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Abstract
Species Distribution Models (SDMs) are widely used to understand environmental 
controls on species’ ranges and to forecast species range shifts in response to climatic 
changes. The quality of input data is crucial determinant of the model’s accuracy. 
While museum records can be useful sources of presence data for many species, they 
do not always include accurate geographic coordinates. Therefore, actual locations 
must be verified through the process of georeferencing. We present a practical, stand-
ardized manual georeferencing method (the Spatial Analysis Georeferencing Accuracy 
(SAGA) protocol) to classify the spatial resolution of museum records specifically for 
building improved SDMs. We used the high-elevation plant Saxifraga austromontana 
Wiegand (Saxifragaceae) as a case study to test the effect of using this protocol when 
developing an SDM. In MAXENT, we generated and compared SDMs using a compre-
hensive occurrence dataset that had undergone three different levels of georeferenc-
ing: (1) trained using all publicly available herbarium records of the species, minus 
outliers (2) trained using herbarium records claimed to be previously georeferenced, 
and (3) trained using herbarium records that we have manually georeferenced to 
a ≤ 1-km resolution using the SAGA protocol. Model predictions of suitable habitat for 
S. austromontana differed greatly depending on georeferencing level. The SDMs fitted 
with presence locations georeferenced using SAGA outperformed all others. 
Differences among models were exacerbated for future distribution predictions. 
Under rapid climate change, accurately forecasting the response of species becomes 
increasingly important. Failure to georeference location data and cull inaccurate sam-
ples leads to erroneous model output, limiting the utility of spatial analyses. We pre-
sent a simple, standardized georeferencing method to be adopted by curators, 
ecologists, and modelers to improve the geographic accuracy of museum records and 
SDM predictions.
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1  | INTRODUCTION

Climate change is predicted to result in massive species range shifts 
and population-level extinctions (Clark, Bell, Kwit, & Zhu, 2014; 
Hijmans & Graham, 2006; Thomas et al., 2004; Thuiller, Lavorel, 
Araújo, Sykes, & Prentice, 2005). Observing, describing, and fore-
casting patterns of biodiversity under changing climate conditions are 
critical goals in the fields of biogeography, conservation, and ecology 
(Bucklin et al., 2015). Species Distribution Models (SDMs), also re-
ferred to as Bioclimatic Envelope Models, are the most widely used 
approach for predicting past, present, and future suitable habitats for 
common and rare species (Elith, Kearney, & Phillips, 2010; Hijmans & 
Graham, 2006; Phillips & Dudík, 2008; Wiens, Stralberg, Jongsomjit, 
Howell, & Snyder, 2009). These models are used to predict climate 
change impacts (Keith et al., 2008; Serra-Diaz et al., 2014; Wiens 
et al., 2009), construct phylogeographic patterns (Forester, DeChaine, 
& Bunn, 2013), and guide efforts to locate new populations of rare 
species (Williams et al., 2009). Reliable SDMs can inform land man-
agers where to concentrate conservation resources to best preserve 
areas of ecological importance. Because SDMs rely on species occur-
rence coordinates, climate data, and other environmental variables to 
define a species’ bioclimatic niche and project future ranges (Bucklin 
et al., 2015; Flower, Murdock, Taylor, & Zwiers, 2013), the accuracy 
of those variables strongly affects the reliability of the model’s predic-
tions. In this paper, we analyze the effects of using species presence 
records of varying accuracy, demonstrating the importance of rigorous 
georeferencing to obtain optimal SDM results.

Although there are a variety of modeling methods and algorithms 
for generating SDMs, correlative models constructed using only spe-
cies occurrence records and climate data are commonly used tools 
(Bucklin et al., 2015; Flower et al., 2013; Guillera-Arroita et al., 2015; 
Oke & Thompson, 2015). These models do not include true absence 
data, nor do they explicitly account for additional variables such as 
interspecies interactions or species’ dispersal abilities (Flower et al., 
2013; Pearson & Dawson, 2003). Correlative models predict the re-
alized niche of the species, not the fundamental niche, due to their 
reliance on observed presence records (Wiens et al., 2009). There are 
several notable sources of uncertainty in the process of SDM develop-
ment (Wiens et al., 2009). One source of uncertainty arises because 
of the fact that any ecological or climatic model is constrained by the 
selection of environmental variables. While there is no consensus 
as to which environmental or climate variables are to be included in 
standard SDMs, many agree that the selection of variables can poten-
tially introduce bias (Bucklin et al., 2015). A model’s accuracy is also 
constrained by the resolution and quality of the climate data (Real, 
Luz Márquez, Olivero, & Estrada, 2010). Climate data are usually rep-
resented as continuous grids interpolated from quality-controlled cli-
mate station datasets (Daly et al., 2008). The quality of these climate 
data and the methods of interpolating from point records to a continu-
ous surface and correcting for factors such as elevation and aspect can 
be sources of error in SDMs (Real et al., 2010). There can also be issues 
regarding the taxonomic identification of the specimen (Lozier, Aniello, 
& Hickerson, 2009). Species can be misidentified, or the systematics 

and taxonomy may have evolved over the years to include different 
species classifications. Sampling bias and imperfect detection are also 
noted limitations of the current available data for species distribu-
tions (Boakes et al., 2010; Fourcade, Engler, Rödder, & Secondi, 2014; 
Guillera-Arroita et al., 2015; Newbold, 2010). Among all these poten-
tial sources of model uncertainty, one particularly important variable 
for creating reliable SDMs is the accuracy of the species occurrence 
localities (Newbold, 2010).

Museum and herbarium records can provide valuable information 
on the distribution of extinct and extant species (Anderson, 2012; Davis, 
Willis, Connolly, Kelly, & Ellison, 2015; Newbold, 2010). Millions of oc-
currence records can be accessed directly from the museum or in repu-
table online databases, many publicly available (Newbold, 2010). Most 
include a written site description and often geographic coordinates (see 
Fig. S1 in Supporting Information). The quality of location data generally 
declines with specimen age. Herbarium records’ site descriptions and 
associated geographic coordinates are frequently used to build high-
resolution SDMs (Alvarado-Serrano & Knowles, 2014; Forester et al., 
2013; Lozier et al., 2009). Site coordinates should have as good or bet-
ter resolution than the climate data, often ≤1 km2, in order to produce 
useful SDMs (Wiens et al., 2009). Failure to assess spatial error in these 
occurrence record coordinates can have significant impacts on appar-
ent species distributions (Rowe, 2005), although the severity of this ef-
fect varies among species and is partially dependent on the modeling 
method used (Graham et al., 2008). Several studies address the effect 
of sampling bias on SDM output (Boakes et al., 2010; Fourcade et al., 
2014; Phillips et al., 2009), but less attention has been paid to the stan-
dardization of georeferencing to improve model performance. Previous 
research on the role of locational accuracy has focused on the effects of 
adding simulated random locational error (Graham et al., 2008), rather 
than assessing the error in actual museum records.

Most herbarium and museum records were not documented by 
collectors with the intention of use in geographic modeling, result-
ing in many potential sources of spatial error (Bowe & Haq, 2010). 
Recently, there have been increasing inventories of so-called geo-
referenced natural history collections available to scientists (Randin, 
Engler, Pearman, Vittoz, & Guisan, 2009). Georeferencing is the 
process of interpreting the written description of site localities and 
verifying the associated geographic coordinates or assigning new co-
ordinates (Rowe, 2005). Although no standard georeferencing process 
currently exists, many projects have developed individual guidelines 
(Chapman & Wieczorek, 2006). Examples of georeferencing practices 
and programs include the Mammal Networked Information System—
MANIS guidelines (Wieczorek, Guo, & Hijmans, 2004; Wieczorek & 
Wieczorek, 2015), MapSteDI (Murphey et al., 2004), BioGeomancer 
(Chapman & Wieczorek, 2006), and GEOLocate (Rios & Bart, 2010). 
The two main branches of georeferencing methods are manual geo-
referencing and “Georeference Calculators.” Manual georeferencing 
requires the meticulous human interpretation of site descriptions and 
assigning coordinates using detailed topographic maps. This can take 
several minutes per sample and is increasingly taxing with large data-
sets. Georeference Calculators are computer algorithms designed to 
automate the tedious process of interpreting written site descriptions 
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to estimate geographic coordinates and a degree of confidence 
(Wieczorek & Wieczorek, 2015). Many publications present SDM re-
sults, at varying spatial resolution, without explicitly stating how or if 
the data were georeferenced (Table 1).

In this paper, we set out to answer the following question: What 
are the consequences of using occurrence data of varying levels of 
spatial accuracy to inform present and future SDMs for a high-
elevation plant? To address this question, first we outline a stan-
dardized method of georeferencing occurrence records specifically 
for building more useful SDMs, the Spatial Analysis Georeferencing 
Accuracy (SAGA) protocol. Next, to demonstrate the importance of a 
standardized process, we built current and future SDMs in MAXENT 
for the high-elevation wildflower Saxifraga austromontana Wiegand 
(Saxifragaceae), using three sets of herbarium records, each georefer-
enced to a different level of spatial accuracy. Although we focus on a 
single plant species, the methods could be extended to any taxon with 
historical museum or herbarium occurrence records.

2  | METHODS

2.1 | Study system: Saxifraga austromontana

Saxifraga austromontana, the Prickly Saxifrage, is an ideal case-study 
species for investigating how various georeferencing methods affect 

SDM results because of its geographically large, but topographically 
limited, range and extensive herbarium records (Figure 1). First, this 
plant is endemic to, but widely distributed across, mountainous re-
gions of western North America from 30 to 55 degrees’ latitude 
(Figure 2), where it inhabits a topographically complex region near 
tree line. Second, it has an extensive history of collections spanning 
over 200 years resulting in over 3,000 herbarium records available in 
online databases. The extensive collections of this species, and others 
in the genus with overlapping and extended ranges, limit the effect of 
sampling bias.

2.2 | Historical herbaria record data

We compiled a complete “Original” (O) dataset of herbarium re-
cords for S. austromontana. In May 2015, we downloaded all search 
records for “Saxifraga austromontana” and its taxonomic synonym 
“Saxifraga bronchialis” from the Consortium of the Pacific Northwest 
Herbarium, Consortium of Intermountain Herbarium, Consortium of 
Rocky Mountain Herbarium, SEINet, and Canadensys. We included 
additional records from the Pacific Northwest Herbarium (WWB), 
University of Washington Herbarium (WTU), University of Oregon 
Herbarium (ORE), Mount Rainer National Park Herbarium (MORA), 
Royal BC Museum (V), University of British Columbia Herbarium 
(UBC), and the B.A. Bennett Herbarium (BABY).

TABLE  1 Examples of methods used to georeferenced species occurrence records as described in species distribution modeling (SDM) 
papers. Georeferencing practices are not standardized, and often the resolution of the resulting SDM is finer than the historical records used to 
train the model. Without accurately georeferenced presence points, it is impossible to create a credible SDM

Authors Occurrence records source SDM resolution Georeference description

Jackson et al. (2015) Field-measured GPS localities and 
opportunistic citizen science 
sightings

100 m For the field survey dataset, all locations were 
recorded with GPS. For citizen science program, 
summer observations filtered by location accuracy, 
retaining those with precise GPS or map 
coordinates (accurate to within 100 m)

DeChaine, Wendling, and 
Forester (2014)

Herbarium records 800 m “Georeferenced” herbaria samples

Chardon, Cornwell, Flint, Flint, 
and Ackerly (2014)

Consortium of California Herbarium 800 m Authors employed three criteria on herbarium 
records: (1) Omitted occurrences with GPS error 
larger than 1000 m; (2) If GPS error was not 
included in the occurrence file, only used 
specimens collected since the year 2000; (3) 
Omitted points that were clearly planted or 
outside of the species’ distribution

Lentz, Bye, and Sánchez-
Cordero (2008)

Herbarium records from the United 
States, United Kingdom, and Mexico

30 arc-seconds 
(ca. 1 km2)

If the coordinates were not specified on herbarium 
records, the authors georeferenced using 
1:100,000 topographic maps. Locality data were 
only used if the location of the collection could be 
accurately pinpointed

López-Alvarez et al. (2015) Herbarium records and field 
measured

30 arc-seconds 
(ca. 1 km2)

Field collections and georeferenced collections

Smith and Donoghue (2010) Labels on herbaria specimens, 
relevant herbaria databases, and 
other databases

30 arc-seconds 
(ca. 1 km2)

No mention of georeferencing

Forester et al. (2013) Online herbarium records 50 km “georeferencing was evaluated for accuracy”
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The O dataset was edited to omit duplicate records and extreme 
outliers. Duplicate records across herbaria were found using accession 
numbers, GUID numbers, collector numbers, and site descriptions. 
Outliers were defined as occurrence records located very far outside 
of the known species range, such as records in the oceans, in the Great 
Plains, outside of North America, north of 55 degrees’ latitude (no con-
firmed records exist north of this latitude), and records in the state of 
Oregon outside of the Wallowa mountain range (the range of S. vesper-
tina). Omission of outliers is common practice for building SDMs, yet 
not everyone goes beyond this step (Table 1). The O dataset includes 
1,363 unique herbarium records (Figure 2).

The “Previously Georeferenced” (PG) dataset includes all records 
from the O dataset that explicitly state they have been georeferenced 
by other herbaria using a variety of methods. We omitted outliers 
and duplicates, as above, and removed records with coordinate un-
certainty listed as >1 km. The final PG dataset includes 525 unique 
herbarium records (Figure 2).

The “Newly Georeferenced” (NG) dataset includes all historical 
herbarium records from the O dataset that we were able to manually 
georeference to a 1-km or finer resolution. To conduct this manual 
georeferencing, we developed a novel method, the Spatial Analysis 
Georeferencing Accuracy (SAGA) protocol to standardize the process 

of georeferencing. We believe that the SAGA protocol is an improve-
ment over other georeferencing practices in terms of both accuracy 
and straightforward implementation. This method is based on meticu-
lously and manually georeferencing each herbarium record of interest 
and verifying written site descriptions using reliable external resources 
such as Google Earth, USGS Topographic Maps, and the Atlas of 
Canada to ensure accurate geographic coordinates. Each record must 
be reviewed, either through the online database it was downloaded 
from or by physically examining the herbarium specimen. All loca-
tions should be transformed into decimal degrees, with coordinates 
recorded relative to the WGS 1984 geodetic datum. Minimum spatial 
accuracy of each location following manual georeferencing should be 
recorded on an ordinal scale of 1–5 (Table 2) to allow for easy sorting 
and spatial analysis based on the spatial resolution of the occurrence 
data. We applied the SAGA protocol to the O dataset to create our NG 
dataset. The NG dataset only includes herbarium records with a confi-
dence of 1–3 (Table 2) for a total of 1,104 unique historical herbarium 
records (Figure 2).

F IGURE  1 Saxifraga austromontana, the Prickly Saxifrage, is a 
charismatic wildflower endemic to upper elevations of the Rocky 
Mountain Floristic Region. The Latin name Saxifraga is known 
as rockfoils, sax meaning rock, and frage, to fracture. Here, it is 
shown growing from fissures in crags of the Rockies. Saxifraga 
austromontana grows perennially with low basal rosettes of spiny 
leaves and produces beautiful yet fragile flowers with cream colored 
petals dotted with red, orange, and yellow spots. This is an ideal 
case-study species for investigating how various georeferencing 
methods affect SDM results because of its geographically large, but 
topographically limited, range and extensive herbarium records. 
(Photo credit, Dr. Eric DeChaine)

F IGURE  2 The distribution of Saxifraga austromontana for three 
categories of georeferenced historical herbarium records: Original 
data (O), Previously Georeferenced (PG), and Newly Georeferenced 
(NG). The circled point on inset map displays a species occurrence 
record on the coast of the Olympic Peninsula. The coordinate was 
incorrectly assigned using the georeference calculator: GeoLocate 
(WTU-VP-90424) and is included in both the O and PG dataset. Data 
are in a Lambert conformal conic equal area projection
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2.3 | Species distribution models

We intentionally did not use all SDM approaches or an ensemble 
approach, but rather a widely used robust method to demonstrate 
the need for and utility of the standardized georeferencing protocol 
we present. We built SDMs using the MAXENT Software (Phillips, 
Anderson, & Schapire, 2006), one of the most, if not the most, widely 
used SDM platforms (Fourcade et al., 2014; Guillera-Arroita et al., 
2015; Merow, Smith, & Silander, 2013). MAXENT is built on machine 
learning and Bayesian statistics of maximum likelihood (Elith et al., 
2011; Halvorsen, Mazzoni, Bryn, & Bakkestuen, 2015), and is espe-
cially popular because it outperforms other methods based on predic-
tive accuracy and is user-friendly (Merow et al., 2013).

The model inputs include a list of presence points, a set of envi-
ronmental predictors (i.e., climate variables), and a defined background 
landscape. In contrast to a true presence–absence model, MAXENT 
estimates habitat suitability by contrasting environmental factors at 
presence points with thousands of randomly selected background 
points throughout the study region (Guillera-Arroita et al., 2015). We 
followed MAXENT best practices (Merow et al., 2013) to build SDMs 
for S. austromontana using three categories of georeferenced data. 
Our models are intentionally simple to demonstrate the underlying 
importance of georeferencing.

2.4 | Climate variables

We used monthly PRISM data (Daly et al., 2008) for the refer-
ence period (1961–1990) to define the bioclimatic envelope of 

S. austromontana. We felt that the (1961–1990) normal period, while 
a compromise, was representative of twentieth century conditions 
because (1) both the mean and median samples fell within the nor-
mal period, (2) the 30-year climate normal allowed us to make com-
parisons with future projections, and (3) a 122-year average across 
all sample dates was less meaningful given the amount that climate 
had changed. The PRISM methods utilize Digital Elevation Models 
to refine interpolation between climate stations by including factors 
such as location, elevation, and aspect (Daly et al., 2008). The cli-
mate data for this study were downscaled from 4 km2 grid cells to a 
resolution of 1 km2 and made available from ClimateWNA http://ti-
nyurl.com/ClimateWNA (Hamann, Wang, Spittlehouse, & Murdock, 
2013; Wang et al., 2012). We selected seven final variables for use 
in SDMs (Tables 3 and S3) using a multistep process. First variables 
were preselected from the complete list available for ecological 
relevance to our taxa and similar high-elevation species (Körner, 
1995, 2003). Next, we further reduced variables to eliminate highly 
correlated parameters (Pearson’s r > |0.75|), Table 3. To decide be-
tween correlated variables, we relied on ecological relevance and 
informed judgment to select for a diverse suite of climate variables 
representing temperature, precipitation, heat moisture indexes, and 
more (Table 3). We also downscaled projected values of these vari-
ables for a 30-year period centered on 2080. Future climate projec-
tions were obtained from ClimateWNA using an ensemble of 23 
Atmosphere-Ocean General Circulation Models (AOGCMs) of the 
Coupled Model Intercomparison Project phase 3 (CMIP3) under the 
A2 emission scenario, selected based on validation rank (Hamann 
et al., 2013).

TABLE  2 Standardized confidence rankings for determining the spatial accuracy of species occurrence records using the Spatial Analysis 
Georeferencing Accuracy (SAGA) protocol. SAGA requires manual georeferencing of each occurrence record by interpreting the site location 
and verifying or assigning a location in the form of WGS 1984 geographic coordinates. The SAGA protocol uses an ordinal accuracy ranking of 
1–5 to classify the spatial resolution of the occurrence data. Confidence ranks of 1–3 may be useful for constructing Species Distribution 
Models using 1-km or coarser climate data. Ranks of 4 and 5 are not appropriate for spatial analysis and should be omitted

Confidence GPS Resolution (radius) Description Example accession nos

1 Required 1–30 m Records with an accurate GPS reading, listed coordinate 
uncertainty, and a detailed written description that 
matches coordinates

WTU-VP-5827, 
RM-VP-740775

2 Sometimes 30–100 m Records can be georeferenced to a fine resolution based on 
a detailed written description that can be verified, and in 
many cases a GPS reading. For example: summits of peaks, 
fire lookouts, intersections of creeks or trails

WTU-VP-185106, 
WTU-VP-90419

3 Sometimes 100–500 m Record coordinates can be georeferenced to a moderate 
resolution based on a written description that can be 
verified. For example: small lakes, mountain passes, small 
named meadows

MONTU-VP-3979, 
WS-VP-101352

4 Often not N/A Record cannot be triangulated to a 1-km grid. The site 
description may still be useful for collections, yet cannot 
be used in SDMs. For example: large lakes, entire 
mountains or peaks, ridgelines, trail names, well-known 
geologic, or historic landmarks

MONTU-VP-27436, 
RM-VP-815188

5 Often not N/A Poor site description and coordinates cannot be verified. 
These data cannot be used accurately for SDMs and may 
not even be useful for collections. For example: town 
names, county names, state names, and mountain ranges

MONT-VP-50930, 
MONT-VP-50961

http://tinyurl.com/ClimateWNA
http://tinyurl.com/ClimateWNA
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2.5 | Background selection

We limited the geographic background to locations within the likely 
dispersal range of S. austromontana. We trimmed the region extent 
for the reference period to the northern border of British Columbia, 
the southern border of the United States, and 150 km east of the 
Rocky Mountains. Saxifraga austromontana has been extensively col-
lected across its range and is not found more than 150 km east of 
the Rocky Mountains crest, except for small isolated mountain ranges 
that we included in our extent. This area allowed us to include a po-
tential northern range expansion, expected for cold-adapted species 
(Forester et al., 2013).

2.6 | Climate space analysis

To assess whether the occurrence records in each of our three geo-
referencing categories captured the same climatic envelopes, we 
quantitatively compared the climatic niche space for each dataset 
(O, PG, and NG) using Analyses of Variance (ANOVAs) and Principal 
Component Analysis (PCA). We ran one-way ANOVAs to compare the 
variation between to the variation within each dataset for the values 
of seven climate variables extracted at each presence point. We used 
a Bonferroni correction to account for multiple testing, dividing the 
alpha of 0.05 by 3 for a final alpha of 0.017. We used an unrotated 
PCA to evaluate the climate space represented by the three levels 
of georeferenced data. We incorporated all climate variable values 
at all presence locations (O, PG, and NG combined) in our PCA and 
extracted the first two principal components. All statistics were run 
using R ver. 3.1.2 (R Core Team, 2015) and plotted using ggplot2 
(Wickham, 2009).

2.7 | MAXENT model settings

All SDMs were run using the version 3.3.3k of MAXENT (http://
www.cs.princeton.edu/~schapire/maxent/). For ease of comparison 
among model outputs, all runs were computed with the default fea-
tures (Linear, Quadratic, Product, Threshold, and Hinge), and a logis-
tic output which results in a map of habitat suitability values ranging 
from 0 to 1 (Fourcade et al., 2014) per 1-km grid cell, defined by the 

resolution of the input climate data. We set MAXENT to train each 
SDM to a random subsample of 75% of species presence points, 
with the remaining 25% of the data used for model evaluation. We 
increased the default maximum iterations to 5,000 and ran 20 repli-
cates of each model.

2.8 | Model evaluation

We evaluated the models using the area under the receiver operating 
curve (AUC) because it is a generally accepted and widely used met-
ric for model evaluations (Merow et al., 2013). The AUC score is the 
probability that a randomly chosen presence point is ranked higher 
than a random background point, and is penalized for predictions 
outside of presence locations (Merow et al., 2013). A high AUC value 
(>0.8) indicates that models can properly distinguish between pres-
ences and random background samples. Although the AUC has been 
highly criticized as a metric of model performance (Lobo, Jiménez-
Valverde, & Real, 2008), there are few alternatives for presence-only 
models (Merow et al., 2013).

To quantify the geographic differences between models created 
using occurrence records of varying accuracy, we used the 10% cumu-
lative logistic threshold, which defines a binary response of suitable 
or nonsuitable habitat from a continuous output (Merow et al., 2013). 
Choosing biologically meaningful thresholds is challenging (Merow 
et al., 2013), yet this method can be used to easily compare the out-
puts of two or more models (Franklin et al., 2013). We compared area 
of suitable habitat for the reference and future predictions across the 
three georeferencing categories. Cartography and spatial comparisons 
were performed in ArcGIS 10.3.

3  | RESULTS

3.1 | Climate space analysis

The NG dataset captures a significantly different range of environ-
mental conditions than the other two datasets. The ANOVAs revealed 
that values extracted at each presence point in the O and NG data-
sets capture significantly different values for six of the seven climate 
variables (Figure 3 and Table S2). The PG and NG datasets capture 

Variable Description NG PG O

AHM: Annual heat moisture index, calculated as 
(MAT+10)/(MAP/1000)

4.6 8.9 .9

bFFP: The Julian date on which the frost-free period 
begins

26.3 17.9 16.5

cmiJJA: Hogg’s summer (Jun to Aug) climate moisture 
index

21.2 26.5 35.4

MCMT: Mean temperature of the coldest month (°C) 10.3 7.8 14.6

MWMT: Mean temperature of the warmest month (°C) 13 2.3 9.8

PAS: Precipitation as snow (mm) 10.3 23.9 9.5

TD: Difference between MCMT and MWMT, as a 
measure of continentality (°C)

14.3 12.7 13.1

TABLE  3 Climate variables selected for 
SDMs of Saxifrage austromontana, and 
percent contribution to MAXENT models 
for each of three levels of georeferencing: 
Newly Georeferenced (NG), Previously 
Georeferenced (PG), and Original (O). Top 
three contributing variables for each model 
are in bold. Climate data made available by 
ClimateNA for the reference period 
(1960–1990) and 2080 future projections 
based on an ensemble of 23 CMIP3 
coupled atmosphere–ocean general 
circulation models (Hamann et al., 2013)

http://www.cs.princeton.edu/~schapire/maxent/
http://www.cs.princeton.edu/~schapire/maxent/
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significantly different values for five of seven climate variables. The O 
and the PG dataset do not significantly differ from each other in any of 
the climate variables. Effectively, O and PG capture the same climate 
envelope or the range of values within datasets are too large to detect 
a difference between groups.

The differences between the climate envelopes captured by the 
three datasets are clearly visible when the presence points are plotted 
by their location in climate space, as represented by principal com-
ponents (PC) axes 1 and 2. PC1 and PC2 extracted from all climate 
variables at all presence locations explain 49.71% and 27.26% of the 
total variance, respectively (Figure 4). Ecologically, increasing PC1 
can be interpreted as representing greater growing season moisture 
availability (more precipitation as snow (PAS), higher summer moisture 
index (cmiJJA), lower annual heat moisture index (AHM), and lower 
mean temperature of the warmest month (MWMT)). Higher values on 
PC2 represent increasing cold season length and severity (later start to 

the frost-free period (bFFP), greater difference between summer and 
winter temperatures (TD), and colder winter temperatures (MCMT)). 
The O dataset unequivocally captures the largest niche space, while 
the PG and NG are subsets of the O data. PG occupies most of the O 
dataset, whereas the NG dataset represents a much tighter ecological 
niche (Figure 4).

3.2 | Species distribution models

All MAXENT models were statistically valid (AUC > 0.88); however, 
the models predicted very different areas of suitable habitat, especially 
for future scenarios (Figure 5 and Figure 6, Table 4). The SDMs for the 
reference period (1960–1990) constructed using NG data resulted in 
the smallest area of suitable habitat, equivalent to 84.3% of the area 
of the SDM constructed using PG data and 71.5% of the area of the 
SDM constructed using O data (Figure 6a). The 2080 SDM results for 

F IGURE  3 Range of values for seven 
climate variables extracted using each 
set of presence points for the three 
categories of georeferenced data: Newly 
Georeferenced (NG), Original (O), and 
Previously Georeferenced (PG). The 
plot displays the median, first and third 
quartiles, range, and extreme outliers. 
Different letters indicate a significant 
difference between datasets at a 
conservative alpha of 0.017, corrected with 
a Bonferroni
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the three categories of georeferenced data differed even more drasti-
cally (Figures 5 and 6b, Table 4). The SDM constructed using NG data 
predicted the smallest area of suitable habitat, equivalent to 50% of 
the area of the SDM trained using PG data and 37.1% of the area of 
the SDM trained using O data. The future SDM using NG data esti-
mated the greatest loss and smallest gain in suitable habitat by 2080. 
The models also differed in the relative contribution of each climate 
variable (Table 3). The larger geographic ranges predicted by the O 
and PG models are a natural outcome of the larger climatic ranges 
captured by those datasets. Varying accuracy of occurrence records 
results in considerable differences in how SDMs project the location 
of this species in both climatic space and geographic space.

4  | DISCUSSION

A standardized process is needed to ensure consistent spatial accu-
racy of species occurrence records for use in SDMs. We employed 
the most commonly used SDM tool, MAXENT, and our findings 
are broadly applicable to correlative SDMs. The method used to 

georeference museum records greatly influences the spatial accuracy 
of those points, and thus the results of SDMs. Georeferencing manu-
ally increased the number of valid presence points available, with the 
NG model incorporating more than twice the number of points com-
pared to the PG model (1,104 vs. 525). A standardized georeferencing 
protocol can thus increase both the accuracy and number of available 
species occurrence records, simultaneously expanding the geographic 
coverage of those records and refining the climatic envelope they 
capture.

Although all three of our SDMs had high validation statistics 
(AUC > 0.88), the SDMs constructed using the O and PG datasets 
captured significantly different climatic envelopes for S. austromon-
tana than the SDM trained using NG data. The O and PG datasets 
include many points that are clearly beyond the known range of S. aus-
tromontana. Although these points are outside the species’ range, at 
first glance they may not be considered extreme outliers, and would 
likely be used in an analysis that does not preprocess with manual 
georeferencing. For example, on the Olympic Peninsula of Washington 
State, both the O and PG datasets include a point on the shore of 
Lake Crescent near the town of Piedmont at an elevation of 198 m 

F IGURE  4 Principal Component Analysis (PCA) built on seven climate variables. Plots of niche space illustrate environmental differences 
and similarities among the three data sets: Newly Georeferenced (NG), Original (O), and Previously Georeferenced (PG). Principal component 
(PC) axes 1 and 2 account for 49.71% and 27.26% of the total variance. Ecologically, increasing PC1 can be interpreted as representing greater 
growing season moisture availability (more precipitation as snow (PAS), higher summer moisture index (cmiJJA), lower annual heat moisture 
index (AHM), and lower mean temperature of the warmest month (MWMT)). Higher values on PC2 represent increasing cold season length 
and severity (later start to the frost-free period (bFFP), greater difference between summer and winter temperatures (TD), and colder winter 
temperatures (MCMT)). Cluster ellipses delineate 95% confidence intervals. For PCA loadings see Table S1
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(WS-VP-70650), where the site description states the sample was col-
lected on Mt. Storm King at an elevation between 1,311 and 1,829 m. 
The incorrectly estimated point is over 6 km off and captures a com-
pletely different elevation and climate space than the actual collection 
site. Another example on the Olympic Peninsula is a point <500 m 
from the western coast at an elevation of 104 m (WTU-VP-90424), 
included in both the O and PG datasets (Figure 2). This point was esti-
mated, quite inaccurately, by the WTU herbarium using the GeoLocate 
calculator. The Pacific Northwest Herbarium (WWB), which has con-
ducted extensive surveys on the Olympic Peninsula and works closely 
with Olympic National Park, has not recorded any S. austromontana in 
coastal or low-elevation sites.

Numerous other inaccurate records were corrected using our man-
ual georeferencing protocol. Common errors were coordinates taken 
at the trailhead, or in one instance the latrine, often with a GPS, rather 
than the actual collection site. Consequently, we feel confident stat-
ing that the NG dataset captured a more accurate representation of 
the species’ occupied climate space. Thus, the NG dataset provides 
a more realistic estimate of the climatic conditions in which S. austro-
montana exists: a cooler, wetter environment with a shorter-growing 
season (Figure 4). Those conditions are more consistent with the 
known habitat of this high-elevation plant, compared to the climate 
envelopes of the O and PG datasets. The models run using the O and 
PG datasets did not capture significantly different climate space com-
pared with each other (Figure 3). This indicates that the PG dataset is 
not much better than the O dataset at defining the specific niche of 
S. austromontana.

The differences in climate space among our models led to drasti-
cally different SDM outputs and strikingly different predictions of cur-
rent and future ranges. Using the 10% cumulative logistic threshold 
to define a binary response of suitable or nonsuitable habitat, the O 
and PG models resulted in suitable habitat covering geographic areas 
1.4 and 1.2 times larger than the NG dataset for the reference period. 
Erroneously placed presence locations, such as WTU-VP-90424 cir-
cled in Figure 2, create a broader envelope for the target taxon. For 
example, the O and PG datasets show suitability across most of the 
Olympic Peninsula and southern Vancouver Island including coastal 

F IGURE  5 Species Distribution Model (SDM) of Saxifraga 
austromontana for the reference period (1960–1990) and 2080’s 
under the A2 climate scenario for three categories of georeferenced 
data: Original (O), Previously Georeferenced (PG), and Newly 
Georeferenced (NG). Suitability is set at the 10-percentile training 
presence logistic threshold. Projected for 2080, the O and PG models 
predict a relatively small reduction of 31.8% and 40.3%, respectively. 
The more NG model predicts a 65.7% reduction, more consistent 
with previous studies on alpine taxa (Table 4). The NG SDM does 
a good job of predicting present and future suitable habitat for 
Saxifraga austromontana. The O and PG SDMs overpredict suitable 
habitat outside of the known range of the target taxa, including 
locations on the coast of the Olympic Peninsula and Vancouver 
Island (see inset map). Inaccurate predictions of the O and PG dataset 
are exacerbated for future SDM outputs. Data are in a Lambert 
conformal conic equal area projection
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regions that have been well-documented botanically and do not cur-
rently contain S. austromontana. Interestingly, the O dataset is more 
accurate than the PG in predicting the range on the Olympic Peninsula 
and Vancouver Island, probably because it includes more reference 
points. The NG SDM captures a much more accurate and tighter rep-
resentation of the current range of S. austromontana, which is abun-
dant primarily in the northeastern arc of basaltic peaks in the Olympics 
(Figures 5 and 6a).

It is important to note that all models (O, PG, and NG) predict 
habitat outside of the known range of S. austromontana, including 
the Sierra Nevada, Uinta, and Wind River ranges. These regions are 
within the climate envelope of the species, yet for alternative reasons 
(e.g., dispersal and competition dynamics), the species is not known to 

occur there, despite extensive botanical surveys. Overall, the O and 
PG datasets create SDMs that appear to overpredict suitable habitat in 
comparison with the NG data based on our current understanding of 
this species’ ecology. These results clearly demonstrate the shortcom-
ings of unvalidated presence datasets for use in SDM construction.

Differences in predicted area of suitable habitat among the O, PG, 
and NG datasets are even more pronounced for future predictions. 
Our results are based on relatively simple model settings and should 
be treated as a visualization of the effects of georeferencing methods 
and coordinate accuracy on extrapolated future ranges, rather than 
as precise future predictions. The NG SDM estimates a 65.7% reduc-
tion in suitable habitat by 2080, while the SDMs constructed using 
the other datasets estimate a 32%–40% reduction by 2080, under 

TABLE  4 The results of MAXENT models for Saxifraga austromontana trained on presence points from three levels of georeferenced data: 
Original (O), Previously Georeferenced (PG), and Newly Georeferenced (NG) with the SAGA protocol. All models were run with the same 
features and climate covariates. The total percent reduction in the future area of suitable habitat relative to the reference period is presented in 
bold. The O and PG models overpredict present suitable habitat with respect to the more accurate NG model, and the shortcomings of the O 
and PG models are exacerbated for the future projection. All models have high validation statistics using the area under the receiver operating 
curve (AUC) value, providing additional evidence to the argument that AUC scores are not a reliable metric for model accuracy

Dataset Original Previously georeferenced Newly georeferenced

AUC 0.888 0.914 0.914

Reference Period (km2) 913,695 775,270 653,898

Future 2080s (km2) 623,044 462,658 231,376

Lost (km2) 477,235 447,353 461,758

Gained (km2) 186,584 134,741 39,236

Maintained (km2) 436,460 327,917 192,140

Total Reduction (%) 31.8 40.3 65.7

F IGURE  6 Species Distribution Models built using the three categories of georeferenced data (Original (O), Previously Georeferenced (PG), 
and Newly Georeferenced (NG)) result in notably different areas of suitable habitat for the (A) reference period (1960–1990) and (B) 2080 under 
the A2 emission scenario. SDM results based on the NG dataset are overlaid on top of SDM results using the O and PG datasets to visualize the 
differences in predicted niche space. The O and PG datasets greatly overpredict suitable habitat for the target taxa into regions it is known to 
be absent, including the coast of the Olympic Peninsula and Vancouver Island. This is due to the inclusion of inaccurate presence points such as 
WTU-VP-90424, displayed in Fig. 2. Data are in a Lambert conformal conic equal area projection

(a) (b)



     |  775BLOOM et al.

the A2 emission scenario. The NG models are more consistent with 
other studies on alpine taxa that forecast a 40%–80% reduction in 
suitable habitat by the end of the century (Dirnböck, Essl, & Rabitsch, 
2011; Dullinger et al., 2012; Forester et al., 2013). Further, the NG 
model predicts a relatively small gain in habitat by 2080, equivalent 
to 21%–29% of the area of gain predicted by the other two models, 
explained by limited upslope habitat for alpine taxa. Such underpre-
diction of future range loss is worrying for any species, but especially 
for high-elevation species, which are disproportionately affected by 
climate change (Gottfried et al., 2012) and often have little room for 
upward range expansion (Jackson, Gergel, & Martin, 2015).

Relying on potentially inaccurate presence records when model-
ing species’ ranges could lead to serious overestimation of the area 
in which these species can persist, misleading conservation and man-
agement efforts. SDMs can be developed to their full potential only 
when they are trained using many high-precision occurrence records 
for a species (Randin et al., 2009). Our results demonstrate that there 
is no alternative for highly accurate presence data that have been me-
ticulously georeferenced by a human, not a machine. Many SDMs are 
built using historical museum or herbarium records. In fact, for many 
taxa, these datasets are the only available records of their distribution. 
We found that geographic coordinates published on reputable her-
baria sites often do not match the site description. These coordinates 
may have been recorded inaccurately by the collector, estimated by 
the collector using a coarse-scale topographic map, recorded in a dif-
ferent geographic coordinate system than present systems (i.e., using 
NAD27 vs. WGS84 as the geodetic datum), georeferenced incorrectly 
by a curator, or estimated using a Georeference Calculator.

We have found the results of Georeference Calculators (Wieczorek 
& Wieczorek, 2015; GeoLocate 2016) to be frequently misleading, 
often adding an element of sampling bias by assigning coordinates 
for collections taken in the mountains to the nearest town. For exam-
ple, we tested the utility of the GeoLocate Web Application Standard 
Client to assign a coordinate to the locality string “West Ute Lake, 
Weminuche Wilderness,” Country: “United States of America,” State: 
“Colorado,” County: “Hillsdale.” The program assigned a coordinate 
with an uncertainty code of 301 m to 37.466673, −106.978932, 
which is more 30 miles southeast of the true location of West Ute 
Lake. These calculators are popular because they are easy to use and 
allow for batch processing of CSV files with many listed localities, but 
the spatial accuracy of these outputs is questionable.

5  | CONCLUSION AND FUTURE EFFORTS

Understanding the present and future distributions of species is criti-
cal for applications in conservation, ecology, biogeography, phyloge-
netic analysis, phenology, landscape ecology, and beyond (Davis et al., 
2015; Fois, Fenu, Lombraña, Cogoni, & Bacchetta, 2015; Forester 
et al., 2013; Lenoir, Gégout, Marquet, De Ruffray, & Brisse, 2008; 
Newbold, 2010). SDMs, especially those implemented in MAXENT, 
are the most common tools used to determine habitat suitability. 
As these tools become more and more popular and public access to 

species occurrence data increases, it is paramount to remember that 
convincing SDMs can be produced from dubious data (Lozier et al., 
2009). Museum and herbaria databases are invaluable archives of oc-
currence information, yet must be used with caution, especially when 
applied to spatial analyses. Our results indicate that SDMs built using 
low-accuracy location data capture a significantly broader climate 
envelope, predict a more widespread spatial distribution, and predict 
less loss under climate change scenarios than SDMs trained on ac-
curate collection records. Conservation and management decisions 
could vary considerably depending on which model’s output they 
were based on.

This study highlights the importance of meticulously georeferenc-
ing all records manually before use in SDMs and reveals the need for 
a standardized protocol such as SAGA, as varying levels of georefer-
encing result in significantly different models of habitat suitability for 
the same species. The tradeoff of manual georeferencing is the time 
it takes to analyze each record. As datasets increase in size, the fea-
sibility of georeferencing each record becomes increasingly daunting. 
Batch georeferencing calculators may be desirable for large datasets, 
but reliable technology is not yet available. As the resolution of histor-
ical and projected climate data increases, more advanced and accurate 
SDMs become possible, but only if species occurrence records are 
also available at an increasingly fine scale. Field collectors must record 
accurate coordinates, GPS uncertainty, and detailed site descriptions, 
assuming use in future spatial analyses. Curators of databases must 
only make available accurately georeferenced occurrence records, or 
explicitly state otherwise. Lastly, end users must suspect occurrence 
records to be inaccurate and georeference before performing spatial 
analyses using a protocol such as SAGA. All parties should share the 
improved data, ultimately improving publicly available datasets and 
resulting science.
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