Characterizing changes in Puget Sound benthic infaunal invertebrate assemblages: A functional approach

Valerie Partridge
Washington (State). Department of Ecology, VPar461@ECY.WA.GOV

Margaret Dutch
Washington (State). Department of Ecology

Sandra Weakland
Washington (State). Department of Ecology

Kathy Welch
Washington (State). Department of Ecology

Clifton Herrmann
Washington (State). Department of Ecology

Follow this and additional works at: https://cedar.wwu.edu/ssec

Part of the Terrestrial and Aquatic Ecology Commons

Partridge, Valerie; Dutch, Margaret; Weakland, Sandra; Welch, Kathy; and Herrmann, Clifton, "Characterizing changes in Puget Sound benthic infaunal invertebrate assemblages: A functional approach" (2014). *Salish Sea Ecosystem Conference*. 20.

This Event is brought to you for free and open access by the Conferences and Events at Western CEDAR. It has been accepted for inclusion in Salish Sea Ecosystem Conference by an authorized administrator of Western CEDAR. For more information, please contact westerncedar@wwu.edu.
Characterizing Changes in Puget Sound Benthic Infaunal Invertebrate Assemblages: A Functional Approach

Valerie Partridge*
Margaret Dutch
Sandra Weakland
Kathy Welch
Clifton Herrmann

Washington State Department of Ecology

Salish Sea Ecosystem Conference
April-May 2014
Spatial Monitoring

• Baseline 1997-2003
• 2nd Round 2004-2014
• 10-yr regional and 6-yr urban bay rotation
• Probabilistic, random stratified design
• Sediment Quality Triad = Chemistry, Toxicity, Benthos
Changes in Regions and Bays

- **Chemistry**: No change or slight improvement
- **Toxicity**: Increase in low-level toxicity
- **Benthos**: Increase in adversely affected

Triad: Deterioration in overall sediment quality, driven primarily by benthos
Declines in Abundance, Richness

Percent Change in Median

Total Abundance

-60% -50% -40% -30% -20% -10% 0% 10% 20%

Hood Canal Str. of Georgia Whidbey Basin Central Puget South Sound San Juan Is. All 6 Regions Elliott Bay Commence. Bay Bainbridge Basin All 3 Urban Bays

Taxa Richness

All 6 Regions Elliott Bay Commence. Bay Bainbridge Basin All 3 Urban Bays

* = significant
Bellingham Bay 2010

100% Adversely Affected benthos

2010 (n=30)

Benthic Index
- Green: Unaffected
- Red: Adversely affected
Change Between 1997 and 2006?
Correlation of Benthos & Env. Variables

- Bio-Env (PRIMER)
- Input Variables: Metals, ΣPAHs, TOC, Grain Size, Toxicity Index, Depth
- Spearman correlation = 0.53 (all samples)
- Range 0.57 – 0.80 for individual regions/bays
- Top Variables: Depth, Grain Size, Cd, Toxicity Index
Hypothesis: Changes in the Marine Food Web and Energy Transfer in Puget Sound

Microbial-based food web
- + Nitrogen
- + nutrient cycling in the water

Diatom-based food web
- Si:N

Noctiluca
- Grazing
- 10%

Zooplankton
- 10%

Fish
- 10%

Changing food web and more near-surface nutrient cycling

Less sinking of diatom particles

Decreased coupling between the water and sediment

Benthic animals
- Declining community of organisms in the sediment
Feeding Guilds

(Macdonald et al., 2012)

<table>
<thead>
<tr>
<th>Surface Detritivore</th>
<th>Subsurface Detritivore</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aphelochaeta sp N5</td>
<td>Heteromastus filobranchus</td>
</tr>
<tr>
<td>Eudorella pacifica</td>
<td>Cossura pygadactylata</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Facultative Detritivore</th>
<th>Benthic Carnivore</th>
</tr>
</thead>
<tbody>
<tr>
<td>Axinopsida serricata</td>
<td>Pholoe minuta</td>
</tr>
<tr>
<td>Owenia johnsoni</td>
<td>Odostomia sp</td>
</tr>
<tr>
<td>Euphilomedes carcharodontia</td>
<td>Sigambra bassi</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Facultative Carnivore</th>
<th>Other:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scoletoma luti</td>
<td>Suspensivore</td>
</tr>
<tr>
<td>Bipalponephlys comuta</td>
<td>Herbivore</td>
</tr>
<tr>
<td>Lumbrineris californiensis</td>
<td>Planktivorous Carnivore</td>
</tr>
<tr>
<td></td>
<td>Macro-Omnivore</td>
</tr>
</tbody>
</table>
Facultative Detritivores

Abundance (# orgs/0.1 m²)
- 0 - 295
- 300 - 717
- 751 - 1680
- 2188 - 3044
- 4515 - 5387
Other Possible Mechanisms?

- Low DO in porewater and at sediment/water interface
- Ammonia/sulfides
- Changing pH
- Contaminants
 - Point/nonpoint
 - Contaminants of Emerging Concern
 - Slow migration to deeper areas
 - Delayed population-level effects
- Natural cycles