RED BeeTL: Recipe Encoder Decoder Beer Translator LSTM

Gracie Ermi, Ellyn Ayton, Nolan Price and Brian Hutchinson

Computer Science Department, Western Washington University

Background

Top frequencies of fermentables, hops, yeasts, and miscellaneous ingredients (left to right, top down)

Long Short Term Memory Networks

• Specializes in modeling sequential data • Memory cells store relevant long-term info


```
i_t = \sigma(W_i x_t + U_i h_{t-1} + b_i)
 	ilde{c}_t = 	anh(W_c x_t + U_c h_{t-1} + b_c)
 f_t = \sigma(W_f x_f + U_f h_{t-1} + b_f)
C_t = i_t \circ \tilde{c}_t + f_t \circ C_{t-1}
o_t = \sigma(W_o x_t + U_o h_{t-1} + V_o C_t + b_o)
h_t = o_t \circ \tanh(C_t)
 y = \operatorname{softmax}(h)
```

Beer Recipes

• Fermentables: affect sweetness, body, color, alcohol content

LSTM-DNN

Training

200

- Developed using Tensorflow, Scikit-learn
- Bayesian hyperparameter tuning
- Stochastic gradient-based optimization

Results

- Hops: give bitter, zesty, citric flavors
- Yeasts: affect alcohol content, flavor, aroma
- Miscellaneous: affects clarity and flavor

Embeddings

Accuracies for 3-way classification of beer types

Root mean squared errors for predicting beer attributes, **small RMSE is better**

• Neural network models outperform standard baselines in all tasks

An example recipe from the Brewtoad dataset (in BeerXML format)

</RECIPE>