May 14th, 10:00 AM - 2:00 PM

Effects of medial prefrontal cortex NMDA NR-1 subunit deletion in adult mice on spatial reference and working memory

Melissa Gorham
Western Washington University

Dane Dewees
Western Washington University

Follow this and additional works at: https://cedar.wwu.edu/scholwk

Part of the [Higher Education Commons](https://cedar.wwu.edu/scholwk/2015/Day_one/29)

Gorham, Melissa and Dewees, Dane, "Effects of medial prefrontal cortex NMDA NR-1 subunit deletion in adult mice on spatial reference and working memory" (2015). *Scholars Week*. 29.
https://cedar.wwu.edu/scholwk/2015/Day_one/29

This Event is brought to you for free and open access by the Conferences and Events at Western CEDAR. It has been accepted for inclusion in Scholars Week by an authorized administrator of Western CEDAR. For more information, please contact westerncedar@wwu.edu.
BACKGROUND

- Glutamate N-methyl-D-aspartate (NMDA) receptor dysfunction may contribute to cognitive deficits associated with psychiatric illnesses including autism, affective disorders, and schizophrenia.
- The medial prefrontal cortex (mPFC) has been shown to play a role in executive functions including working memory (Kesner & Churchwell, 2011).
- Results of a recent study indicate that early postnatal NMDA NR1 deletion, mostly confined to excitatory neurons in prefrontal and sensory cortices, fails to affect spatial working memory (SWM) as assessed using a spontaneous alternation Y-maze task (Rompala et al., 2013).
- The present study examines the effects of NR1 deletion restricted to the adult mouse mPFC on a more cognitively demanding spatial reference memory (SRM) and SWM 6-arm radial maze (as described in Niewoehner et al., 2007).

MATERIALS AND METHODS

Fig 1. AAV-Cre or LacZ/aCSF was microinjected into the infralimbic mPFC of adult male floxed NR1 mice (fNR1; JAX, Grin1tm; PN70-90).

Fig 2. In situ hybridization analysis revealed loss of NR1 mRNA in the mPFC of Cre-treated mice but not control mice.

Fig 3. Mice were habituated and trained on an automated 8-arm radial maze (Med Associates Inc.) adjusted to a 6-arm configuration. Noldus Ethovision XP was used for tracking and data collection. Extra-maze cues were provided to facilitate the use of spatial memory to complete the task.

REFERENCES

DISCUSSION

- A regionally specific deletion of the NMDA NR1 subunit, induced by local infusion of AAV-Cre into the adult mouse infralimbic mPFC, did not affect acquisition of SRM or SWM, as assessed in a 6-arm radial maze task.
- These results extend earlier demonstrations that SWM assessed using a spontaneous alteration Y-maze task is unaffected by early postnatal NR1 deletions in excitatory neurons of the prefrontal and sensory cortices (Rompala et al., 2013).
- In the present study, increasing cognitive demand by rotating extramaze cues revealed potentiated SRM and SWM deficits following NR1 deletions in the infralimbic mPFC.
- The current data suggest that NR1 deletion in the infralimbic mPFC impairs the ability to modify behavior in the presence of changes in the environment.
- This deficit may reflect an inability for Cre mice to inhibit behavior, as the same mice displayed an increase in premature responding in a 5-choice serial reaction time task (Manning et al., 2014).