May 2015

Effects of medial prefrontal cortex NMDA NR-1 subunit deletion in adult mice on spatial reference and working memory

Melissa Gorham
Western Washington University

Dane Dewees
Western Washington University

Follow this and additional works at: https://cedar.wwu.edu/scholwk

Part of the Higher Education Commons

Gorham, Melissa and Dewees, Dane, "Effects of medial prefrontal cortex NMDA NR-1 subunit deletion in adult mice on spatial reference and working memory" (2015). Scholars Week. 29.
https://cedar.wwu.edu/scholwk/2015/Day_one/29

This Event is brought to you for free and open access by the Conferences and Events at Western CEDAR. It has been accepted for inclusion in Scholars Week by an authorized administrator of Western CEDAR. For more information, please contact westerncedar@wwu.edu.
Effects of NMDA NR1-Subunit Deletion in the Medial Prefrontal Cortex on Spatial Reference and Working Memory

MM Gorham, DM Dewees, MJ Mana, and JM Finlay
Program in Behavioral Neuroscience, Department of Psychology, Western Washington University, Bellingham, WA

BACKGROUND

- Glutamate N-methyl-D-aspartate (NMDA) receptor dysfunction may contribute to cognitive deficits associated with psychiatric illnesses including autism, affective disorders, and schizophrenia.

- The medial prefrontal cortex (mPFC) has been shown to play a role in executive functions including working memory (Kesner & Churchwell, 2011).

- Results of a recent study indicate that early postnatal NMDA NR1 deletion, mostly confined to excitatory neurons in prefrontal and sensory cortices, fails to affect spatial working memory (SWM) as assessed using a spontaneous alternation Y-maze task (Rompala et al., 2013).

- The present study examines the effects of NR1 deletion restricted to the adult mouse mPFC on a more cognitively demanding spatial reference memory (SRM) and SWM 6-arm radial maze (as described in Niewoehner et al., 2007).

MATERIALS AND METHODS

1. Floxed NR1 Gene
2. AAV-Cre or LacZ/SCSF Infusion Site

Fig 1. AAV-Cre or LacZ/SCSF was microinjected into the infralimbic mPFC of adult male floxed NR1 mice (NR1; JAX, Grin1<sup>1^{-⁻}); PN70-90).

Fig 2. In situ hybridization analysis revealed loss of NR1 mRNA in the mPFC of Cre-treated mice but not control mice.

Fig 3. Mice were habituated and trained on an automated 8-arm radial maze (Med Associates Inc.) adjusted to a 6-arm configuration. Noldus Ethovision XT was used for tracking and data collection. Extra-maze cues were provided to facilitate the use of spatial memory to complete the task.

SPATIAL REFERENCE MEMORY

- Begin in center; doors open
- Arm selection
- Return to center
- All doors close for 10 s delay
- Only unentered arms reopened; RM errors scored

Control RM Correct
Control RM Error
Nr1 Cre
Nr1 Control

Days (4 trials/day)

Fig 4. SRM trial sequence

Fig 5. NR1 deletions did not affect SRM acquisition

Days (4 trials/day)

SPATIAL WORKING MEMORY

- Begin in center; doors open
- Arm selection
- Return to center
- All doors close for 10 s delay
- All arms reopened; RM and WM errors scored

Control WM Correct
Control WM Error
Nr1 Cre
Nr1 Control

Days (4 trials/day)

Fig 6. SWM trial sequence

Fig 7. NR1 deletions did not affect maintenance of SRM

Days (4 trials/day)

Fig 8. NR1 deletions did not affect acquisition of SWM

Days (4 trials/day)

MANIPULATING COGNITIVE DEMAND

To alter cognitive load, mice were tested under conditions of:
- Shorter and longer delays between arm openings (5 & 30 s)
- Displacement of extra-maze cues achieved by a 45° maze rotation (see left)

Fig 9. SRM and SWM under increased cognitive load

Fig 10. Maze rotation increased SRM and SWM errors⁶ and this effect was potentiated in NR1 deleted mice⁶

Days (4 trials/day)

Fig 11. In contrast, shorter and longer delays failed to affect SRM performance in either group

Days (4 trials/day)

Fig 12. Shorter and longer delays also failed to affect SWM in either group

DISCUSSION

- A regionally specific deletion of the NMDA NR1 subunit, induced by local infusion of AAV-Cre into the adult mouse infralimbic mPFC, did not affect acquisition of SRM or SWM, as assessed in a 6-arm radial maze task.

- These results extend earlier demonstrations that SWM assessed using a spontaneous alternation Y-maze task is unaffected by early postnatal NR1 deletions in excitatory neurons of the prefrontal and sensory cortices (Rompala et al., 2013).

- In the present study, increasing cognitive demand by rotating extramaze cues revealed potentiated SRM and SWM deficits following NR1 deletions in the infralimbic mPFC.

- The current data suggest that NR1 deletion in the infralimbic mPFC impairs the ability to modify behavior in the presence of changes in the environment.

- This deficit may reflect an inability for Cre mice to inhibit behavior, as the same mice displayed an increase in premature responding in a 5-choice serial reaction time task (Manning et al., 2014).

REFERENCES

Days (4 trials/day)