May 14th, 10:00 AM - 2:00 PM

Time Series Modeling of Baseball Performance

Kyle Andelin
Western Washington University

Sam Kaplan
Western Washington University

Follow this and additional works at: https://cedar.wwu.edu/scholwk

Part of the [Higher Education Commons](https://cedar.wwu.edu/scholwk)

https://cedar.wwu.edu/scholwk/2015/Day_one/20

This Event is brought to you for free and open access by the Conferences and Events at Western CEDAR. It has been accepted for inclusion in Scholars Week by an authorized administrator of Western CEDAR. For more information, please contact westerncedar@wwu.edu.
Overview

Motivation: Predicting upcoming player performance is vital to team management and a hot topic in sports media.

Goal: Greater understanding of recent trends impacting future outcomes and increased accuracy of predictions.

Approaches:

I. Use expectation maximization (EM) to identify most predictive past time periods
II. Predict next game performance based on season history using a recurrent neural network (RNN)

Background

Expectation Maximization

- The EM algorithm is a general iterative method to perform maximum likelihood estimation (MLE)
- Find MLE of mixture density parameters via EM

Our Model

Mixture Model

- Future performance as a function of past performance periods:

\[P_j(x) = w_1 P_{j,1}(x) + w_2 P_{j,2}(x) + w_3 P_{j,3}(x) \]

where

\[P_{j,1}(x) = (1 - \alpha) \bar{P}_{j,1}(x) + \alpha \delta_j(x) \]
\[P_{j,2}(x) = \text{player } j \text{ empirical PMF for period } j \]
\[\delta_j - \text{league average PMF for period } j \]
\[\alpha - \text{interpolation coefficient of league average PMF, } 0 \leq \alpha \leq 1 \]
\[w_j - \text{mixing weight for period } j \]
\[0 \leq w_j \leq 1, \quad w_1 + w_2 + w_3 = 1 \]

Data

- Play-by-play data from Retrosheet.org
- 250+ players per season, years 2008-2013
- 6 statistics: strikeouts (K), walks (BB), singles (1B), doubles (2B), triples (3B), home runs (HR)

Training

- Tune \(\alpha \) to maximize log-likelihood on held out data set
- Use EM to learn appropriate \(w_j \) weights to best predict future outcomes

Experiments

<table>
<thead>
<tr>
<th>Results</th>
<th>Log-Probability of Optimal (\alpha) Model vs League Average Model</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>K</td>
</tr>
<tr>
<td>Optimal (\alpha)</td>
<td>0.25</td>
</tr>
<tr>
<td>Optimal LogP</td>
<td>-1.016</td>
</tr>
<tr>
<td>(\alpha = 100%)</td>
<td>-1.042</td>
</tr>
</tbody>
</table>

- The optimal \(\alpha \) is highly dependent on the statistic being considered

RNN

- Stats per player, per game, over a season:

\(<\text{start of season up until Recent}>\ |
\text{did not play} | <\text{end of season}>\)

Model

- Train on 60% of data - Tune on 20% - Test on remaining 20%
- Learn optimal \(U, W, V \) matrices
- Trained using backpropagation through time

Results

- To evaluate our methods, we feed held out data to our model in the above form and compute the metrics in the following table

Evolution of model over several games

- Ongoing work: we anticipate more results soon