintenance at OIMB consisted of
a row of six recirculating tanks (150 l each) connected to a
titanium-coil seawater chiller set at 7–8 °C. Plastic baskets
containing the mussels were transferred daily to a chilled
recirculating feeding tank (200 l) where mussels were “fed”
by bubbling methane and air into the tank for at least 30
min. Methane levels reach greater than 200 �mol l�1 at the
Brine Pool cold seep (Smith et al., 2000), but only up to 60
�mol l�1 at Bush Hill (Nix et al., 1995). Because we were
unable to measure the methane concentrations in the sea-
water to determine when the system was saturated with
methane, we left mussels in the feeding tank for at least 3 h
with only air bubbling into them, allowing time to oxidize
any remaining methane. Both tank systems were filled with
raw seawater from the OIMB running seawater system,
which pumps from the inlet of Coos Bay, Oregon, only on
incoming tides (salinity 32). Seawater was changed approx-
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imately monthly in the feeding tank and once every few
months in the maintenance tanks.

Spawning and culturing

Histological evidence indicates that “B.” childressi at the
Brine Pool and Bush Hill spawn periodically each year over
an extended period that lasts from October to February
(Tyler et al., 2007). Mussels collected prior to the known
spawning season were maintained for up to several months
and used for developmental studies in the late fall and
winter.

Spawning and culturing procedures were developed from
recommendations reviewed by Strathmann (1987). Spawn-
ing was induced in mature mussels (sizes ranging from �50
mm to �120 mm) by a 0.4–0.5-ml injection of 2 mmol
l�1serotonin into the anterior adductor mussel. Prior to
injection, mussels were scrubbed and rinsed in fresh water.
After injection, about 12 mussels were placed in a single 4-l
container of 0.22-�m filtered seawater and kept in a 7–8 °C
cold room until they spawned. After mussels spawned,
fertilized eggs were cleaned and placed in clean 0.22-�m
filtered seawater. Embryos were maintained in a 7–8 °C
cold room. One set of cultures in November 2003 (Table 1)
was divided after hatching between a 12–14 °C seawater
table and the 7–8 °C incubator. For general maintenance,
dense cultures (up to 50 embryos per ml) were kept in 2-l
glass jars and were not stirred. Larvae were fed Isochrysis
galbana (approximately 40,000 cells per ml) after hatching,
and water was changed daily.

Microscopy

Light micrographs were taken of each developmental
stage on an Olympus BX50 compound microscope with a

40� Nomarski DIC objective, using an Optronics Microfire
digital camera. Developing shells were visualized using
cross-polarizing filters.

Representative stages were fixed for scanning electron
microscopy in 2.5% glutaraldehyde, washed with Mil-
lonig’s 0.2 mol l�1 sodium phosphate buffer wash, and
post-fixed in 1% osmium tetroxide buffered in 0.4 mol l�1

Millonig’s buffer and 0.75 mol l�1 NaCl (1:1:2). Scanning
electron micrographs were taken of eggs, embryos, and
larvae on a JEOL 6400F field emission scanning electron
microscope.

Embryological timing

Because spawning attempts were most successful when
multiple mussels were placed in a single container over an
extended period of time, our cultures were never synchro-
nous. We drew regular samples of at least 100 embryos and
staged them all under 40� magnification to construct an
approximate timetable for development at 7–8 °C. How-
ever, because we could not pinpoint a fertilization time (as
can be done with synchronous cultures), our timetable was
measured from the time that sperm were removed from the
cultures.

Estimation of planktonic larval duration

Scoops of “B.” childressi were taken from the “inner
zone” (Smith et al., 2000; Arellano, 2008) of the Brine Pool
cold seep in March 2002, October 2002, February 2003,
September 2003, November 2003, and July 2004. Upon
recovery of the mussels, we counted and measured new
recruits (individuals � 10 mm) and plotted the size-fre-
quency distributions of individuals in 1-mm bins. From the
measured lengths, we back-calculated the approximate date

Table 1

Summary of data on collection and maintenance of large “Bathymodiolus” childressi mussels from the Brine Pool and Bush Hill cold seeps, spawning
conditions, and maximum developmental stage attained before cultures ceased developing

Collection date

Adult mussel maintenance Spawning conditions

Months maintained at OIMB Month induced Induced separately?1 Max. dev. stage

June & October 2002 2–5 December 2002 Yes 16-cell
June & October 2002 3–6 January 2003 No Shells forming
February 2003 0.5 March 2003 No Hatched
November 2003 0.5 December 2003 No Hatched
November 2003 0.5 December 2003 Yes No fertilization
November 2003 2 January 2004 Both D-shell2

November 20033 2.5 February 2004 Yes Hatched
July 2004 5 January 2005 Yes Few hatched
July 2004 6 February 2005 Yes No development
August 2006 2–3 October–November 2006 No Hatched

1 Mussels were either maintained together or kept in separate containers during induction of spawning.
2 D shells developed in a culture that had been raised from an incubation temperature of 7–8 °C to 12 °C about 48 h after hatching.
3 Some of the mussels induced were maintained at C.R. Fisher’s lab at The Pennsylvania State University for up to one year.
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of settlement, using a settlement size of 0.5 mm long (the
approximate size of the prodissoconch in newly settled
juveniles) and the mean growth rate determined by a mark-
recapture experiment. Six individuals ranging in length
from 9 to 18.5 mm were attached, using cyanoacrylate
adhesive (“super glue”), in a known order to sheets of 1-mm
plastic mesh and placed in cages (13 � 13 � 8 cm3) near the
Brine Pool (Arellano, 2008). Upon recovery of the mussels
8 months later, we measured the lengths of the individuals
again and calculated a mean growth rate of 1.44 � 0.30
(S.D.) mm 30 d�1 (Arellano, 2008). This calculated growth
rate also agrees with the growth rate for this size class
calculated from Smith et al. (2000). We plotted the esti-
mated percentage of individuals settling each month over
the entire sampling period.

Shell description

Veloconcha were collected with larval tube traps placed
at the Brine Pool cold seep. Tube traps were PVC pipes 5
cm wide and 30 cm tall (aspect ratio � 6) that were
mounted on iron discs that weighed �2 kg. The tubes had
their tops open to capture larvae by horizontal advection
across the openings (Yund et al., 1991). Studies suggest that
cylindrical traps with aspect ratios above 4 are least suscep-
tible to resuspension (Yund et al., 1991). In our samples,
very few bivalves captured had begun to form a dissoconch.
Larval tube traps were filled with 10% formalin buffered in
seawater to prevent escape of larvae (Yund et al., 1991).
Post-larvae were collected from settlement racks (Arellano,
2008) and from nylon mesh (“S.O.S.Tuffy”) scouring pads
placed on the “B.” childressi mussel bed at the Brine Pool
cold seep. Upon recovery, veloconcha and juveniles were
transferred to 70% ethanol.

Shells were cleaned in 5% sodium hypochlorite solution,
rinsed with distilled water, air-dried, and mounted on adhe-
sive carbon discs for scanning elecron microscopy (Rees,
1950; Fuller and Lutz, 1989). Procedures to accurately
document the shapes and dimensions of the larval bivalve
shells were modified from those of Fuller et al. (1989). The
following measurements were taken for 10 larval and post-
larval shells: height and length of prodissoconch II or dis-
soconch, shell length and straight hinge length of the pro-
dissoconch I (if possible), provinculum length, and number
of teeth. For larval shells, length is the greatest dimension
approximately parallel to the provinculum and height is the
greatest dimension perpendicular to the hinge line. For
post-larval shells, dimensions follow the convention for
adults, with length measured as the greatest anteroposterior
dimension and height as the greatest dorsoventral dimension
(Gosling, 1992).

Results

Spawning and culturing

Vigorous handling, rapid temperature changes, stretching
of the adductor muscles, and electrical shock have proved
successful in inducing spawning in mussels and other bi-
valves (Strathmann, 1987), but none of these techniques
induced spawning in “Bathymodiolus” childressi. Serotonin
injection induced spawning in mature mussels usually
within about 8–12 h. Spawning was most successful when
several mussels that had been injected with serotonin were
placed in a single container. Attempts to spawn mussels in
individual containers to keep sperm and eggs separate were
mostly unsuccessful, but occasionally produced cultures
that developed to hatched blastula larvae (Table 1). Spawn-
ing could be induced regularly in mussels that had been
maintained in the laboratory for up to several months (Table
1). Twice, mussels that were maintained in C.R. Fisher’s
laboratory at The Pennsylvania State University for up to
one year were induced to spawn with serotonin injection.
However, normal development proceeded to the D-shell
veliger stage only once: when mussels were collected dur-
ing their spawning season and maintenance time at OIMB
was less than 2 months (Table 1).

Natural spawning occurred in the laboratory on two oc-
casions. In both cases, mussels were collected late in the
summer. Mussels that were collected in July 2004 and
August 2006 spawned in late August to September 2004 and
late August 2006, respectively. In both years these cultures
developed to hatched blastula larvae but never began form-
ing shells.

Mussels released gametes bound in mucus, but eggs
easily dissociated from the mucus. No attempts were made
to estimate fecundity, as induction with serotonin can be
unreliable and often induced spawning of immature oo-
cytes.

Development

The mean egg diameter was 69.15 � 2.36 �m (� S.D.;
n � 50). Eggs are negatively buoyant, and eggs and em-
bryos are dense and optically opaque. Fertilization was
evident by appearance of a thin fertilization envelope (Fig.
1b). In no case was fertilization 100% successful; generally
it was less than 50%. Polar bodies appeared within about
2.5 h of fertilization (Figs. 1c, 2a; Table 2). Polar lobes
developed prior to first cleavage (Fig. 1c), which resulted in
two unequal blastomeres (AB and CD) (Figs. 1e, 2b). After
7–15 h, the second cleavage produced three equal bas-
tomeres (A, B, C) and a larger D blastomere (Figs. 1f, 2c;
Table 2). Successive cleavages followed the typical mollus-
can spiral cleavage pattern at an average developmental rate
(at 7–8 °C) of one division per 3–9 h through hatching, with
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free-swimming blastula larvae hatching from their fertiliza-
tion envelopes by 40 h (Table 2).

At 7–8 °C, shells began forming on day 6. In cultures that
were increased in temperature to 12–14 °C after hatching,
more individuals developed shells than in cultures that
remained at 7–8 °C. On day 6, 11% had shells in 7–8 °C
cultures (n � 101) and 28% had shells in 12–14 °C cultures
(n � 103). In some cases, development was delayed, with
larval shell formation beginning as late as day 12. Larvae
developed to D-shell veligers by day 8 in cultures that were
increased to 12–14 °C after hatching, and these larvae were
never fed. At day 10, these D-shell veligers ranged from
86.70 to 103.56 �m long (� S.D. � 96.24 � 8.31; n � 4).

There was no evidence that larvae fed on Isochrysis
galbana in the laboratory. Algae were not observed in the
gut either with normal DIC optics or with epifluorescence.
Cultures were maintained for up to 2 weeks but never
metamorphosed in the lab.

Although we could not rear larvae to metamorphosis, we

estimated the planktonic larval duration by examining the
size distribution of new recruits. Generally, we saw only
one clear size peak of individuals �10 mm per sampling
period (Fig. 3). Putting all the samples together, we esti-
mated five distinct settlement peaks over the 34-month
period (Fig. 4; Table 3). The largest calculated settlement
peak occurred in November 2001 (Fig. 4), resulting in the
recruits we collected in March 2002 (Fig. 3). Although this
larger peak is due in part to higher sampling effort, we did
note a higher percentage of new recruits in the March 2002
collection than in any other sample; nearly 50% of all the
mussels collected were �10 mm in length. This size class
made up less than 30% of the total sample in all other
sampling periods (Arellano, 2008). By comparing the dates
of the calculated settlement peaks to the spawning periods
immediately preceding them, we estimated a planktonic
larval duration of up to 13 months (Table 3).

Figure 5 shows larval and post-larval shells of “B.”
childressi collected in larval tube traps and on settlement

fm

pb

pl

AB
CD

c
sh

v

Figure 1. Light micrographs of “Bathymodiolus” childressi gametes and larvae. (A) Sperm, with clearly
visible acrosomes, scale bar � 30 �m; (B) fertilized egg; (C) polar body extrusion; (D) third polar lobe; (E)
2-cell stage with AB and CD cells indicated; (F)–(I) 4–32-cell stages; (J) hatched blastula with long uniform
cilia; (K) shell formation with shells illuminated by cross-polarized light; and (L) D-shell veliger larva. (B)–(L)
Scale bar � 50 �m. fm, fertilization membrane; pb, polar body; pl, polar lobe; c, cilia; sh, shell; v, velum.
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surfaces. Prodissoconchs I and II were reddish (as previ-
ously noted by Gustafson et al., 1998), in sharp contrast to
the yellowish dissoconchs (Fig. 6). Lengths of larval shells

(PII) collected in the tube traps ranged from 432.71 to
453.60 �m (� S.D. � 442.56 � 8.84 �m; n � 5). For these
shells, the length of prodissoconch I was 113.35 � 2.02 �m
and the provinculum was 210.15 � 10.94 �m long, with 31
teeth (Table 4, Fig. 5b). Teeth along the hinge line were
numerous and fine and increased in size along the anterior
and posterior extensions of the provinculum (Fig. 5b). Lar-
val shells exhibited the “egg shape” (Figs. 4, 5) that is
characteristic of mytilids (Chanley, 1970; Le Pennec, 1980).

Discussion

A major hurdle to the study of hydrothermal-vent and
cold-seep organisms is the extreme difficulty of culturing
their larvae. To date, only a handful of hydrothermal-vent
and cold-seep organisms have been cultured. The vestimen-
tiferan tubeworm Riftia pachyptila (Marsh et al., 2001) and
the alvinellid polychaete Alvinella pompejana (Pradillon et
al., 2001, 2005), both from the East Pacific Rise, have been

Figure 2. Scanning electron micrographs of embryos and larvae of “Bathymodiolus” childressi. (A)–(D)
Polar body through 8-cell stages; (E)–(H) ciliary band formation; and (I)–(L) early veligers. Scale bars � 10 �m.
pb, polar body; d, large D cell; cb, ciliary band; sh, shell; pt, primary trochoblasts; at, apical tuft; v, velum.

Table 2

Approximate developmental timetable for “Bathymodiolus” childressi

Age (hours)1 Developmental stages present

2.5 Polar body extrusion–2-cell
7 Polar body extrusion–4-cell

15 4–8-cell
21 8–16-cell
30 32-cell–morula
40 32-cell–hatched

�170 Shelled
�50 Shelled2

�185 D shell veligers2

1 Ages are the earliest noted development times at 7–8 oC.
2 Culture temperature was raised to 12 °C after hatching.
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cultured using pressurization techniques. More recently,
Miyake et al. (2006) cultured the vestimentiferan tubeworm
Lamellibrachia satsuma that inhabits shallower hydrother-
mal vents in Kagoshima Bay, Nankai Trough, and along the
Izu-Pgasawara Ridge at atmospheric pressure. From cold
seeps in the Gulf of Mexico, two vestimentiferan tube-
worms, Lamellibrachia luymesi and Seepiophila jonesi,
have been cultured to trochophore larvae (Young et al.,
1996b); the polychaete “iceworm” Hesiocaeca methanicola
that resides in methane hydrates at seep sites has been
cultured to early ciliated larvae (Eckelbarger et al., 2001);
and most recently, encapsulated embryos of the cold-seep
neritid gastropod Bathynerita naticoidea have been reared
in the laboratory to free-swimming, feeding veligers (Van
Gaest, 2006). Bathymodiolin mussels, which are dominant
members of both hydrothermal-vent and cold-seep commu-
nities, have not been cultured until now, nor has their larval
development been described previously.

Spawning

Like their shallow-water mytilid ancestors (Strathmann,
1987), there is evidence that the hydrothermal vent mussels
Bathymodiolus azoricus (Comtet and Desbruyères, 1998;
Comtet et al., 1999; Colaço et al., 2006) and Bathymodiolus
puteoserpentis (Le Pennec and Beninger, 1997) have sea-
sonal gametogenic cycles. Likewise, gametogenesis in “Ba-
thymodiolus” childressi is strongly periodic and synchro-
nous among at least three seep sites in the Gulf of Mexico,
with the initiation of gametogenesis from December to
March, followed by a period of gamete proliferation and
spawning from October to February of the following year
(Tyler et al., 2007). In the laboratory, “B.” childressi
spawned most readily and cultures developed the furthest
when they were collected in November 2003, which is the
middle of their spawning season (Tyler et al., 2007), and
maintained in the laboratory for only a short period of time
(Table 1). We found that cultures produced from mussels
taken outside of the predicted October to February spawn-
ing season (Tyler et al. 2007) did not develop as far or as
regularly as those from mussels taken within the spawning
season. Spawning of “B.” childressi mussels could be con-
sistently induced via serotonin injection by placing multiple
individuals of both sexes together in one container after
injection; however, using mussels that were collected in
November 2003, we successfully produced a small culture
that developed to the hatched blastulae stage by inducing
mussels individually and obtaining sperm and eggs sepa-
rately. This suggests that while the presence of gametes of
conspecifics may help induce spawning in “B.” childressi, it
may not be necessary if the adults are collected while they
are ripe enough to spawn and are maintained in the labora-
tory for a minimal time period.

Tyler et al. (2007) note that the spawning period is 3–4
months in duration, suggesting that individuals could regen-
erate and spawn repeatedly as seen in Mytilus edulis (Myint
and Tyler, 1982). Our laboratory studies lend credence to
this suggestion; we were able to induce spawning in the
same mussels repeatedly over several months, and could
even induce spawning in some mussels that had been main-
tained in the laboratory for up to one year (Table 1).

Development

Early embryonic cleavage patterns in “B.” childressi are
characteristic of molluscs (Figs. 1, 2). As is typical for
embryos developing in the cold waters of the deep-sea
(Mullineaux and France, 1995; O’Connor et al., 2007),
development of “B.” childressi is slow, taking 40 h to reach
the hatched blastula stage and about one week to begin
developing shells at 7–8 °C (Table 1). We cultured larvae of
“B.” childressi to D-shell veligers only when the parent
mussels were collected during the peak of their spawning
season (Table 1) and the temperature was raised from 7–8

Figure 3. Size-percent frequency for new recruits (� 10-mm length)
of “Bathymodiolus” childressi at the Brine Pool cold seep in March and
October 2002; February, September, and November 2003; and July 2004.
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°C to 12–14 °C immediately following hatching. D-shell
veligers developed at day 8 (approx. 192 h) and were
maintained through day 10 (max. shell length � 103.56
�m). This growth rate is about half that of shallow-water
mytilids. The shallow-water mussel Mytilus edulis develops
to the D-shell veliger stage by 42 h at 9 °C (Strathmann,
1987), and Sprung (1984) estimates that larvae of M. edulis
form a complete D-shell at 104 h from fertilization at 6 °C
under high food conditions (40 cells ml�1). We were unable
to rear larvae beyond the straight-hinge stage.

Because larval culturing techniques had not been devel-
oped for deep-sea hydrothermal-vent or cold-seep molluscs
until now, developmental mode has been inferred in bathy-

modiolin mussels by examining characteristics such as egg
size and the relative size of the larval shell regions (prodis-
soconch I and II in bivalves). Traditionally, larvae from
species with small eggs are inferred to be planktotrophic
and to require an extended period in the plankton, and those
from species with large eggs are inferred to be lecithotro-
phic and settle out of the plankton relatively quickly (Thor-
son, 1950; Wray and Raff, 1991). The relative sizes of the
prodissioconch I and II are related to oocyte size. A rela-
tively large prodissonconch I indicates lecithotrophy since it
is produced from energy reserves in the egg, while a rela-
tively large prodissoconch II indicates planktotrophy since
it is produced during feeding (Ockelmann, 1965; Lutz et al.,
1980).

The egg size of “B.” childressi falls within the range of
those known for other bathymodiolin mussels and is indic-
ative of planktotrophy. Mean egg diameter for “B.” chil-
dressi is 69.15 � 2.36 �m (� S.D.; n � 50). The egg
diameters of the hydrothermal-vent mussels Bathymodiolus
azoricus (Menez Gwen) range from 70 to 80 �m (Colaço et
al., 2006), Bathymodiolus puteoserpentis (Snake Pit) range
from 50 to 60 �m (Hessler et al., 1988), Bathymodiolus
elongates (Fiji) range from 50 to 60 �m (LePennec and
Beninger, 1997), and Bathymodiolus thermophilus is known
to have a small (about 50 �m) egg size (Berg, 1985). Egg
sizes of all of the bathymodiolin mussels also fall within the

Figure 4. Percent of settlement (n � 969) by month for “Bathymodiolus” childressi at the Brine Pool cold
seep over a 34-month period. Settlement dates were back-calculated from the lengths of recruits (Fig. 3), using
a growth rate of 1.44 � 0.30 (S.D.) mm 30 d-1 and a settlement size of 0.5 mm. Spawning period is indicated
between vertical lines.

Table 3

Estimates of planktonic larval duration of “Bathymodiolous” childressi
based on major settlement peaks (from Fig. 4) and spawning seasons
from October through February (Tyler et al., 2007)

Settlement peak Previous spawning period
Approximate

larval duration

November 2001 October 2000–February 2001 9 to 13 months
May 2002 October 2001–February 2002 2 to 8 months
November 2002 October 2001–February 2002 9 to 13 months
June 2003 October 2002–February 2003 3 to 8 months
March 2004 October 2003–February 2004 up to 5 months
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size range (60 to 90 �m) reported for their shallow-water
relative Mytilus edulis, which has planktotrophic larvae
(Lutz and Kennish, 1992).

Likewise, the relatively small prodissoconch I and large
prodissoconch II of larvae of “B.” childressi are indicative

of planktotrophy, as previously noted by Gustafson et al.
(1998). In “B.” childressi, the prodissoconch I length
ranges from 111.45 to 115.69 �m (� S.D. � 113.35 �
2.02) (Table 4). Similarly, five other bathymodiolin mussels
from hydrothermal vents and cold seeps have prodissoconch

lg

Figure 5. Larval and post-larval shells of “Bathymodiolus” childressi
collected in situ in larval tube traps and on settlement plates. (A) A larval
and two post-larval shells with the PII lengths (�m) shown, and the
corresponding photographs in (B) and the provinculum of each shell, with
their lengths (�m) listed. lg marks the ligament.

Figure 6. Post-larva of “Bathymodiolus” childressi collected in situ at
the Brine Pool cold seep. Note the easy distinction of the reddish (darker
gray in figure) prodissoconch II (PII) from the yellowish (lighter gray)
dissoconch (dc). Scale bar � 500 �m.

Table 4

Larval and post-larval shell dimensions for “Bathymodiolus” childressi

Shell type

PI1
PII /

Dissoconch1 Provinculum

Hinge2 Length Length Height Length # Teeth

D-shell3 71.98 103.56 n/a n/a unknown unknown
Larval 91.19 — 453.6 428.08 221.21 31

89.58 115.69 443.23 416.45 204.23 31
90.46 114.35 434.86 408.54 202.55 31
89.66 111.45 448.39 408.96 222.78 31
86.14 111.9 432.71 416.10 199.96 31

Mean 89.41 113.35 442.56 415.63 210.15 31
S.D. 1.94 2.02 8.84 7.92 10.94 0
Post-larval 92.37 115.81 474.24 462.56 222.17 31

91.87 118.73 546.82 454.17 209.04 31
92.09 117.42 547.82 460.76 212.87 31

Mean 92.11 117.32 na na 214.69 31
S.D. 0.25 1.46 na na 6.75 0

1 PI and PII are the prodissoconchs I and II and are measured for
D-shells and larval shells. PI and dissoconch are measured for post-larval
shells.

2 Hinge is the length of the hinge line.
3 D-shell is an individual cultured in the laboratory.
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I larval shells that range from 95 to 137 �m (Table 5).
Prodissoconch I larval shells in shallow-water mytilids
range down to 85 �m, as reported for Brachidontes exustus
by Fuller and Lutz (1989), and up to 120 �m as reported for
Mytilus edulis by Sprung (1984) (Table 5). The maximum
lengths of the prodissoconch II shells in bathymodiolin
mussels, up to 600 �m for Bathymodiolus azoricus (Salerno
et al., 2005), are considerably longer than in shallow-water
mytilids, which reportedly range up to only 252 �m for
veligers of M. edulis (Sprung, 1984) (Table 5). Considering
that developmental rates are slower for “B.” childressi than
for M. edulis, development of bathymodiolin larvae to
nearly twice the larval shell size of M. edulis would require
a lengthy feeding time, and consequently, more time dis-
persing in the plankton.

Although egg size and larval shells indicate that “B.”

childressi has a planktotrophic larva, we were unable to
confirm this with clear evidence of feeding. We usually fed
Isochrysis galbana to our cultures after blastulae hatched,
but we could not see autofluoresence of the algae in the gut,
and cultures developed to similar stages even when they
were not fed. As a matter of fact, the cultures that developed
to D-shell veligers were never fed. There are a number of
possible reasons we were unable to confirm feeding in the
larvae of “B.” childressi. First, we began offering food
when larvae hatched and began swimming as ciliated blas-
tulae. Mytilus edulis larvae develop through the blastula and
trochophore stages before fully forming a mouth and gut
just hours before beginning to develop their larval shells
(Field, 1922). Therefore, it is possible that our cultures were
simply not ready to feed. We were able to raise larvae to the
shelled stages only twice (Table 1). Earlier stages were

Table 5

Larval shell characteristics of hydrocarbon-seep, hydrothermal-vent, and shallow-water mytilid mussels; PI and PII are the prodissoconchs I and II

Habitat Species PI length (�m)1
PII length

(�m)
Provinculum

length # Teeth Reference

Hydrocarbon
seep

“Bathymodiolus”
childressi

111.45–115.69
(113.35 � 2.02)

�453.6 �222.78 29–31 This study

100–110 385–404 — — Gustafson and Lutz, 1994 (their
Fig. 4.1, 4.2); Gustafson et
al., 1998

Bathymodiolus
heckerae

137 468 — — Turner and Lutz, 1984 (their
“Seep Mytilid Va”);
Gustafson and Lutz, 1994

— 100–600 — — Salerno et al., 2005
Tamu fisheri — 460 — — Gustafson and Lutz, 1994 (their

Fig. 4.3); Gustafson et al.,
1998

Hydrothermal
vent

Bathymodiolus
thermophilus

95–110 �400 — — Lutz et al., 1980; Turner and
Lutz, 1984; Gustafson and
Lutz, 1994

108 470 — — Berg, 1985
Bathymodiolus azoricus — 100–600 — — Salerno et al., 2005

— 400 — — Gustafson and Lutz, 1994 (their
“Vent Mytilid III”)

Shallow water Mytilus edulis 95–110 (104.1 � 4.2) — 70–147 19–32 Fuller and Lutz, 1989
94 — — — Loosanoff et al., 1966
95 — — — De Schweinitz and Lutz, 1976

120 � 4.0 120–252 — — Sprung, 1984
— — 71–133 19–32 Lutz and Hidu, 1979

Modiolus modiolus 100–125 — 95–165 20–29 Fuller and Lutz, 1989
105 — — — Lutz and Hidu, 1979

Brachidontes exustus 85–98 (90.2 � 3.5) — 67–94 16–26 Fuller and Lutz, 1989
Brachidontes recurvus 90–165 135–220 — — Chanley, 1970
Ischadium recurvum 95–110 (101.2 � 4.6) — 70–93 17–25 Fuller and Lutz, 1989

90 — 84–98 — Chanley, 1970
Geukensia demissa 97–107 (104.9 � 3.0) — 69–91 16–22 Fuller and Lutz, 1989

105 — — — Loosanoff et al., 1966
105 — 80–90 — Chanley, 1970

Amygdalum papyrium 85–98 (92.5 � 3.4) — 64–84 14–21 Fuller and Lutz, 1989
— — 50–70 — Chanley, 1970

1 Values in parentheses are the mean � SD.
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dense and opaque and we had no success with clearing
techniques, making identification of a mouth and gut diffi-
cult.

Nevertheless, veligers developed to the D-shell stage
without being fed algae. Survival and development in the
absence of feeding is known in other bivalve larvae (e.g.,
Moran and Manahan, 2004). In addition, other nutritional
sources are known in bivalve larvae. Dissolved organic
matter (DOM) has been suggested as an energy source for
bivalve larvae (Manahan, 1990), including uptake of amino
acids (Manahan and Crisp, 1982; Manahan, 1983, 1989)
and dissolved organic carbon (Barnard et al., 2006). Bivalve
larvae, including some mytilids, are also capable of ingest-
ing and assimilating some bacteria and heterotrophic pro-
tists (Martin and Mengus, 1977; Baldwin and Newell, 1991;
Gallager et al., 1994). All of these—DOM, protists, and
bacteria—are potential food sources for developing larvae
of “B.” childressi mussels.

Finally, unlike the shallow-water bivalves used in most
studies to determine potential larval food sources, adult
“B.” childressi mussels use methane fixed by methanotro-
phic endosymbionts as their primary carbon source.
Whether endosymbionts contribute energy to larvae is un-
clear, because the stage at which “B.” childressi mussels
are infected with their symbionts is unknown. Indirect evi-
dence suggests that the hydrothermal vent mussels Bathy-
modiolus puteoserpentis and Bathymodiolus azoricus ac-
quire their symbionts from the environment rather than
transferring them via the ovum (Won et al., 2003). The
presence of bacterial symbionts in the gill tissue of post-
larvae (shell length 0.6–1.2 mm) and juveniles of the vent
mussel B. azoricus and the seep mussel Bathymodiolus
heckerae is inferred from transmission electron microscopy
(Salerno et al., 2005), but still it is unknown at what stage
these mussels are actually infected. Nevertheless, Salerno et
al. (2005) found no convincing evidence (by isotopic anal-
ysis of post-larvae) that the larval diet of B. azoricus or B.
heckerae consisted of photosynthetically derived organic
material.

Planktonic larval duration

In the Gulf of Mexico, there is no evidence for genetic
differentiation between “B.” childressi populations at the
shallowest and deepest seep sites, nor is there a relationship
between genetic and geographic distance, suggesting wide-
spread larval dispersal of this species (Carney et al., 2006).
Here we have developed culturing techniques for the first
time for any deep-sea bivalve, with the expectation that
information on the rate of development and length of larval
period might explain the wide geographic range of “B.”
childressi.

Cultures of “B.” childressi raised to the D-shell veliger
stage show a definitive larval life of at least 8 days, although

we kept trochophore larvae in the laboratory for more than
12 days without shell development or metamorphosis. How-
ever, it is clear from the capture of much larger late-stage
larvae from the plankton that our laboratory cultures do not
give a good estimate of total larval duration (Arellano,
2008). We estimated larval life spans indirectly by exam-
ining the size distribution of new recruits and comparing
estimated settlement dates to the known spawning period.
We calculated settlement peaks in November 2001, May
2002, November 2002, June 2003, and March 2004 (Table
3) and then compared those settlement dates to the most
recent spawning period. The two spring peaks (May 2002
and June 2003) indicate planktonic durations of up to 8
months (Table 3). Two of the settlement peaks occurred in
November (2001 and 2002), which is during the spawning
season. Because larval development rates are very slow, it is
extremely unlikely that these settlers came from the con-
current spawning season; if they did, their entire larval
growth to �500 �m would have to have taken place in less
than one month. Even larvae of Mytilus edulis developing at
6 °C with much higher food concentrations than found in
the deep sea would not reach the �500-�m settlement size
until after about 4 months of development (see fig. 2 in
Sprung, 1984). We reason, therefore, that November settlers
must have been drifting for at least 9 months (if they came
from the end of the previous spawning season) and perhaps
as long as 13 months (if from the beginning of the previous
spawning season). Similarly, we estimate that settlers in
March 2004 must have come either from the beginning of
the October 2003–February 2004 spawning season (a larval
duration of about 5 months) or from individuals spawned
the previous year, in which case they might have been
swimming for as little as 13 months or as long as 17 months.

Another mollusc from the cold seeps in the Gulf of
Mexico has a lengthy developmental period. The snail
Bathynerita naticoidea develops within egg capsules for
about 4 months before it hatches as a planktotrophic larva
(Van Gaest, 2006). The veliger has been maintained in the
laboratory for more than 90 days after hatching (A. Van
Gaest and C. M. Young, unpubl. data), and it has been
captured in the plankton nearly one year after the previous
hatching period (Van Gaest, 2006). Long delay of metamor-
phosis is not uncommon in molluscs. Indeed, veligers of the
cymatiid snail Fusitriton oregonensis have been maintained
in the laboratory for up to 4.5 years before metamorphosis
(Strathman and Strathman, 2007)! Embryos of some hydro-
thermal-vent polychaetes arrest development in cold water
until warmer temperatures are encountered (Pradillon et al.,
2001), and metamorphosis in Mytilus edulis can be delayed
if an appropriate settlement cue is not available (Bayne,
1965). Thus, a planktonic larval duration of more than one
year for “B.” childressi is entirely within reason.

The lengthy duration of larval development in the plank-
ton suggests that the larvae of “Bathymodiolus” childressi
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may be teloplanic (long-distance dispersing). Scheltema
(1966, 1971a, b, 1988) has demonstrated transatlantic dis-
persal of teloplanic larvae in several families of gastropods
and at least two families of bivalves (Scheltema, 1971c;
Scheltema and Williams, 1983). Teloplanic dispersal in
“B.” childressi would provide a biological explanation for
the widespread dispersal of larvae of this species throughout
the Gulf of Mexico and may have contributed to the trans-
Atlantic distribution of closely related bathymodiolin con-
geners (Olu-Le Roy et al., 2007).
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