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THE BRUNN-MINKOWSKI INEQUALITY
R. J. GARDNER

Abstract. In 1978, Osserman [124] wrote an extensive survey on the isoperi-
metric inequality. The Brunn-Minkowski inequality can be proved in a page,
yet quickly yields the classical isoperimetric inequality for important classes
of subsets of R", and deserves to be better known. This guide explains the
relationship between the Brunn-Minkowski inequality and other inequalities
in geometry and analysis, and some applications.

1. Introduction

All mathematicians are aware of the classical isoperimetric inequality in the
plane:

@ [’ > 47A,

where A is the area of a domain enclosed by a curve of length L. Many, including
those who read Osserman’s long survey article [124] in this journal, are also aware
that versions of (1) hold not only in n-dimensional Euclidean space R™ but also
in various more general spaces, that these isoperimetric inequalities are intimately
related to several important analytic inequalities, and that the resulting labyrinth
of inequalities enjoys an extraordinary variety of connections and applications to a
number of areas of mathematics and physics.

Among the inequalities stated in [124, p. 1190] is the Brunn-Minkowski inequal-
ity. One form of this states that if K and L are convex bodies (compact convex
sets with nonempty interiors) in R™ and O <A <1, then

©) V(L -DK+ADY" = 1 - DV (K" + AV (D)™

Here V and + denote volume and vector sum. (These terms will be defined in
Sections 2 and 3.) Equality holds precisely when K and L are equal up to translation
and dilatation. Osserman emphasizes that this inequality (even in a more general
form discussed below) is easy to prove and quickly implies the classical isoperimetric
inequality for important classes of sets, not only in the plane but in R™ And
yet, outside geometry, relatively few mathematicians seem to be familiar with the
Brunn-Minkowski inequality. Fewer still know of the potent extensions of (2), some
very recent, and their impact on mathematics and beyond. This article will attempt
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the Borell-Brascamp-Lieb inequality, obtained very recently by Cordero-Erausquin,
McCann, and Schmuckenschldger. Essentially the strongest inequality for compact
convex sets in the direction of the Brunn-Minkowski inequality is the Aleksandrov-
Fenchel inequality (69). In Section 17 a remarkable link with algebraic geometry is
sketched: Khovanskii and Teissier independently discovered that the Aleksandrov-
Fenchel inequality can be deduced from the Hodge index theorem. The final section,
Section 18, is a “survey within a survey”. Analogues and variants of the Brunn-
Minkowski inequality include Borell’s inequality (76) for capacity, employed in the
recent solution of the Minkowski problem for capacity; a discrete Brunn-Minkowski
inequality (84) due to the author and Gronchi, closely related to a rich area of
discrete mathematics, combinatorics, and graph theory concerning discrete isoperi-
metric inequalities; and inequalities (86), (87) originating in Busemann’s theorem,
motivated by his theory of area in Finsler spaces and used in Minkowski geom-
etry and geometric tomography. Around the corner from the Brunn-Minkowski
inequality lies a slew of related affine isoperimetric inequalities, such as the Petty
projection inequality (81) and Zhang'’s affine Sobolev inequality (82), much more
powerful than the isoperimetric inequality and the classical Sobolev inequality (16),
respectively. Finally, pointers are given to several other applications of the Brunn-
Minkowski inequality.

The reader might share a sense of mystery and excitement. In a sea of mathe-
matics, the Brunn-Minkowski inequality appears like an octopus, tentacles reaching
far and wide, its shape and color changing as it roams from one area to the next.
It is quite clear that research opportunities abound. For example, what is the
relationship between the Aleksandrov-Fenchel inequality and Barthe’s inequality?
Do even stronger inequalities await discovery in the region above Figure 1? Are
there any hidden links between the various inequalities in Section 18? Perhaps,
as more connections and relations are discovered, an underlying comprehensive
theory will surface, one in which the classical Brunn-Minkowski theory represents
just one particularly attractive piece of coral in a whole reef. Within geometry,
the work of Lutwak and others in developing the dual Brunn-Minkowski and LP-
Brunn-Minkowski theories (see Section 18) strongly suggests that this might well
be the case.

An early version of the paper was written to accompany a series of lectures given
at the 1999 Workshop on Measure Theory and Real Analysis in Gorizia, Italy. | am
very grateful to Franck Barthe, Apostolos Giannopoulos, Helmut Groemer, Paolo
Gronchi, Peter Gruber, Daniel Hug, Elliott Lieb, Robert McCann, Rolf Schneider,
Béla Uhrin, Deane Yang, and Gaoyong Zhang for their extensive comments on
previous versions of this paper, as well as to many others who provided information
and references.

2. Basic notation

The origin, unit sphere, and closed unit ball in n-dimensional Euclidean space
R™ are denoted by o, S*!, and B, respectively. The Euclidean scalar product of x
and y will be written x- y, and /x/ denotes the Euclidean norm of x. If u e S*!,
then u! is the hyperplane containing o and orthogonal to w.

Lebesgue k-dimensional measure Vi in R™, k=1,...,n, can be identified with
k-dimensional Hausdorff measure iln R™. Thenspherical Lebesgue measurein S*!

can be identified with V,—; in S . Inthis paper dx will denote integration with
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Figure 2. The vector sum of a square and a disk

respect to Vi for the appropriate k, and integration over S™~! with respect to V;
will be denoted by du. The term measurable applied to a set in R™ will always
mean Vy,-measurable unless stated otherwise.

If X is a k-dimensional body (equal to the closure of its relative interior) in R",

its volume is V(X) = Vi(X). The volume V(B) of the unit ball will also be denoted
by rn.

3. Geometrical origins
The basic notions needed are the vector sum X+Y ={x+y:x€ X,y € Y} of

X and Y, and dilatate rxX ={rx: x € X}, r =2 0 of X, where X and Y are sets in

R™ (In %eometry, the term Minkowski sum is more frequently used for the vector
sum.) The set —X is the reflection of X in the origin o, and X is called origin

symmetric if X = —X.
As an illustration, consider the vector sum of an origin-symmetric square K of
side length [ and a disk L = B of radius ¢, also centered at o. The vector sum

K + L, depicted in Figure 2, is a rounded square composed of a copy of K, four

rectangles of area le, and four quarter-disks of radius €. ]
The volume V(K + L) of K+ L (i.e., its area; see Section 2) is

V(K+L)=V(K)+4le+ V(L) 2 V(K) + 2J7Tls+ V(L)
= V() + 2 VIRV + V().
which implies that
V(K+ L) > V(K2 + V(L)
Generally, any two convex bodies K and L in R" satisfy the inequality
3) V(K + L)V > V(K" + V(L)

In fact, this is the Brunn-Minkowski inequality (2) in an equivalent form. To see
this, just replace K and L in (3) by (1 — A)K and AL, respectively, and use the

positive homogeneity (of degree n) of volume in R", that is, V(rX) = "V (X) for
r= 0. This homogeneity of volume easily yields another useful and equivalent form
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of (2), obtained by replacing (1 —A) and A by arbitrary positive real numbers s and
t.

(4) V (sK+ tL)Y™ = sV(K)V "+ tV(L)/™

Detailed remarks and references concerning the early history of (2) are provided
in Schneider’s excellent book [135, p. 314]. Briefly, the inequality for n = 3 was
discovered by Brunn around 1887. Minkowski pointed out an error in the proof,
which Brunn corrected, and found a different proof of (2) himself. Both Brunn and
Minkowski showed that equality holds if and only if K and L are homothetic (i.e.,
K and L are equal up to translation and dilatation).

If inequalities are silver currency in mathematics, those that come along with
precise equality conditions are gold. Equality conditions are treasure boxes con-
taining valuable information. For example, everyone knows that equality holds in
the isoperimetric inequality (1) if and only if the curve is a circle—that a domain
of maximum area among all domains of a fixed perimeter must be a disk.

It is no coincidence that (2) appeared soon after the first complete proof of the
classical isoperimetric inequality in R™was found. To begin to understand the
connection between these two inequalities, look again at Figure 2. Clearly

(5)
V(K+eB)= V(K+L)= V(K) + 4le+ V(eB) = V(K) + 4le + V(B)&,

and therefore
lim V(K+eB) — V(K
e>0+ )
the perimeter of K. This simple observation opens the way to a central compo-
nent of the Brunn-Minkowski theory, Minkowski’s mixed volumes. The expansion
(5) of V(K + ¢B) as a quadratic in ¢ is a special case of a general phenome-

non: Minkowski’s theorem on mixed volumes (see [135 Theorem 5.1.6]) states that
if Kj,... Km are compact convex sets in R, and t;,...,tn = 0O, the volume

V(t K, + - - -+ tmKm) is a polynomial of degree nin the variables t,...,tm The
coefficient V(Kjl, ..., Kj)of ¢, - - - t;, inthis polynomial (by definition, unchanged
if the arguments are permuted) is called a mixed volume. If all these arguments
are the same set, we get the volume of that set. For example, comparing (5) with
Minkowski's theorem with K; = K, K, = B, t; = 1, and t, = & we see that
V(K,K)=V(K), V(B,B)=V(B), and V(K,B) = V(B,K) = 2L

The perimeter of the square K appeared as the coefficient of in (5) and turned
out to be equal to 2V (X, B). Minkowski’s definition of the surface area S(K) of a
convex body K in R™ is

. V(K+eB) =V
(6) S(K) = lim ( ) (X) g
=0+ €
and it follows immediately from Minkowski’s theorem that S(K) = nV (X, n—1; B),
where the notation means that K appears (n—1) times and the unit ball B appears

once. Up to a constant, surface area is just a special mixed volume.
The isoperimetric inequality for convex bodies in R™ is the highly nontrivial
statement that if K is a convex body in R", then

Q vao Mt s e
V(B) ~ S(B) ’

= 4,
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through this sequence of directions, we obtain
(9) V(K+L) 2 V(rkB + rLB).

By the homogeneity of volume, it is easy to see that (9) is equivalent to the Brunn-
Minkowski inequality (2).

4. The move to analysis I:
The general Brunn-Minkowski inequality

Much more needs to be said about the role of the Brunn-Minkowski inequality
in geometry, but it is time to transplant the inequality from geometry to analy-
sis. We shall call the following result the general Brunn-Minkowski inequality in
R™ As always, measurable in R™ means measurable with respect to n-dimensional
Lebesgue measure V.

Theorem 4.1. et Q <A <1 and let X and Y be nonempty bounded measurable
sets in R™ such that (1 — A)X + AY is also measurable. Then

(10) Va(( = DX +AY)" = (1 = D) Va(X) /" + AV(Y) /.

Again, by the homogeneity of n-dimensional Lebesgue measure (Vn(rX) =
mVn(X) for r = 0), there are the equivalent statements that for s, t >0,

(11) Vi (sX+ tY)/" 2 sV(X)V/ "+ t V(Y7

and this inequality with the coefficients s and t omitted.
Yet another equivalent statement is that

(12) Va((1 — D)X+ AY) = min{ Va(X), Va(Y)}

holds for 0 <A <land all Xand Y that satisfy the assumptions of Theorem 4.1.

Of course, (10) trivially implies (1_2%)., For the converse, suppose without loss of
generality that X and’Y also satisfy V(X)V(Y) /= 0. Replace X and Y in

(12) by Vu(X)~/"X and Vn(Y)~/"Y, respectively, and take

1 = V(¥ V(XS +
- Vn(y)'l/n

The right-hand side of (12) becomes 1, and (12) gives (11) with s and t omitted.
The inequality (12) has some advantages over (10), since it does not require the
sets X and Y to be nonempty and is independent of dimension.

The ass_um;lt)tion that the sets X and Y are bounded is easily removed and is
retained simply for convenience. The assumption that the set (1 — )X + AY is

measurable is necessary, evenwhen X and Y are measurable. This point is discussed
in Section 10. If X and Y are Borel sets, however, then (1 — A)X + AY, being a

continuous image of their product, is analytic and hence measurable.

Theorem 4.1 was first proved in 1935 by Lusternik [94]. Later, Hadwiger and
Ohmann [75] found a proof so simple and beautiful that a general mathematical
audience can be enlightened and charmed by just two transparencies. When care-
fully written, a page suffices (see, for example, [36, Section 8], [50, Section 6.6], [56,
Theorem 3.2.41], or [151, Section 6.5]). In fact, the next paragraph is an essentially
complete proof.
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Proof of Theorem 4.1. The idea is to prove the result first for boxes, rectangular
parallelepipeds whose sides are parallel to the coordinate hyperplanes. If X and
Y are boxes with sides of length x; and y;, respectively, in the ith coordinate
directions, then

(@] i ok
V(X) = xi, V(Y)= Y, and V(X+Y)= (xi+y).

i=1 =1 =1
Now
I \iyn 1, \i/n . n
N + Ny 1 Xi 1 yi
+ oy . < oy oy
o Xityi o Xityi S Xty v Xty

by the arithmetic-geometric mean inequality. This gives the Brunn-Minkowski in-
equality for boxes. One then uses a trick sometimes called a Hadwiger-Ohmann
cut to obtain the inequality for finite unions X and Y of boxes, as follows. By

translating X, if necessary, we can assume that a coordinate hyperplane, {x, =0}
say, separates two of the boxes in X. (The reader might find a picture illustrating

the planar case useful at this point.) Let X%or X- denote the union of the boxes
formed by intersecting the boxes in" X with )} (or {xn < 0O}, respectively).

Now translate Y so that
V(X)) _ V(Yx)
V(X) vV(Y)’
where Y, and Y- are defined analogously to X, and X-. Note that X, + Y, C
{xn 20}, X_+Y_ C {x, £ 0}, and that the numbers of boxes in X, U Y, and
X_ U Y- are both smaller than the number of boxes in XU Y. By induction on the
latter number and (13), we have

VX+Y) 2 V(X +Y)+V(X-+Y)

n
> V)V VY)Y v V(e "

(13)

n n

V(Y)V/n 1+ V(Y)/n
= VX — +V(X- _—
( +) V(X)l/nn ( ) V(X)l/n
1gn n
= V(Y) =V 1/n 4 V(Y 1/n
\4
0 1+ Y (X) (Y)
Now that the inequality is established for finite unions of boxes, the proof is com-
pleted by using them to approximate bounded measurable sets. O

What about the equality conditions? This is not so simple, but a careful exam-
ination of this proof allows one to conclude that if V»(X)Va(Y) >0, then equality
holds only when

Va((convX) ¥ X) = Vi ((convY) ¥Y) =0,

where conv X denotes the convex hull of X. Putting these equality conditions to-
gether with those for (2), we see that if V(X)V(Y) > 0, equality holds in the
general Brunn-Minkowski inequality (10) or (11) if and only if X and Y are homo-
thetic convex bodies from which sets of measure zero have been removed. See [36,
Section 8], [77], and [151, Section 6.5] for details and further comments about the
case when X or Y has measure zero. It is worth mentioning that in the special case
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when X and Y are compact convex sets, equality holds in (10) or (11) if and only
if X and Y are homothetic or lie in parallel hyperplanes; see [135, Theorem 6.1.1].
Since Holder’s inequality ((25) below) inits discrete form implies the arithmetic-
geometric mean inequality, there is a sense in which Hélder’s inequality implies the
Brunn-Minkowski inequality. The dotted arrow in Figure 1 reflects the controversial
nature of this implication.

5. Minkowski’ s first inequality, the isoperimetric inequality, and
the Sobolev inequality

In order to derive the isoperimetric inequality with its equality condition, a slight
detour via another inequality of Minkowski is needed. This involves a quantity
V1(K, L) depending on two convex bodies K and L in R™ that can be defined by

V(K+el) = V(K

(14) nVi(K, L) = lim
>0+ £

The existence of V|(K, L) follows from Minkowski’s theorem on mixed volumes (see

Section 3). Note that if L = B, then S(K) = nVi(X, B) is the surface area of K,

by (6). Minkowski’s first inequality for convex bodies K and L in R™ states that

(15) VI(K,L) = V(K)(n—l)/nV(L)l/n,

with equality if and only if K and L are homothetic.

Minkowski’s first inequality is useful in its own right. For example, it plays a role
in the solution of Shephard’s problem: If the orthogonal projection of a centrally
symmetric (i.e., a suitable translate of K is origin symmetric) convex body onto
any given hyperplane is always smaller in volume than that of another such body,
is its volume also smaller? The answer is no in general in three or more dimensions;
see [66, Chapter 4] and [99, p. 255].

The Brunn-Minkowski inequality (2) and its equality condition imply Minkowski’s
first inequality (15), and therefore the isoperimetric inequality (7), and their equal-
ity conditions. With the existence of Vi(K, L) in hand, the following proof avoids
the explicit use of mixed volumes in standard proofs such as [135, p. 317].

Proof. Substituting e=t/(1 — ?) in (14) and using the homogeneity of volume, we
obtain
V((I-)K+tL)— (1 - )"V(K)

n‘/](K) L) = lim
t—0+ O
= lim V@=OK+t) = V(K) | . Q-1 -8)"NV(K)
t—0+ t 504 ¢
= g& V((l—t)KttL)— V(K) + VR,

Using this new expression for Vi(K, L) (given in [107, p. 7]) and letting f(t) =
V((1 - K+ tL)™ for 0 < ¢ < 1, we see that
Vi(K, L) — V(K)
f) ==+ :
\V4 (K)(n—l)/n
Therefore (15) is equivalent to ff(0) > f(1) — f(0). As was noted in Section 3,

the Brunn-Minkowski inequality (2) says that f is concave, so Minkowski’s first
inequality follows.
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Suppose that equality holds in (15). Then f{(0) = f{1) — f(0). Since fis
concave, we have

for 0 < t < 1, and this is just equality in the Brunn-Minkowski inequality (2).

The equality condition for (15) follows immediately. To obtain (7) and its equality
condition, simply take L = B. O

Conversely, the Brunn-Minkowski inequality (2) can easily be obtained from
Minkowski's first inequality (15), as in [66, p. 370].

It can be shown (see [153]) that if K is a compact domain in R™ with piecewise
C! boundary and L is a convex body in R™, the quantity V|(K, L) defined by (14)
still exists. From the general Brunn-Minkowski inequality (10) applied to compact
domains in R™ with piecewise C!' boundary, and the above argument, one obtains
Minkowski’s first inequality when K is such a domain. When L = B, this yields the
isoperimetric inequality for compact domains in R™ with piecewise C' boundary
(where surface area can still be defined by (6)).

Essentially the most general class of sets for which the isoperimetric inequality in
R™is knownto hold comprises the so-called sets of finite perimeter; see, for example,
the book of Evans and Gariepy [55, p. 190], where the rather technical setting,
sometimes called the BV theory, is expounded. It is still possible to base the proof
on the Brunn-Minkowski inequality, as Fonseca [60, Theorem 4.2] demonstrates,
by first obtaining the isoperimetric inequality for suitably smooth sets and then
applying various measure-theoretic approximation arguments. In fact, Fonseca’'s
result is more general (see the next section on Wulff shape of crystals). A strong
form of the Brunn-Minkowski inequality is also used by Fonseca and Miiller [61],
again in the more general context of Wulff shape, to establish the corresponding
equality conditions (the same as for (7)).

The distinction between geometry and analysis is blurred even at the level of the
isoperimetric inequality. The following inequality, called the Sobolev inequality, is
equivalentto the isoperimetric inequality for compact domains with C' boundaries:
If fis a C! function on R™ with compact support, then

(16)
r r (n=1)/n

IV f()l dx = nKnl/n/f/n/(n_l) — £ ™™D dx
RN

2

Rn

where x, = V(B).

The proof for n= 2 is sketched by Osserman [124, Theorem 3.1]. For a complete
proof, see [63, Theorem 8.2]. As for the isoperimetric inequality, there is a more
general version of the Sobolev inequality in the BV theory. This is called the
Gagliardo-Nirenberg-Sobolev inequality and it is equivalent to the isoperimetric
inequality for sets of finite perimeter; see [55, pp. 138 and 192].

The inequality (16) is only one of a family, all called Sobolev inequalities. See
[91, Chapter 8], where it is pointed out that such inequalities bound averages of gra-
dients from below by weighted averages of the function and can thus be considered
asuncertainty principles.
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6. Wulff shape of crystals and surface area measures

A crystal in contact with its melt (or a liquid in contact with its vapor) is modeled
by a bounded Borel subset M of R™ of finite surface area and fixed volume. If fis
a nonnegative function on S™! representing the surface tension, assumed known
by experiment or theory, then the surface energy is given by

r

() F(M) = S(u) dx,
oM

where uy is the outer unit normal to M at x and oM denotes the boundary of
M. (Measure-theoretic subtleties are ignored in this description; it is assumed
that fand M are such that the various ingredients are properly defined.) By the
Gibbs-Curie principle, the equilibrium shape of the crystal minimizes this surface
energy among all sets of the same volume. This shape is called the Wulff shape.
For example, in the case of a soapy liquid drop in air, f'is a constant (neglecting
external potentials such as gravity) and the Wulff shape is a ball. For crystals,
however, f will generally reflect certain preferred directions. In 1901, Wulff gave a
construction of the Wulff shape W

W =nNgesgi{x € R":x-us W}

each set in the intersection is a half-space containing the origin with bounding
hyperplane orthogonal to u and containing the point f(w)u at distance f(w) from
the origin. The Brunn-Minkowski inequality can be used to prove that, up to
translation, W is the unique shape among all with the same volume for which F is
minimum; see, for example, [144, Theorem 1.1]. This was done first by A. Dinghas
in 1943 for convex polygons and polyhedra and then by various people in greater
generality. In particular, Busemann [37] solved the problem when fis continuous,
and Fonseca [60] and Fonseca and Miiller [61] extended the results to include sets
M of finite perimeter in R™. Good introductions with more details and references
are provided by Taylor [144] and McCann [116]. In fact, McCann [116] also proves
more general results that incorporate a convex external potential, by a technique
developed in his paper [115] on interacting gases; see Section 8.

Tounderstand how the Brunn-Minkowski inequality assists in the determination
of Wulff shape, a glimpse into later developments in the Brunn-Minkowski theory
is helpful. There are (see [135, Theorem 5.1.6]) integral representations for mixed
volumes and, in particular,

,
(18) Vi(K, D)=+ hy(u) dx,
n sk

for convex bodies K and L in R™. Here hi(u) is the support function of the convex
body L, the function on S™! giving the signed distance from the origin to the
hyperplane supporting L with outward normal vector u. The vector uy is again the
outer unit normal to K at x. Thus V|(K, L) is essentially the surface energy (17)
when the crystal M = K is convex and f happens to be the support function of L.
The minimum surface energy among all convex bodies M of fixed volume is then
provided by Minkowski’s first inequality (15), and it occurs when M is homothetic
to L.
In convex geometry, the alternative expression
r

(19) ik, L) = r—ll o hi(WdS(K, )
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is more common than (18). Here the measure S(K, -) is a finite Borel measure

in S*~! called the surface area measure of K, an invention of A. D. Aleksandrov,

W. Fenchel, and B. Jessen from around 1937 that revolutionized convex geometry

by providing the key tool to treat convex bodies that do not necessarily have smooth

boundaries. If E is a Borel subset of S*"!, then S(K, E) is the V,, _-measure of
the set of points x € 0K where the outer normal ux € E. When K is sufficiently

smooth, it turns out that dS(K, u) = fx(u) du, where fx(u) is the reciprocal of

the Gauss curvature of K at the point on 6K where the outer unit normal is u.

A fundamental result called Minkowski’s existence theorem gives necessary and
sufficient conditions for a measure 1 in S"~! to be the surface area measure of some
convex body. Minkowski’s first inequality (15) and (19) imply that if S(K, -) = u,

then K minimizes the functional
r
L— hr(u) du
Sn-1

under the condition that V(L) = 1, and this fact motivates the proof of Minkowski’s
existence theorem. See [66, Theorem A.3.2] and [135, Section 7.1], where pointers
can also be found to the vast literature surrounding the so-called Minkowski prob-
lem, which deals with existence, uniqueness, regularity, and stability of a closed
convex hypersurface whose Gauss curvature is prescribed as a function of its outer
normals.

7. The move to analysis II: The Prekopa-Leindler inequality

The general Brunn-Minkowski inequality (10) appears to be as complete a gen-
eralization of (2) as any reasonable person could wish. Yet even before Hadwiger
and Ohmann found their wonderful proof, a completely different proof, published
in 1953 by Henstock and Macbeath [77], pointed the way to a still more general
inequality. This is now known as the Prékopa-Leindler inequality.

Theorem 7.1. Let O <A <1 and let f, g, and h be nonnegative integrable func-
tions on R™ satisfying

(20) h((1 — Dx+Ay) = f)! g(y)?,
for all x,y € R™ Then

r r 1A T A
(21) h(x) dx = Sfl)dx g(x) dx
RN Rn Rn
The Prékopa-Leindler inequality (21), with its strange-looking assumption (20),
looks exotic at this juncture. It may be comforting to see how it quickly implies
the general Brunn-Minkowski inequality (10).
Suppose that X and Y are bounded measurable sets in R" such that (1 —A)X+

AY is measurable. Let f=1x, g=1y,and h=1,_ X;AY; where 1g denotes the
characteristicfunctionof E. If x, y € R™, then f{x)! ~“g(y)* >0 (and in factequals

l)ifandonly if x € Xand y € Y. The latter implies (1-A)x+Ay € (1-2A)X+AY,
whichis true ifand only if h((1 — A)x+ Ay) = 1. Therefore (20) holds. We conclude
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by Theorem 7.1 that
r

Vo ((1 = )X+ AY) Li-pxeay (0 dx

R
r 1—a I A

2 1x(x) dx ly(x) dx
Rn RN

= VX)WV
We have obtained the inequality
(22) Va (L = DX+ AY) 2 Va(X)' V(Y.

To understand how this relates to the general Brunn-Minkowski inequality (10),
some basic facts are useful. 1f 0 <A <1and p/=0, we define

My(a, b,A) = (1 — D) + AbP)/P
if ab/=0 and Mp(a, b,A) =0 if ab=0; we also define

My(a, b, A) = a' b4,
M-w(a, b,A) = min{a, b}, and Mw(a, b, A) = max{a, b}. These quantities and

their natural generalizations for more than two numbers are called pth means or
p-means. The classic text of Hardy, Littlewood, and Polya [76] is still the best
general reference. (Note, however, the different convention here when p >0 and
ab = 0.) The arithmetic and geometric means correspond to p = 1 and p = 0O,
respectively. Jensen’s inequality for means (see [76, Section 2.9]) implies that if

—00 < p<q< oo, then
(23) My(a, b,A) < My(a, b, ),

with equality if and only if a= bor ab=0.

Now we have already observed that (10) is equivalent to (12), the inequality that
results from replacing the (1/n)-mean of Vn()% and V,(Y) by the —co-mean. In

(22) the (1/n)-mean is replaced by the O-mean, so the equivalence of (10) and (22)
followsfrom (23).

If the Prékopa-Leindler inequality (21) reminds the reader of anything, it is prob-
ably Holder’s ‘inequality with the inequality reversed. Recall that if f; € LP(R™),

pi=1,i=1,...,m are nonnegative functions, where

1 1
(24) e =1,
D1 Pm
then Holder’s inequality in R™ states that
"B A a r 1/pi
(29) filx)dx<  [filp = filxP dx
RM g i=1 =1 R"

LetO<A<1. Ifm=2,1/pi=1—A,1/p, =4, and we let f= /' and g = f**,
1 2
we get

r r A r a

F)' gl dx< ) dx g(x) dx
Rn Rn Rn
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The Prékopa-Leindler inequality can be written in the form
r—

sup{f(x)' g(y)* : 1 = Dx+ Ay = z} dz
(26) Rn
r 1—a r A

2 Jx)dx gx)dx
RN Rn
because the supremum can be used for hin (20). A straightforward generalization
is

m . m
27 sup Si(xi) : =z dz= /fi/pi,

where p; = 1 for each iand (24) holds.
Thus the Prékopa-Leindler inequality is indeed a reverse form of Holder's in-
equality, and as such, of course, it requires some extra condition. The inequality

(21) can only hold when h is not too small, and this is ensured by (20). To in-
terpret (20), fix 0 < A <1 and z € R"™ and choose any x,y € R"™ such that

z = (1—A)x+Ay. Then the value of h at z must be at least the weighted geometric
mean of the values of fat xand g at y.

Looking back at Figure 1, we see Holder’s inequality on the right and the
Prékopa-Leindler inequality over towards the left, in different hemispheres, as it
were, of the planet of inequalities. The four inequalities directly above these two in
Figure 1 comprise two pairs, each containing an inequality and a reverse form of it.

Notice that the upper Lebesgue integral is used on the left in (26) and (27). This
is because the integrands there are generally not measurable, a point discussed in
Section 10.

Any graduate student can understand the proof of Theorem 7.1. We close this
section with a complete proof for n = 1 containing crucial ideas for later develop-
ments, as well as some remarks about the general case and an alternative proof.

Proof of Theorem 7.1 with n=1. We can assume without loss of generality that
r r
f(x¥)dx=F >0 and g(x)dx=G>0.
R R

Define u, v: (0,1) = R such that u(t) and v(t) are the smallest numbers satisfying

r

1 u(d) 1 (€3]
(28) = S dx= = g0 dx=t.
F G

— 00 — 00

L

Then uand v may be discontinuous, but they are strictly increasing functions and
so are differentiable almost everywhere. Let

w(t) =1 —Du(t) + Auv(t).

Take the derivative of (28) with respect to ¢ to obtain

fB) u'(®) _ g () _,
F G ’
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Using this and the arithmetic-geometric mean inequality, we obtain (when

S(u(®) /=0 and g (u(f) /= 0)

wi(t) = (@ — D)+ A
> ut(t)l—Avt(t)A
1-A A
= E G
S(w(®) g(u(9)
Therefore
r r
h(x)dx 2 h(w(t)) wi(t) dt
R 0
r 1-2 A
s Ay gyt —L G ' g
0 S(u(®) g(u(?))
O

The proof for general n is just as accessible. This is by induction on n and can
be found in [63, Theorem 4.2].

The Prékopa-Leindler inequality (21) was explicitly stated and proved by
Prékopa [128], [129] and Leindler [88]. (See the historical remarks after Theo-
rem 10.1, however.) There are two basic ingredients in the above proof: the in-
troduction in (28) of the volume parameter t, and use of the arithmetic-geometric
mean inequality in estimating w/(f). The same method was basically used by Hen-
stock and Macbeath [77] in their proof of the general Brunn-Minkowski inequality
(10). The parametrization idea goes back at least to Bonnesen; see [46] and the
references given there. Since the Hadwiger-Ohmann cut (13) is tantamount to a
parametrization by volume, the same two ingredients appear in the proof of (10)
in Section 4.

Recall that if fis a nonnegative measurable function on R™ and ¢t = O, the level
set L(f, t) is defined by

(29) L, ) =A{x: fx) =2 t}.

Brascampand Lieb [34, Theorem 3.1] constructed a completely different, and indeed
somewhat shorter, proof of Theorem 7.1. Their method is to obtain the result for
n =1 by proving (10) with n =1, applying this to the level sets of f, g, and h, and
using Fubini’s theorem. This proof is reproduced in [127, Theorem 1.1] (or see [63,
Section 4]). The same ingredients mentioned above appear in this proof, though
the parametrization is somewhat disguised in the use of the level sets. The general
case again follows by induction on n.

Quite complicated equality conditions for the Prékopa-Leindler inequality in R
are given in [44] and [147], but equality conditions in R™ seem to be unknown.

8. Gases and transport of mass

The Brunn-Minkowski inequality appears in work of McCann [115] on interacting
gases. A gas of particles in R™is modeled by a nonnegative mass density p(x)
of total integral 1, that is, a probability density on R", or, equivalently, by an
absolutely continuous probability measure in R™. To each state corresponds an
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The essential form of the Brunn-Minkowski inequality states that if 0 <A <1 and
X and Y are nonempty bounded measurable sets in R", then

(37) Va((1 = D)X+ AY)™ 2 (1 = D) V(XY™ + AV(Y) /™

A direct proof of this result is given in [34, Appendix]. It is not difficult to derive
it from (36), asin [63, Theorem 9.2].

The following theorem, the Borell-Brascamp-Lieb inequality, uses the p-means
M,, introduced in Section 7 to generalize the Prékopa-Leindler inequality, which is
just the case p=0. The number p/(np+1) is interpreted in the obvious way; it is
equal to —oo when p=—1/nand to 1/nwhen p = oo,

Theorem 10.1. Let 0 < A <1, let =1/n < p < oo, and let f, g, and h be

nonnegative integrable functions on R" satisfying
h((1 = Ax+Ay) =2 My (f(x),9(y),4),
forall x,y € Rr' Then r ,
(38) h(x) dx = Mp/mnp-1) Sf(x) dx, . g(x) dx, A
Rn Rn n

This result has some significant consequences in probability theory that are dis-
cussed in the next section. With a single technical lemma concerning p-means in
hand, Theorem 10.1 can be proved by essentially the same argument given in Sec-
tion 7 for the proof of Theorem 7.1; see [63, Section 10] for the details. The result
was first proved (in slightly modified form) for p > 0 by Henstock and Macbeath
[77] (when n = 1) and Dinghas [49]. The limiting case p = 0 was also proved
by Prékopa and Leindler, as noted above, and rediscovered by Brascamp and Lieb
[32]. In general form Theorem 10.1 is stated and proved by Brascamp and Lieb [34,
Theorem 3.3] and by Borell [27, Theorem 3.1] (but with a much more complicated
proof; see also the paper of Rinott [131]). The method of proof just indicated is
employed in [43] and [46] (see also [48, Theorem 3.15]), but still draws on methods
introduced by Henstock, Macbeath, and Dinghas. Das Gupta’s survey [46] con-
tains a very thorough examination and assessment of the various contributions and
proofs before 1980. Brascamp and Lieb [34] obtain an “essential” form of Theo-
rem 10.1, as in the case p= 0 (see (36)). Dancs and Uhrin [43] also offer a version
of Theorem 10.1 for —c0o < p < —1/n.

In calling Theorem 10.1 the Borell-Brascamp-Lieb inequality we are following
the authors of [41] (who also generalize it to a Riemannian manifold setting; see

Section 12) and placing the emphasis on the negative values of p. In fact, it can be
shown (see [41] and [63, Section 10]) that Theorem 10.1 for p=—1/nimplies The-

orem 10.1 for all p > —1/n. The approach of Brascamp and Lieb [34], incidentally,
was to observe that Theorem 10.1 also holds for n =1 and p = —0, and then to
derive Theorem 10.1 for n=1and p > —1 from this and the technical lemma for
p-means mentioned earlier.

An interesting sharpening of the Brunn-Minkowski inequality was found by Bon-
nesen in 1929 (see [43]). If X is a bounded measurable set in R™, the inner section
function mx of X is defined by

mx(w) = sup Vu—y X N (ut + tuw) ,
teR
for ue S™L. (In 1926, Bonnesen asked if this function determines a convex body
in R, n > 3, up to translation and reflection in the origin, a question that remains
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unanswered; see [66, Problem 8.10]). Bonnesen proved that if 0 < A <1 and
u € S*!, then

(39)
Va(X) | VoY)
Vo (1 = D)X +AY) 2 M, /-1y (mx(w), my (w),4) (1 —4) mx()  my(W

It is not hard to show that this is indeed stronger than (10). As Dancs and Uhrin
[43, Theorem 3.2] show, an integral version of (39), in a general form similar to
Theorem 10.1, can be constructed from the ideas already presented here.

At present, the most general results in Euclidean space of the type considered in
this section are contained in the papers of Uhrin; see [147], [148], and the references
given there. In particular, Uhrin states in [148, p. 306] that all previous results
of this sort are contained in [148, (3.42)]. The latter inequality has as ingredients
two kinds of curvilinear convex combinations of vectors, and its proof reintroduces
geometrical methods.

11. Applications to probability and statistics

In 1955, Anderson [2] used the Brunn-Minkowski inequality in his work on mul-
tivariate unimodality. He began with the following simple observation. If anonneg-
ative integrable function f on R is (i) symmetric (f(x) = f(—x)) and (ii) unimodal
(f(ex) = f(x) for O < ¢ £ 1), and I is an interval centered at the origin, then

r
S dx
I+y
is maximized when y = 0. In probability language, if a random variable X has
probability density fand Y is an independent random variable, then

Prob{X € I} 2 Prob{X+Y € I}.
Tosee this, recall that if X and Y are independent random vectors on R™ with prob-

ability densities fand g, respectively, then f* g (defined by (33)) is the probz?bility
density of X + Y; see, for example, [82, Section 11.5]. So, by Fubini’s theorem,
rr rr

Prob{X+Y € I}

R fz—y)g(y)dydz - R Sz=yv)9(y) dzdy

S()g(y) dxdy < S9)g(y) dxdy
I—y R I

= flx)dx=Prob{X e I}.
I
The next result, Anderson’s theorem, is a generalization of this that applies to

unirg%dgl (1;unctions fon R™ those whose level sets L(f, ) (see (29)) are convex for
eacht> 0.

Theorem 11.1. Let K be an origin-symmetric convex body in R™ and let f be a

nonnegative, symmetric, and unimodal function integrable on R™ Then
r r

fixteydez  fix+y)dx,
K K

forO<c<landy e R"™
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With the appropriate measure and metric replacing V,,and the Euclidean metric,
(42) remains true in the sphere S™~! and hyperbolic space, equality holding if and

only if X is a ball. (Of course, in these spaces, the ball centered at x and with radius
r > 0 is the set of all points whose distance from x is at most r. In S*!, balls
are just spherical caps.) Though in R™ (42) is only a special case of (11), in S*!

and hyperbolic space, (42) is called the Brunn-Minkowski inequality. According
to Dudley [51, p. 184], (42) was first proved in S*~! under extra assumptions by

P. Lévy in 1922, with weaker assumptions by E. Schmidt in the 1940’s, and in full
generality by Figiel, Lindenstrauss, and Milman in 1977. In hyperbolic space, (42)

is due to E. Schmidt. A proof using symmetrization techniques for both S*~! and
hyperbolic space can be found in [36, Section 9].

Perhaps more significantthan &42?]for recent developments is a surprising result
that holds in S™™ > 3, with the chordal metric (i.e., the metric inherited

from the Euclider{e\_nl distance in R™. It can be shown that if X ¢ S*! and
Vi-1(X)/Va-1(S ) =1/2and 0 <e <1, then
V1 (X,
M S T 12 —(n—2)$2/2.
Vai(S™) — 17 78 e

This inequality, which again goes back to P. Lévy, is proved in [121, p. 5]. Results
of the form (43) are called approximate isoperimetric inequalities, and can be de-
rived from the general Brunn-Minkowski inequality (10), as in [4, Theorem 2]. In
particular, by taking X to be a hemisphere, we see that for large n, almost all the
measure is concentrated near the equator! This is an example of the concentration
of measure phenomenon that Milman applied in his 1971 proof of Dvoretzky’s theo-
rem and that with contributions by Talagrand and others has quickly generated an
extensive literature surveyed by Ledoux [85], [86]. An excellent, but more selective,
introduction is Ball’s elegant and insightful expository article [12, Lecture 8].
Analogous results hold in Gauss space, R™ with the usual metric but with the

standard Gauss measure y, in R™ with density

(44) dyn(x) = (2m)~"2e” * 72 dx.

(43)

Indeed, for bounded Lebesgue measurable sets X and Y in R™ for which (1 —24)X+
AY is Lebesgue measurable, there is the inequality

(45) ya((L — D)X +AY) 2 ya(X) yn(Y)*

corresponding to (22). This follows from the Prékopa-Leindler inequality (21) (be-
cause the density function is log concave); see, for example, [32]. It can also be
derived directly from the general Brunn-Minkowski inequality (10) by means of
the “Poincaré limit”, a limit of projections of Lebesgue measure in balls of in-
creasing radius; this and an abundance of additional information and references
can be found in Ledoux and Talagrand’s book [87, Section 1.1]. To describe some
of this work brieflgl, let ®(r) = yi((—o0, ) for r € R. Borell [26} and Sudakov
and Tsirel'son [142] independently showed that if X is a measurable subset of R"
and yn(X) = ®(rx), then yu(Xe) = O(rx + ¢), with equality if X is a half-space.
Ehrhard[53], [54] gaveanew proofusingsymmetrizationtechniquesthatalsoyields
the following Brunn-Minkowski-type inequality: If K and L are convex bodies in
R™and 0 <A <1, then

46) @7 (va((l —HK+AL) = (1 — DO (yn(K)) + 207" (yn(L)) -



THE BRUNN-MINKOWSKI INEQUALITY 381

While (46) is stronger than (45) for convex bodies, it is unknown whether it holds
for Borel sets; see [84] and [87, Problem 1]. Anapproximate isoperimetric inequality
similar to (43) also holdsin Gauss space; Maurey [113] (see also [12, Theorem 8. 1])
{Rgped ig 3'(% ce {Paotflgn (R'J A eal utrheelﬁ rc?'éﬂ S slbglcnedIt(?{llsnt?ﬁ'nueall#%éﬁl}lca? sHeﬂs of
thickness approximately 1 and radius approximately " iz Closely related work on
logarithmic Sobolev inequalities is outlined in Section 14.

Borell [30] applies his Brunn-Minkowski inequality in Gauss space to option
pricing, assuming that underlying stock prices are governed by a joint Brownian
motion.

Bahn and Ehrlich [5] find an inequality that can be interpreted as a reversed
form of the Brunn-Minkowski inequality in Minkowski spacetime, that is, R™!
with a scalar product of index 1.

Cordero-Erausquin [40] utilizes results of McCann to prove a version of the
Prékopa-Leindler inequality on the sphere, remarking that a similar version can
be obtained for hyperbolic space. These results are generalized in a remarkable
paper [41] by Cordero-Erausquin, McCann, and Schmuckenschldger, who establish
a beautiful Riemannian version of Theorem 10.1.

13. Young s inequality

Convolutions have already been featured in this story, in Sections 9 and 11.
By 1976, it was known that a sharp convolution inequality actually implies the
Brunn-Minkowski inequality. This sharp convolution inequality is a refinement of
an earlier one with roots in Fourier analysis. The classical Young inequality states

thatif p,q, r>1,

1 1 1
47 -+ =1+,

b q r
and f e LP(R™) and g € L9(R™) are nonnegative, then
(48) If * glr < Iflplglq.

This was proved by W. H. Young around 1912 (see [76, Sections 8.3 and 8.4] and
the references given there); a few lines and Holder’s inequality (25) suffice, as in
[91,p.99].

The next theorem provides two convolution inequalities with sharp constants,
the first a sharp form of (48) proved independently by Beckner [20] and Brascamp
and Lieb [33], and the second a reverse form found by Brascamp and Lieb [33]
(refining an earlier version due to Leindler [88]).

Theorem 13.1. Let O < p, g, r satisfy (47), and let f € LP(R™) and g € L4(R"™)

be nonnegative. Then
(Young's inequality)

(49) /.f * g/r < Cn/.flplg/q) forp: q:rZ 1:

and
(Reverse Young inequality)

(50) If x gl = C"Ifl,lglg, forp,q, r<1.
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Wherefdenotes the Fourier transform
r

fey= flye™vdy
Rn
of f, and p and p' are Hélder conjugates. This was proved by Hausdorff and Young

for Fourier series, and extended to integrals by Titchmarsh in 1924. Beckner [20],
improving on earlier partial results of Babenko, showed that when1 < p <2,

(53) If 1< CMflp,
Ip p
where Cyis given by (51). (Lieb [90] proved that equality holds only for Gaussians.)

This improvement on (52) is related to Young's inequality (49). To see the con-
nection, suppose that (53) holds, n=1, and 1 < p, q, 7' < 2. If p, q, r satisfy (47),

then their Holder conjugates satisfy 1/pt +1/qt = 1/#. Using this and Holder'’s
inequality (25), we obtain

Ifxgl, < Culfgln
< Culf, Igl
Ip ™ q
< Cu(GCplflp)(Cqlglg) = Clflplgls.

Asimilarly easy argument (see [20, pp. 169—70]) shows that Young’s inequality (49)
yields (52) when p' is an even integer.

Later on the following second form of Young’s inequality will be useful. Let
0 <p, q,r satisfy

1 1 1
_+_+_ = ,
p q r
and let f € LP(R™), g € L4(R™), and h € L"(R™) be nonnegative. Then
rr n
(54) Sgx— Y dydx< T ey 1g1 101,
RN RN

where C = C,C4Cy is defined using (51). The second form of Young'’s inequality is
actually equivalent to (49); see [91, p. 99] or [66, Section 13] for the proof.

14. Information theory, physics, and logarithmic Sobolev
inequalities

Young's inequality (49) implies a famous inequality from information theory
called the entropy power inequality. This section explains the connection and
touches on some aspects that relate to physics and logarithmic Sobolev inequal-
ities.

Suppose that X is a discrete random variable tabking possible values xi, . .., xXm
with probabilities py, . . . , pm, respectively, where* " ;p;= 1. Shannon [137] intro-
duced a measure of the average uncertainty removed by revealing the value of X.
This quantity,

m
Hm(p1,..., pm)=—  pilog p;,
=1
is called the entropy of X. It can also be regarded as a measure of the missing
information; indeed, the function H, is concave and achieves its maximum when
p1 = -+ = pm=1/m, that is, when all outcomes are equally likely. The words
“uncertainty” and “information” already suggest a connection with physics, and
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a derivation of the function Hp, from a few natural assumptions can be found in
textbooks on statistical mechanics; see, for example, [6, Chapter 3].

If X is a random vector in R™ with probability density f, the entropy h;(X) of

X is defined analogously:
r

X)) =) =-  fIogflx)dx
RN
This notation is convenient when h;(X) is regarded as a limit as p — 1 of the pth

Rényi entropy hp(X) of X, defined for p >1 by

p
log/f1p.
hp(X) = hp() = | —p
The entropy of X may not be well defined. However, if f € LY(R™ n LP(R™) for
some p >1, then hi(X) = hi(f) is well defined, though its value may be +co.

The entropy power N(X) of X is

1 2
L hX
With this background, the entropy power inequality can be stated: Let X and Y be

independent random vectors in R™ with probability densities in LP(R™) for some
p>1 Then

(55) NX+Y)=NX)+N(Y).

In 1948, Shannon [137, Theorem 15 and Appendix 6] published this inequality
and used it to obtain a lower bound [137, Theorem 18] for the capacity of a channel.
Shannon’s proof shows that equality holds in (55) if X and Y are multivariate
normal with proportional covariances. In fact equality holds only for such X and
Y, as Stam’s different proof [139] (simplified in [23] and [47]) of (55) shows.

. The most accessible direct proof of (55) seems to be that of Blachman [23]. As
Lieb [89] discovered, however, the limiting case r = 1 of Young’s inequality (49)

yields the entropy power inequality (55). A complete proof of this arresting fact
can be found in [89] (or see [63, Section 18]), but Deane Yang noticed the following

equivalent and more intuitive approach. Let p >1 and let X be a random vector
in R™ with probability den5|tyjp LP(R™). Define

i pl/pm—2pl/n,

Np(X)=, p~ "

where p! is the Holder conjugate of p (see (51)). Then N,(X), which might be
called the pth Rényi entropy power of X, converges to N(X) as p — 1+. Suppose

that 0 <A <1, and for r>1, let
r

p=p(n= and g=g(n) = .

Q-2 +Aar A+ (1 —=Ar

Then p,_qn> 1, and (47) is satisfied. Let X and Y be independent random vectors
in R™ with probability densities f € LP(R™) and g € L9(R"™), respectively. Young’s

inequality (49) implies that

r

No(x) '™ Ny(v) ?
(56) NAX+Y)= :

—A A
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(The computations required are tedious but routine.) As r = 1+, p,q = 1 and
(56) becomes

NEO T N(Y)
(57) NX+Y)z T 1
By differentiating the log of the right-hand side, it can be verified that this is a
maximum when A = N(X)/(N(X)+ N(Y)). Substituting this value into (57), we
obtain (55).

Presumably Lieb, via his papers [33] and [89], first saw the connection between
the entropy power inequality (55) and the general Brunn-Minkowski inequality (10),
the former being a limiting case of Young's inequality (49) as r — 1 and the latter
a limiting case of the reverse Young inequality (50) as r = 0. Later, Costa and
Cover [42] specifically drew attention to the analogy between the two inequalities,
apparently unaware of the work of Brascamp and Lieb. The paper [73] and further
exciting work of Lutwak, Yang, and Zhang [106], [109] reinforce this fascinating
bridge between information theory and convex geometry.

An important concept called Fisher information was employed by Stam [139] in
his proof of (55). Named after the statistician R. A. Fisher, Fisher information is
claimed in a recent book [62] by Frieden to be at the heart of a unifying principle
for all of physics! If X is a random variable with probability density f on R, the
Fisher information I(X) of X is

r T (02
— - _ tt g, —
I(X)=If)= RJ‘(x)(logﬂx)) dx T dx,

assuming these integrals exist. The multivariable form of I is a matrix, the natural
extension of this definition. The quantity I is another measure of the “sharpness”
of f or the missing information in X; see [62, Section 1.3] for a comparison of I
and h;. Stam [139] (see also [47]) showed that I can be used to obtain the Weyl-
Heisenberg uncertainty inequality, and this inspired Frieden’s work. Frieden’s idea
is that for any physical system, I represents how much information can possibly be
obtained by measurements, while another quantity, J, is the amount of information
bound up in the system. Then I — J leads to a Lagrangian, and the corresponding
law of physics arises from its minimization, the second derivative usually present
in such a law arising from the first derivative present in I

Needless to say, Frieden’s claim has stirred some controversy. Some opinions can
be found in [81] and in the Mathematical Reviews review.

A complex system of inequalities swirls like a cyclone around these concepts.
For example, Dembo, Cover, and Thomas [47] explore several related inequalities
involving entropy, Fisher information, and uncertainty principles. Another rich
area surrounds the logarithmic Sobolev inequality proved by Gross [72]:

1
EntVn (f) =< _ZIVn (f):

where f'is a suitably smooth nonnegative function on R™, y» is the Gauss measure
in R™ defined by (44),

r r r
Enty, () = f)10gflx) dyn(x) — S dyn(x) log f{x) dyn(x) ,

R Rn

(58)

R
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and r , p
_ V(%)
I.(H = e dyn(%).

Here Enty, (f) and Iy, (f) are essentially the negative entropy —h;(f) and Fisher
information, respectively, of f, defined with respect to Gauss measure. There are
several variants of (58), some discovered earlier. An excellent introduction to such
inequalities is provided by Lieb and Loss [91, Chapter 8], where it is shown that
they can be deduced from Young’s inequality (49) and used to estimate solutions of
the heat equation. Bobkov and Ledoux [24] derive (58) from the Prékopa-Leindler
inequality (the “Brascamp-Lieb” in the title of [24] refers not to (59) below but to a
different inequality of Brascamp and Lieb proved in [34]). Cordero-Erausquin [39]
proves (58) directly using the transport of mass idea from Section 8.

McCann’s displacement convexity (30) is utilized by Otto and Villani [126], who
find a new proof of an inequality of Talagrand for the Wasserstein distance between
two probability measures in an n-dimensional Riemannian manifold, and show that
Talagrand’s inequality is very closely related to the logarithmic Sobolev inequality
(58). The interested reader may also consult Ledoux’s survey [85].

15. The Brascamp-Lieb inequality and Barthe’ s inequality

The inequalities presented in this section approach the most general known in
the direction of Young's inequality and its reverse form and represent a research
frontier that can be expected to move before too long.

Each m X n matrix A defines a linear transformation from R™ to R™, and this

linear map can also be denoted by A. The Euclidean adjoint A* of A is then an
n X m matrix or linear transformation from R™ to R™ satisfying Ax-y = x- A*y

for each y € R™and x € R™

Theorem 15.1. Llet ¢; >0 and n; € N, i=1,...,m, with ): .cni=n let f; €
LY( ) be nonnegative and let B; : R* — R™ be a linear surjection, i=1,...,m.
Then

(Brascamp-Lieb inequality)

r A A r Ci
(59) fi(Bx)%dx< D12 fi() dx
Rn i1 i=1 RN

and
(Barthe’s inequality)

(60)
r (m A r ci

sup  flz)9:x= cB'z, z€R" dxzD"? fil) dx
Rn i=1 i =1 R0

where

61 )

(©1 _ det() " aBrAB) iy - .

D=inf =1 i : A; is a positive definite n; X n; matrix

L (det A)@
Theorem 15.1 is a bit intimidating at first sight! We can begin to understand it
a little by taking in (59) n; = n, B; = I, the identity map on R™, replacing f; by
£/a,and letting ci=1/p;, i=1,...,m. Then”’;1/p;=1and the log concavity
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inequalities and helped attract the attention of the convex geometry community to
Brenier’s result.

16. Back to geometry
As Ball [12] remarks, some geometry comes back into view if we replace f{x) by
Sf(=x) in Yourllg'.? inequality (54) in R:

(62) f(—xl)g(xl - xz) h(xz) dJCQ dx1 S_C/ﬂp/g/q/h/r.
R R

Define @ : RZ = R3 by @(x1, x) = z = (21, 3, z3), Where z, = —xy, 2z, = x1 — X,
and z; = x;. Then @(R%) = S, where S is the plane {(z1,2;,2z3) : z1 + 2 + 2z =0}
through the origin. Let f=g=h=1-;,3and G = [—1,1]°. By (62),

r r

V(G N S)

le(z2)dz= flz)g(z)h(zs) dz
S rr S
= Jp! - A=x1)g(x1 — ) h(x:) dx, dx,

where J(¢) is the Jacobian of ¢. So Young's inequality might be used to provide
upper bounds for volumes of central sections of cubes. In fact, Ball [9] used the
following special case of the Brascamp-Lieb inequality (59) to do just this.
Suppose that ¢; >0 and w; € S*1, i=1,..., m, satisfy
m
x= ci(x - w)u,

=1

for all x € R™ This says that the u;'s are acting like an orthonormal basis for R™

The condition is often written
m

(63) ciui ® u; = I,

i=1
where I, is the identity on R™ and u® u denotes the rank one orthogonal projection
onto the span of w, that is, the map that sends x to (x- w)u. Taking traces in (63),

we see that
m

(64) ci=n.

=1
Theorem 16.1. let ¢c; >0 and u;i € S™!, i=1,...,m, be such that (63) and
hence (64) holds. If f; € L'(R) is nonnegative, i=1,...,m, then
(Geometric Brascamp-Lieb inequality)

r ﬁ ﬁ r Ci
(65) Silx - u)dx < filx) dx
R™ 1 = R

and

(Geometric Barthe inequality)

(66)

r Cm ar o
sup filz)%:x= ciziui, z€R dx= fi(x) dx
RN ; ; R

=1 i =1
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If we take, in the inequalities (59) and (60), n;=1and Bx=x-u;, i=1,...,m,
then B’Zfzi = zu; € R" for z; € R and these inequalities become (65) and (66),
respectively, because the hypotheses of the theorem and (61) imply that D = 1.
This vital fact was observed by Ball [9]; see [16, Proposition 9] for the details.
Inequality (66) was first proved by Barthe [13]. As in the general case, equality
holds in (65) and (66) for centered Gaussians.

Barthe [14, Section 2.4] also discovered a generalization of Young's inequality
(49) that contains the geometric Brascamp-Lieb and geometric Barthe inequalities
as limiting cases. The geometric Barthe inequality (66) still implies the Prékopa-

Leindler inequalit% (21) in R, with the geometric consequences already explained.
Ball [9] used (65) to obtain the best—possml/e upper bound

Vi(GnS) < ( 2k
for sections of the cube Cy =[—1, 1]™ by k-dimensional subspaces S,1 < k< n—1,
when 2k > n. (For smaller values of k, the best-possible bound is not known except
for some special cases; see [9].) He also showed that (65) provides best-possible
upper bounds for the volume ratio vr(K) of a convex body K in R", defined by

V(K) 1/n
UT'(K)= W >

where E is the ellipsoid of maximal volume contained in K. The ellipsoid E is
called the John ellipsoid of K, after Fritz John. John’s result, as refined by Ball,
states that the John ellipsoid of a convex body K in R™ is tpe unit ball B if and
onlyif Bc Kandthereisanm=>n, ¢ >0and w; € S* ' noK,i=1,...,m,
such that (63) holds and )’l- ciui = o.

To bound vr(K), Ball argues as follows. Since vr(K) is affine invariant, we may
assume that the John ellipsoid of K is B. If we can Show that V(K) < 2", then
vr(K) < vn(Gy), where Cy = [—1,1]™ Let ¢; and u; be as in John’s theorem, and
note that the points w; are contact points, points where the boundaries of K and B
meet. If K is origin symmetric and w; is a contact point, then so is —u;; therefore
K c L, where

L={xeR": |x-uw| <£1,i=1,...,m}
is the closed slab bounded by the hyperplanes {x: x-u; = £1}. Also, if fi=1 -1 1
then

m

N
()= filx-w)e.
=1
By (65) and (64),
r A A r Ci A
V(K< V()= . fillx-u)fdx < Rﬁ()C) dcx = 29=2"
=1 =1 =1

This argument shows that vr(K) is maximal for centrally symmetric K when K is
a parallelotope, that is, an affine image of a cube.

One consequence of this estimate is the following remarkable reverse isoperimet-
ric inequa/iggl for centrally symmetric convex bodies: Let K be a centrally symmetric

convex body’in R™ and’let Cy = [—1,1]™ There is an affine transformation ¢ such
that Un

V(¢K)
(67) 1/(n=1) <

S(Cy) - V(G
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This result is due to Ball [11] (Behrend [21] proved it for n=2). For the proof,
choose ¢ so that the John ellipsoid of @K is B. The above argument shows that

V(pK) < 2™ Since B C @K, we have, by (6),

S(pK) = lim Y(@K+eB) = V(pK)
T oK+ oK) — V (L+en—1
+ - n—
lim LK o) = V(@R _ o im ©
>0+ £ >0+ E

= nV(qu) - nV(qu)<”—1>/”V(goK)1/" < 2nV((pK)(”_l>/”,

Since V() = 2™ and S(Cy) = 2™n, this is equivalent to (67).

Of course, one cannot expect a reverse isoperimetric inequality without use of
an affine transformation, since we can find convex bodies of any prescribed volume
that are very flat and so have large surface area.

In [11], Ball used the same methods to show that for arbitrary convex bodies
the volume ratio is maximal for simplices, and to obtain a corresponding reverse
isoperimetric inequality. The fact that the volume ratio is only maximal for paral-
lelotopes (in the centrally symmetric case) or simplices was shown by Barthe [16] as
a corollary of his study of the equality conditions in the Brascamp-Lieb inequality.
For other results of this type that employ Theorem 16.1, see [10], [15], and [134].
Barthe [16] states a multidimensional generalization of Theorem 16.1, also derived
from Theorem 15.1, that leads to a multidimensional Brunn-Minkowski-type theo-
rem.

In 1986, Milman found a reverse Brunn-Minkowski inequality. At first such an
inequality seems impossible, since if K and L are convex bodies in R™ of volume
1, the volume of K + L can be arbitrarily large. As with the reverse isoperimetric
inequality (67), however, linear transformations come to the rescue. Milman’s result
states that there is a constant c independent of n such that if K and L are centrally
symmetric convex bodies in R", there are volume-preserving linear transformations
@ and y for which

(68) V(pK + wL)/" < ¢ y(pK)/" + V (wL)/"

This inequality is important in the local theory of Banach spaces; see [92, Sec-
tion 4.3] and [127, Chapter 7].

17. The Aleksandrov-Fenchel inequality

In Sections 3 and 5 it was mentioned that the Brunn-Minkowski inequality
(2) for convex bodies K and L in R™ is equivalent to the concavity of f(?) =

V((Q-9)K+ tL)l/” for 0 < t £ 1, and also to Minkowski’s first inequality (15).
This remains true for arbitrary compact convex sets K and L. The one inequal-
ity in Figure 1 that remains to be discussed, the Aleksandrov-Fenchel inequality,
generalizes these statements. Discovered by A. D. Aleksandrov and W. Fenchel
independently around 1937, it is a relation between mixed volumes (introduced in
Section 3), stating that if K1, ..., K, are compact convex setsinR"and 1 < i < n,
then

N
(69) VK, Ky,...,Kn)' 2 V(K i Kisi,..., Kn).

i=1
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See, for example, [36, p. 143] and.[135,_(6.8.7}], and also F135 p. 322] for interesting
historical comments. 1f we'put i = n'ih (69)and then let Ky = Land K, = - - - =

K, = K, we retrieve Minkowski’s first inequality (15) and therefore the Brunn-
Minkowski inequality for compact convex sets. For such sets, (69) is essentially the
most powerful extension of the Brunn-Minkowski inequality available. No simple
proof is known; that in [135, Theorem 6.3.1] follows one of Aleksandrov’s, which
establishes the inequality for certain convex polytopes and then uses approximation.
Equality conditions are not fully settled even today.

The Aleksandrov-Fenchel inequality (69) is equivalent to the concavity on O <

t < 1 of the function
(70) f(t) = V((l - t)KO + tKl) lv Ki+]; L) Kn)l/i;
where Ky, ..., K, are compact convex sets in R™, 1 < i < n. See [36, p. 146] and

[135, Theorem 6.4.3]. Readers familiar with the basic properties of mixed volumes

can derive (69) from the concavit¥l of £ in (70) by setting i = 2 and expanding
the resulting inequality to extract the constants’(1 — ¢) andt. Inequality (69) with

i= 2 results, and the general case follows by induction on i.

An analog of the Aleksandrov-Fenchel inequality for mixed discriminants (see
[135, Theorem 6.8.1]) was used by G. P. Egorychev in 1981 to solve the van der
Waerden conjecture concerning the permanent of a doubly stochastic matrix. See
[135, Chapter 6] for a wealth of information and references.

Khovanskii, who with Teissier independently discovered that the Aleksandrov-
Fenchel inequality can be deduced from the Hodge index theorem, wrote a readable
accountofthissurprisingdevelopmentin[36, Section 27]. The connection originates
in the fact (due to D. M. Bernstein) that the number of complex roots of a generic
system of n polynomial equations in nvariables equals n! times the mixed volume
of the corresponding Newton polytopes, P, Py, ... Py, say. (The Newton polytope
is t”r;le smallest convex poI]ytope in R™ containing each point (mlﬁ. .., My) for which
cz™ - -znmn is a term of the polynomial.) e (n— 2) of these n polynomial
equations corresponding to P, . . ., P, define an algebraic surface in C™ on which
the remaining polynomial equations describe two complex curves. The number of
intersection points of these two curves is the number of roots of the system of n

equations. Roughly speaking, the Hodge index theorem is an ine(fua_lity involvin
the number (T, T) of intersections of two complex curves T'j, I'; in ‘a compac

complex algebraic surface and those (T}, T1), (T, I';) of each curve with a slightly
deformed copy of itself:

(1“1,1“2)2 > (Fl, 1“1)(1“2, Fz).

Using the above observations, this can be translated into
V(P,P,Ps,..., Pn)2 > V(P,P,PB,..., P))V(P, P, Ps,...,P).

The case i = 2 of (69) (and hence, by induction, (69) itself) can be shown to follow
by approximation by polytopes with rational coordinates. See [36, Section 27] for
many more detailsand also [71] and [123] for more recent advancesin this direction.

Alesker, Dar, and Milman [1] are able to use the Brenier map (see Section 8) to
prove some of the inequalities that follow from the Aleksandrov-Fenchel inequality,

but the method does not seem to yield a new proof of (69) itself.

Incontrastto the Brunn-Minkowski inequality, the Aleksandrov-Fenchelinequal-

ity and some of its weaker forms, and indeed mixed volumes themselves, have found
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only partially successful extensions to nonconvex sets. See [36, pp. 177—181], [135,
p. 343], and [146].

18. A survey

The subsections below provide an overview of the various known extensions and
analogs of the Brunn-Minkowski inequality not yet covered. Without being com-
prehensive, it should alert the reader to the main developments.

18.1. Minkowski-concave functions. Areal-valued function pdefined onaclass
of sets in R™ closed under vector addition and dilatation is called Minkowski concave
if

(71) P((1 =X +AY) 2 (1 — He(X) + Ap(Y),

for 0 < A <1 and sets X, Y in the class. For example, the Brunn-Minkowski
inequality (2) implies that V,ll/" is Minkowski concave on the class of convex bod-
ies. When Hadwiger published his extraordinary book [74] in 1957, many other
Minkowski-concave functions had already been found, and several more have been
discovered since. We shall present some of these; all the functions have the required
degree of positive homogeneity to allow the coefficients (1 — A) and A to be deleted
in (71). Other examples can be found in [74, Section 6.4] and in Lutwak’s papers
[96]and [102].

Knothe [83] gave a proof of the Brunn-Minkowski inequality (2) for convex bod-

ies, sketched in [135, pp. 312—314], and the following generalization. For each
convex body K in R™, let F(K, x), X € K, be a nonnegative real-valued function

continuous in K and x. Suppose also that for some m >0,
F(AK + g, Ax+ a) = A"F(K, x)
for all A >0 and a € R™, and that
log F (1 — A)K+ AL, (1 — A)x+ Ay) = (1 — A) log F(K, x) + Alog F(L, y)

whenever x € K, y € L, and 0 < A < 1. For each convex body K in R", define
r

G(K) = F(K, x) dx.
K
Then

(72) G(K + L)l/(n+m) > G(K)l/(n+m) + G(L)l/(rwm),

for all convex bodies Kand Lin R™ Thisis a conse%uence of the Prékopa-Leindler
inequality (21). Indeed, taking f = F(K, ), g = F(L,-), and h = F((1 — )K +
AL, -), Theorem 7.1 implies that G is log concave. The 1/(n+ m)-concavity (72)
of G follows from its log concavity in the same way that (2) follows from (22) (see

Section_7). The Brunn-Minkowski ine ualitfy (2) for convex bodies is_obtained by
taking F(K, x) =1 for x € K. Dlnghas(i49] ound further results of this type.

Let O £ i £ n. The mixed volume V (K, n— i; B, i) is denoted by Wi(K), and
called the ith quermassintegral of a compact convex set Kin R™ Then Wy(K) =
Y’&(K)<‘ It car11 I%ﬁésrﬁlown (see [135, (5.3.27), p. 295]) that if K is a convex body and

<i<n-1,

Kn

(73) W.(K) = V(K|S)dS,

Kn_ i Gn,n—i
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where dS denotes integration with respect to the usual rotation-invariant probabil-
ity measure in the Grassmannian G(n, n — i) of (n — i)-dimensional subspaces of

R™and K| S is the orthogonal projection of K onto S. Thus the quermassintegrals
are averages of volumes of projections on subspaces.

Letting Ki;; = - - - = K, = B in (70) and using the concavity of the resulting
function, we obtain a Brunn-Minkowski inequality for quermassintegrals: 1f K and

L are convex bodiesin R*and 0 < i< n—1, then

(74) Wi(K + D)V > WK)!/ () + WL)!/ o,
with equality for 0 < i < n— 1 if and only if K and L are homothetic. See
[135, (6.8.10), p. 385], where the equality condition is also discussed. The special
case i = 0 is the usual Brunn-Minkowski inequality (2) for convex bodies. As was
explained in Section 3, the quermassintegral Wi (K) equals the surface area S(K),
up to a constant, so the case i = 1 of (74) is a Brunn-Minkowski-type inequality
for surface area. When i= n—1, (74) becomes an identity.

Let K be a convex body in R™, define ®y(K)= V(K)andforl <i<n-—1,
define

Kn 1 r \—l/n

V(K|S)™ ds

®,(K) =

>

Kn_i G(n,n—1i)
the ith affine quermassintegral of K. Note the similarity to &73). the ordinary
mean has been replaced by the —n-mean. As its name suggests, ®,(K) is invari-
ant under volume-preserving affine transformations. Lutwak’s inequality for affine
quermassintegrals, proved in [97], says that if K and L are convex bodies in R™ and
0<i<n-—1, then

(75) (K + L)l/(n—l) > q)i(K)l/(n—l) + q)i(L)l/(n—l)_
Let K be a convex body in R™, n = 3. The capacity Cap (K) of K is defined by
r

Cap (K) = inf INfPdx: fe C°(RY, fzlk ,
Rn

where C°(R™) denotes the infinitely differentiable functions on R™ with compact
support. Here we are following Evans and Gariepy [55, p. 147], where Cap (K) =
Cap n—2(K) in their notation. Several definitions are possible; see [78], [112,
pp. 110-116], and especially the discussion in [91, Section 11.15]. The notion of
capacity has its roots in electrostatics and is fundamental in potential theory. Note
that capacity is an outer measure but is not a Borel measure, though it enjoys some
convenient properties listed in [55, p. 151;. Borell’s inequality for capacity states
that if K and Lare convex bodies in R™, n = 3, then

(76) Cap (K + 1)!/"? > Cap (K)/" + Cap (I)!/"~2.

The proof can be found in [28]. Caffarelli, Jerison, and Lieb [38] showed that
equality holds if and only if K and L are homothetic. Jerison [78] employed the in-
equality and its equality condition in solving the corresponding Minkowski problem
(see Section 6).

18.2. Blaschke addition. If K and L are convex bodies in R, then there is a
convex body K + L, unique up to translation, such that

S(K+ L,-)=S(K, ")+ S(L, "),
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subspace, the curve r = 1(0) in St such that () is the (n— 1)-dimensional volume

of the intersection of K with the half-space S forms the boundary of a convex body
in St. Proved in this form by H. Busemann in 1949 and motivated by his theory

of area in Finsler spaces, it is also important in geometric tomography (see [66,

Theorem 8.1.10]). As stated, (86) and precise equality conditions were proved by
W. Barthel and G. Franz in 1961; see [66, Note 8.1] for more details and references.
Milman and Pajor [120, Theorem 3.9] found a proof of Busemann’s theorem
similar to that of Theorem 7.1 outlined above. Generalizations along the lines of
Theorem 10.1 are possible, such as the following (stated and proved in [14, p. 9]).

LetO <A <1, let p >0, and let f, g, and h be nonnegative integrable functions
on [0, co) satisfying

a-DyP

AxP
(87) h(M-p(x, y, 2)) = f(2) TAFAT g(y) amypene |
for all nonnegative x,y € R. Then
N N N

h(x) dx = M- fdx, gl dxA
0 0

The previous inequality is very closely related to one found earlier by Ball [8].
For other associated inequalities, see [69, Theorem 4.1] and [119, Lemma 1].

18.11. Further applications. Kannan, Lovasz, and Simonovits [80] obtain some
inequalities involving log-concave functions by means of a “localization lemma”
that reduces certain inequalities involving integrals over convex bodies in R™ to
integral inequalities over “infinitesimal truncated cones”—line segments with asso-
ciated linear functions—and hence to inequalities in a single variable. The proof of
this localization lemma uses the Brunn-Minkowski inequality; see [93, Lemma 2.5],
where an application to the algorithmic computation of volume is discussed. Other
applications of the Brunn-Minkowski inequality include elliptic partial differential
equations [7] and combinatorics [79].
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