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The structure of many science programs at the college level assumes that students are able to draw on and
integrate ideas frommultiple disciplinary contexts. However, most assessment tools focus on learning in the
context of a single discipline. We describe the development and validation of an instrument to measure how
well students are able to combine energy ideas from different disciplines into a coherent understanding of a
phenomenon. The final version of the instrument consists of a pair of multiple-choice online assessments,
along with a metric calculated from the assessment scores: the cross disciplinary learning index (CDLI). The
items on both assessments were found to have satisfactory psychometric properties for our sample.
Furthermore, CDLI scores correlated with other relevant factors such as amount of science coursework. The
CDLI is an easy-to-use metric that could be a useful component of program-level assessment for science,
technology, engineering, and mathematics majors. Furthermore, the broader measurement approach,
involving a pair of assessments set in different disciplinary contexts, provides a model for assessing
cross-disciplinary learning that could be utilized for other cross-cutting scientific concepts.
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I. INTRODUCTION

At our institution a student pursuing a degree in biology
or geology must also take introductory courses in physics
and chemistry. This requirement reflects the view that
physics, chemistry, biology, and geology comprise sub-
domains of a larger, coherent approach to making sense of
the natural world. For such coherence, explanations in
physics, chemistry, biology, and geology must be grounded
in the same principles and utilize the same concepts, even if
the details differ. This view is reflected in the description of
cross-cutting concepts presented by the Framework for
K-12 Science Education: “These concepts help provide
students with an organizational framework for connecting
knowledge from the various disciplines into a coherent and
scientifically based view of the world” (Ref. [1], p. 83).
In practice, however, students may face many barriers to

turning this vision into reality. The siloing of academic

disciplines creates the potential for students to emerge from
an undergraduate science, technology, engineering, and
mathematics (STEM) major with a fragmented rather than
coherent vision of the natural sciences. Indeed, the
Framework for K-12 Science Education alludes to this,
noting that students are often left to their own devices to
integrate knowledge across disciplines.
Having students complete foundational courses in multi-

ple disciplines involves a major commitment of time and
resources by students and institutions alike. To justify this
investment, it would seem important to show that as
students progress through such courses, they develop a
coherent view of the STEM disciplines. In particular,
students taking a later course should be able to productively
draw on relevant concepts from an earlier course to help
make sense of the new material they are encountering, even
in cases in which the two courses are drawn from different
disciplines. We refer to this as cross-disciplinary learning,
and have provided a general overview of this construct in a
previous article [2].
Determining the extent to which cross-disciplinary

learning is actually fostered by courses and programs of
instruction requires assessment tools that are appropriate
for this purpose. However, perhaps in part due to the siloing
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mentioned above, the literature on assessing how students
integrate ideas across disciplinary boundaries is much less
developed than the literature on assessing student under-
standing within a particular disciplinary context. The
work that does exist, described in Secs. II and III, provides
a useful starting place, but our review of existing assess-
ment instruments failed to unearth any that were a good fit
for measuring the kind of integration of ideas across
disciplinary boundaries that we described above. Thus, we
embarked on the process of developing our own.
To keep our project to a reasonable scope, we chose to

focus on one particular concept that plays an important role
across many science disciplines, namely, energy. Energy
provides a shared framework for constructing explanations
in all science disciplines [3]. Indeed, it functions as both a
core idea and a cross-cutting concept in the Next
Generation Science Standards [4]. Student learning of
energy in one discipline, such as physics, should support
student ability to productively apply energy concepts in a
related discipline, such as chemistry.
The primary context for our work was a sequence of four

science content courses for preservice K-8 teachers, focus-
ing on physics, geology, biology, and chemistry. The
physics course is a prerequisite for the other courses,
which may be taken in any order. In each course, students
develop explanatory models based on foundational energy
concepts, including specific energy forms, as well as
energy transfer, transformation, and conservation. The
courses frame and present these basic energy constructs
in a similar fashion, and make use of consistent represen-
tations. Because of the curricular coherence around energy
ideas, we expected students in these courses would more
readily develop a unified concept of energy than students
taking more traditional courses that are not part of a
coherent sequence. Thus, if our measure was able to detect
cross-disciplinary learning at all, it should certainly be able
to do so in this context, and therefore this course sequence
served as a good test case.
We have previously defined cross-disciplinary learning

and suggested approaches to measuring it [2]. The central
goal of this particular project was to create an easy-to-use
instrument for measuring this construct, and in this paper
we describe the development and validation of an instru-
ment for this purpose. In sharing this work, we also seek to
highlight the value of using paired assessments—or even
paired questions—set in different disciplinary contexts. We
believe this is a key element for distinguishing between
unified and fragmented understanding.
The remainder of the introduction discusses our formu-

lation of cross-disciplinary learning, how it relates to other
ways of thinking about application of previously learned
knowledge, and why existing instruments were not appro-
priate for measuring it. Cross-disciplinary learning overlaps
with many existing ideas in the learning literature, but is
explicitly built around the context of sequenced courses

from different disciplines. Then, in Sec. IV, we describe the
development of the instrument and report preliminary
results. We conclude by discussing implications of the
data and potential uses of the instrument as well as the
broader measurement approach we used.

II. WHAT IS CROSS-DISCIPLINARY LEARNING?

Thus far we have briefly mentioned the idea of a unified
understanding of energy and why we believe it is important.
But what exactly does this look like in the classroom? For
purposes of illustration, we draw on a vignette we presented
in an earlier article [2]. This vignette describes the
experience of a fictional student Amara, who is beginning
her second term at university. In her first term, she took
courses in physics and chemistry. She is now in her second
chemistry course, where she is learning about exothermic
and endothermic chemical reactions. The professor
presents the combustion of methane as an example of a
highly exothermic reaction. In her previous physics course
Amara learned about the law of conservation of energy
(LCE), so when she is thinking about the combustion
example, she is confused, because energy seems to be
created by the burning. She concludes that this is not
possible, and that there is an energy source she is not
considering. She then hears her professor mention that the
methane is storing energy. That makes Amara recall
potential energy, something else she encountered in phys-
ics. In particular, she remembers an example of a skate-
boarder riding down a hill. In that example, potential
energy changed form, becoming kinetic energy. She
ponders whether the burning of methane also involves a
transformation of potential energy. But she is not clear what
kind of potential energy would be involved.
In this vignette, Amara uses ideas from her physics

course as conceptual building blocks to help make sense of
new content in her chemistry course. We refer to this
process as “cross-disciplinary learning.” Amara is con-
fronted with a learning challenge in her new course,
situated in a chemistry disciplinary context. This leads to
the activation of knowledge elements from previous course-
work, in this case ideas about energy conservation and
potential energy from Amara’s prior physics course. At the
same time, information from the current course is also
active, such as the observation of a temperature increase
during methane combustion. Some of these activated
knowledge elements become transformed as Amara thinks
through the situation. For example, the idea that potential
energy transforms into kinetic energy, originally learned in
a physics context using the example of a skateboarder, is
reframed in a more general form, in preparation for
integrating that idea with the knowledge learned in chem-
istry, that heat is released when methane combusts. Finally,
the individual knowledge elements are integrated to yield a
new insight, that the combustion of methane involves the
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transformation of potential energy into another form of
energy. Tying all these pieces together, we have previously
defined cross-disciplinary learning as “a process of sequen-
tial learning in which students activate, transform, and
integrate knowledge from different disciplines, combining
previous learning with new learning to construct new
knowledge within a specific discipline” [2].
We find this earlier definition useful for general dis-

cussions of what cross-disciplinary learning is. At the same
time, for purposes of creating an effective instrument, we
found it necessary to be more specific about several
elements of the definition, as well as how it is similar to
and different from other constructs that have been pro-
posed. To that end, in this section we discuss a number of
theoretical ideas that have had an impact on our thinking,
how they relate to cross-disciplinary learning, and how they
impacted the design of the instrument.

A. What does cross-disciplinary mean?

Our definition of cross-disciplinary learning can be
contrasted with how the term interdisciplinary has typically
been used. In a typical interdisciplinary learning approach,
students draw on concepts and approaches from multiple
disciplines in the service of addressing a particular prob-
lem. In contrast, we were interested in learning and
teaching that is clearly framed in the context of a single
discipline, and which foregrounds disciplinary concepts
rather than an issue or problem. For example, Amara is
taking a chemistry course and thinking about the chemistry
topics of exothermic and endothermic reactions. She draws
on what she learned in physics to help her do that thinking,
but it is clearly chemistry that is foregrounded. Some
authors have used the term cross-disciplinary to express
this idea. For example, it has been suggested that in a cross-
disciplinary approach instructors might create parallel
learning activities, each one situated within a specific
discipline, but focused on concepts shared across disci-
plines [5]. The term has been used in a similar way in the
context of science writing by middle-level students, where
a distinction has been made between discipline-specific
academic language, such as technical terms associated with
a particular discipline, and cross-disciplinary academic
language, which includes elements of writing that are
associated with an academic register but not a specific
discipline (e.g., “as a result of this process”) [6].
Consistent with these uses of the term, in our work we

have used “cross-disciplinary” to indicate a situation
where (a) there is a concept that is shared by multiple
related disciplines, (b) there is a learning activity in
which the concept is framed and clearly situated within a
single discipline, and (c) students draw on one or more
previous learning experiences that occurred in other
disciplinary contexts to help them productively apply
the concept.

B. Transfer

In order for a student to exhibit cross-disciplinary
learning, as defined above, they need to draw on prior
learning in another discipline. Issues with cross-discipli-
nary learning could therefore arise either because a student
struggles to apply a concept across disciplinary boundaries
or because they never achieved mastery of that concept
within the discipline where they first encountered it. It is
important to distinguish between these two sources of
difficulty, because the appropriate instructional response
would differ. We have found ideas from the literature on
transfer useful in thinking about how to do this.
Educators typically hope that students are able to take

things they learned within a specific class and apply that
learning in other contexts. When that kind of application
occurs, we say that students exhibited successful transfer.
Since cross-disciplinary learning involves applying previ-
ously learned knowledge in a new context, it is arguably a
form of transfer. As the goal of transfer is so central to the
individual and societal investment we make in education,
there has been over a century of research on it (see Ref. [7]
for a useful review). There is as much inconsistency as
consistency in the findings of this research, which has led
some authors to shy away from using the term altogether.
Nevertheless, one distinction that has proved useful across
a broad range of situations is between near transfer,
meaning there is high similarity between the learning
context and the application context, and far transfer,
meaning the learning and application contexts are quite
different.
In the case of cross-disciplinary learning, there are two

main application contexts of interest: within discipline and
across discipline. Following Dori and Sasson [8,9], we treat
within-discipline application as an instance of near transfer
and across-discipline application as far transfer. For our
purposes, we are particularly interested in how transfer is
affected by crossing a disciplinary boundary. As noted
above, in order to ascertain this, it is not enough to only
examine student performance in a far transfer situation. A
student might fail to exhibit far transfer, but if they never
mastered the relevant concept in the first place, it is possible
that they would have also failed to exhibit near transfer. Our
approach to addressing this issue is to give students two
transfer contexts: one in the discipline where the concept
was originally learned (“near” transfer) and another in a
novel disciplinary context (“far” transfer). By comparing
their performance in those two situations we can see to
what extent disciplinary context is important, and by
extension whether they have a fragmented or unified
understanding of the concept.
Although we have found it useful to draw on the idea of

near versus far transfer, it is important to note that cross-
disciplinary learning differs from most traditional views of
transfer. In particular, in cross-disciplinary learning new
learning can take place at the time of application, in the
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form of the transformation and integration of knowledge
from different sources. This characteristic is discussed
further below.

C. Mapping and abstraction

We have also drawn useful insights from research on one
of the most heavily studied forms of transfer: analogical
problem solving. Analogical problem solving involves
drawing on the solution to a known problem as a basis
for solving a novel problem. Although there are a great
many theoretical proposals for how analogical problem
solving works, one part of the process that has received
considerable attention is constructing a mapping between
elements of the known problem and elements of the new
problem; see, e.g., Ref. [10].
For example, in the vignette presented earlier, Amara

learned about potential energy through the example of a
skateboarder rolling down a hill. In order to apply that
knowledge to the case of methane burning, Amara would
need to figure out how to map elements of the skateboard-
ing scenario onto the situation of methane burning. To do
that, she might start with the hill and look for some element
of methane combusting that would correspond to that.
However, it is unclear what that element would be. In order
to successfully achieve a mapping, Amara needs to think
about the skateboarding situation more abstractly. Rather
than trying to map the hill directly to something in the
methane scenario, she might think about rolling down the
hill as a process that plays out over time. With this
reframing, it is now possible to map onto a similar element
of the methane scenario, as the combustion is also a process
that plays out over time. It has been argued that identifying
the appropriate level of abstraction is one of the funda-
mental challenges of successful mapping [10].
Cross-disciplinary learning does not have to include this

kind of direct mapping from one situation to another.
However, by definition it involves integrating concepts
drawn from different disciplinary contexts. Successfully
linking them may require some kind of modification of the
concepts first. That modification could involve abstraction,
but in order to avoid suggesting that this is the only kind of
modification a learner might make, we have adopted the
more generic term transformation.

D. Preparation for future learning

Although we have found certain concepts from the
traditional transfer literature to be very helpful, as described
in the previous two sections, in other ways the traditional
way of thinking about transfer has felt like an obstacle to
doing the kind of assessment we wished to do. Typically,
transfer has been seen as the direct application of previous
learning. However, cross-disciplinary learning also
involves learning at the time of application. Specifically,
the kind of transfer we are interested in involves gradually
building knowledge over time through encounters with

various learning opportunities. The new learning in one
situation becomes the foundation for further learning in the
next situation. Transfer has not typically been assessed in a
way that reflects this idea of on-going learning. Bransford
and Schwartz have noted that efforts to measure transfer
have often involved what they call “sequestered problem
solving” (SPS) [11]. In this approach, learners are asked to
solve novel problems in the absence of any opportunity to
seek out resources, propose and test ideas, or refine their
thinking based on feedback. However, in the case of using
knowledge gained in one course to help master content in a
subsequent course, learners often do have these opportu-
nities. Thus, SPS-style assessment may underestimate what
learners in this situation are capable of.
Bransford and Schwartz contrasted the direct application

view of transfer with what they call preparation for future
learning (PFL). From a PFL perspective, it is preferable to
focus assessment on how well students can learn new
information and relate that new learning to prior learning
[11]. In our view this framing of transfer more closely
aligns with the dynamics of learning in the structured
sequences of courses common in higher education than
does a SPS-style assessment. Thus, for the portion of our
instrument set in a novel disciplinary context, students were
provided with new information about the unfamiliar con-
text which could be integrated with previous learning to
answer the questions.

E. Cognitive resources

We have described cross-disciplinary learning as activat-
ing, transforming, and integrating multiple pieces of knowl-
edge [2]. This view is based on the resources theoretical
framework, developed by multiple researches over the past
three decades [12–15]. In the resources framework, learners
activate small-grained units of knowledge to build larger
units or construct an explanation. The construct of cross-
disciplinary learning assumes resource activation as a pri-
mary mechanism for learning, and contrasts with classic
transfer studies [10,16], where “what gets applied” is more
fully formed and coherent (e.g., a complete solution para-
digm for a previously learned problem type). Examples of
documented conceptual resources related to energy include
associating an energy form with a physical indicator, and
accounting for energy quantities before and after a proc-
ess [17].
In accordance with a resources perspective (as well as the

PFL perspective discussed earlier), we do not assume that
students learn an explanatory conceptual framework based
on energy all at once in a particular course and then apply
that framework wholesale in subsequent courses. Instead,
understanding of energy is developed over time as students
are exposed to and acquire relevant resources and develop
facility combining previously acquired resources with
resources encountered in a current learning context. For
example, students may learn about gravitational potential
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energy in a physics course and then activate it as a resource
for making sense of chemical potential energy when they
encounter this topic in a later chemistry course. In this view,
inconsistency in reasoning can be accounted for through
the strong context dependence of resource activation [18].
The resources perspective has important implications for
the design of assessment, which we discuss in Sec. IV F on
construction and validation of the instrument.

F. Interdisciplinary reasoning and communication

Earlier we clarified that cross-disciplinary learning
involves foregrounding of concept(s) that cut across several
disciplines, rather than foregrounding a problem that
requires knowledge and skills from different disciplines
to address. However, there are concepts related to the latter,
problem-based approach, that are applicable when thinking
about cross-disciplinary learning. Specifically, Shen et al.
put forward a framework called interdisciplinary reasoning
and communication (IRC) that is useful for describing what
happens in interdisciplinary learning contexts [19]. This
framework includes four processes: integration, translation,
transfer, and transformation. There is considerable overlap
between the IRC framework and cross-disciplinary learn-
ing. For example, integration involves the bringing together
of knowledge from multiple disciplines to understand or
explain a phenomenon, something that forms part of our
definition of cross-disciplinary learning as well. Both cross-
disciplinary learning and IRC also involve transformation,
which in cross-disciplinary learning facilitates integration
and broadening of concepts to allow their utility in new
disciplinary contexts. As noted above, we were interested
in their ability to think within a single disciplinary context,
while making use of concepts from earlier courses that may
have been situated in a different disciplinary context.
In our view, perhaps the most important difference

between IRC and cross-disciplinary learning is that IRC
is a framework while cross-disciplinary learning is a
construct. By that we mean that IRC provides a way to
characterize and describe the various processes that occur
when people and ideas drawn from different disciplinary
contexts are brought together. Such a framework is very
useful in qualitative research, which is how Shen et al.
apply it [19]. Our goal, however, was to develop a
quantitative measure of a specific kind of learning. Thus,
although we made use of the concepts of integration and
transformation from IDL in conceptualizing our construct
for assessment, we were unable to adopt the assessment
method of Shen et al. for our study [19]. Next, we turn to a
consideration of existing quantitative measures related to
cross-disciplinary learning.

III. EXISTING INSTRUMENTS

There are few existing instruments that measure stu-
dents’ ability to reason across disciplines. Concept

inventories such as the Force Concept Inventory [20]
and Chemical Concept Inventory [21] measure students’
understanding of concepts in the discipline and tend to be
diagnostic in nature, incorporating choices that relate to
known misconceptions. Though these are useful for meas-
uring students’ ideas formatively to guide instruction in
those disciplines, these inventories have no relationship to
each other, do not use common vocabulary, and are not
focused on energy concepts, so we were unable to adopt
them for our study.
The Interdisciplinary Energy Concept Assessment

(IDEA) measures interdisciplinary learning by analyzing
correlations across four different forms, which contain
questions written in physics, biology, chemistry, and envi-
ronmental science contexts [22]. Although this instrument
does focus on energy, it is not solely focused on the
conservation principle and it relies on discipline-specific
factual knowledge. It was developed to measure content
knowledge in the various disciplines, somewhat like a
combined and correlated set of concept inventories, rather
than measuring the skills of activation and integration we are
interested in. The Energy Concept Assessment [23] is an
instrument meant to assess energy concepts without a
particular disciplinary focus.While this instrumentmeasures
foundational energy ideas, it is not necessarily meant to be
used to measure cross-disciplinary learning, as it is not
organized by disciplinary focus. It also relies on mathemati-
cal formulations of energy, which wewanted to avoid so that
we couldmake our measure accessible across many levels of
experiencewith science instruction.We alsowanted to focus
our measurement on students’ conceptual understanding and
reasoning skills, rather than their interpretation and use of
mathematical models.
Shen et al. developed a task for assessing interdisciplinary

learning around osmosis [24]. This model is meant to
measure integrative skills needed to put knowledge from
different disciplines together to solve a particular problem,
but does not focus on the kind of sequential, cross-discipli-
nary learning we are interested in. Further, this task is open
ended in nature and therefore requires qualitative data
analysis. We wanted an instrument that would be relatively
easy to administer and analyze, so that itwould beof practical
use to instructors. Finally, Herrmann-Abell and DeBoer
developed an item bank to assess energy ideas [25]. This
bank was not explicitly developed to measure understanding
energy concepts across disciplines, nor was it focused solely
on energy conservation. However, we were able to adapt
some items from this assessment to include in the physics
form for our measure. Below we describe our process for
adaptation and authoring of items and discuss several pieces
of evidence for validity of our instrument.

IV. METHODS

A number of authors have outlined a general process that
can be used for developing assessment instruments; see,
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e.g., Refs. [26–28]. We have used their recommendations
as a guide, while also adapting them to reflect the fact that
our instrument differs in important ways from both concept
inventories and measures of student attitudes and beliefs.

A. Clearly specifying what is to be measured

Given how cross-disciplinary learning is defined, an
instrument designed to measure it must address a topic that
is relevant and important across multiple disciplines. As
mentioned in the Introduction, we chose to focus on energy.
Within the broader topic of energy, we focused on the law
of conservation of energy, which we express as follows:
The change in the total energy of a system is equal to the net
transfer of energy to the system from its surroundings, or
symbolically

ΔEtot ¼ Ein − Eout: ð1Þ

An important facet of LCE is that it can be stated and
conceptualized in relatively discipline-neutral terms, with-
out reference to factual knowledge and vocabulary specific
to a single science discipline. We acknowledge that the
application of LCE to specific disciplinary contexts does
require discipline-specific knowledge. We discuss later
how we attempt to “teach” some of this specialized
knowledge in the instrument itself, to allow the instrument
to assess the ability to apply an energy model, as a unifying
construct that spans familiar and unfamiliar disciplinary
contexts, independent of specific disciplinary knowledge.
Cross-disciplinary learning involves application of con-

cepts that were learned within one disciplinary context to a
problem framed within a different disciplinary context.
Thus, in addition to selecting a topic to focus on, it was
necessary to select two disciplines, one to serve as the
context for original learning and one to serve as the context
of application. We chose physics and chemistry, respec-
tively. These choices were motivated by the fact that our
team included disciplinary experts in these two areas, as
well as by the fact that in the teacher education sequence
mentioned above, the physics course is a prerequisite for
the other courses.

B. The goals for the instrument

Although a primary goal of our instrument was to
measure the cross-disciplinary understanding of energy
across our teacher education course sequence, we also
wanted our instrument to be useful and practical across a
variety of teaching contexts. Our intent was not just to
create an assessment tool for researchers, but an instrument
useful to practitioners in guiding instruction at the course
and program levels. To achieve this goal, several criteria
needed to be met. First, the instrument should be usable
across a range of students, varying from very little to a great
deal of science background. Second, the instrument should

be brief, to avoid placing excessive demands on student
time, especially in cases where it is administered to the
same students more than once. Third, it should be quick and
easy both to administer and to score.
These criteria impacted the design of the instrument in

several ways. To satisfy the first criterion, it was necessary
to minimize technical vocabulary and avoid content that is
tightly tied to specific courses. Regarding the second and
third criteria, while interviews or think-aloud protocols are
very helpful for obtaining a rich understanding of the
thinking of individual students, such approaches are not
practical for scaling up to the course or program level.
Thus, we chose to use multiple-choice items, structured in a
way that permits them to be administered in an online
format.

C. Articulating a measurement model

Cross-disciplinary learning is a latent, or hidden, vari-
able [29], which we must attempt to measure using
observed variables. Earlier we noted that measuring appli-
cation in a new discipline alone is not adequate for
assessing cross-disciplinary learning. To estimate this
variable, it is necessary to measure a student’s success in
applying a concept in both the discipline where they
originally learned it (here, physics) as well as in a novel
discipline (here, chemistry) and compare their performance
in these two cases. The two assessments we created for this
purpose are called Energy Resources in Physics
(EResPhys) and Energy Applications in Chemistry
(EAppChem). The use of the terms resources and appli-
cation is intended as a reminder that one assessment is
situated in the original learning context while the other
involves applying knowledge in a novel discipline.
The extent of cross-disciplinary learning can then be

estimated by comparing student performance in the original
discipline and the novel discipline. A student who struggles
to demonstrate mastery of a concept in the original
discipline, but effectively leverages that limited knowledge
in a new discipline, is exhibiting productive cross-disci-
plinary learning. In contrast, a student who demonstrates
strong mastery in the original discipline, but struggles to
apply the concept in a new discipline, is exhibiting less
productive cross-disciplinary learning.
There are two main challenges to making such a

comparison in practice. First, the assessments are in two
different disciplines and use different formats and scales (as
we will describe later), so the scores are not directly
comparable. Second, applying knowledge in an unfamiliar
discipline is a more difficult task. That is, even if the scores
were directly comparable, it would be surprising if a
student who scored 80% on the assessment in the original
discipline also scored 80% on the assessment in the
novel discipline. Rather, judgments of performance in
the novel discipline should be based on the level of
performance that could reasonably be expected.
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Our approach to these challenges was to use a set of
paired scores to calculate a regression equation that yields a
predicted score for the second assessment, given the
observed score on the first assessment:

s2pred ¼ aþ bs1obs : ð2Þ

In Eq. (2), s1obs is the observed score on the first
assessment, s2pred is the predicted score on the second
assessment, and a and b are coefficients that can be
estimated from the data. We used this regression equation
to generate a predicted score for the EAppChem, based
on a student’s EResPhys score. We could then subtract the
predicted EAppChem score from the observed score
to get a difference measure, which we call the cross-
disciplinary learning index (CDLI). A positive CDLI score
means that a student scored higher on the EAppChem than
is typical for students with a comparable EResPhys score.
Similarly, a negative CDLI score means the student scored
lower on the EAppChem assessment than typical, given
their EResPhys score.
These ideas are illustrated in Fig. 1, which shows a

scatter plot of some hypothetical data from the two
assessments, with the regression line superimposed on
the data. The green dot and the red dot represent compa-
rable scores on the EAppChem. However, relative to the
score on the EResPhys, the green dot represents unexpect-
edly strong performance, and thus a positive CDLI, while
the red dot represents unexpectedly weak performance, and
thus a negative CDLI.
If the EResPhys and the EAppChem tapped into exactly

the same knowledge and skills, then we would expect the
CDLI scores to simply be random noise or measurement
error. However, the EAppChem was designed to require

students to do something that is not required with the
EResPhys—namely, the transformation and integration
steps from the definition of cross-disciplinary learning.
Thus, the CDLI scores should be influenced by how well a
student can do those things, relative to their peers.
Note that in using this approach we are using a particular

dataset to define what is a reasonable expectation for
EAppChem performance. For example, if a student scores
near the group average on the EResPhys, we would predict
that they would score near the group average on the
EAppChem as well. However, with a different dataset,
both of those averages could change. Thus, CDLI scores
should always be interpreted in the context of the dataset
that was used to create the regression equation.

D. Creating candidate items

In creating items for the EResPhys and EAppChem, we
first examined relevant existing assessments [25,30] for
items to adopt or adapt. In doing so, we found most existing
items assessing energy concepts did not assess energy
conservation applications, were not situated in the appro-
priate disciplinary contexts, and/or focused on quantitative
applications of energy conservation rather than conceptual
reasoning. Regarding the last issue, as noted earlier, we
wanted our items to be approachable by a broad range of
students, and therefore we did not want success in
answering them to hinge on quantitative skills. In light
of these considerations, we authored most of the items
ourselves, using existing assessments from the teacher
education physics and chemistry courses as a starting
point. All items ask the student to compare quantities of
energy before or after an event, between different systems,
between different energy forms, or to compare energy
inputs, outputs, and changes. All questions are worded in

FIG. 1. Hypothetical scatter plot of EAppChem versus EResPhys scores. The green dot represents a student whose EAppChem score
is higher than would be predicted based on their EResPhys score, resulting in a positive CDLI. The red dot represents a student whose
EAppChem score is lower than predicted, resulting in a negative CDLI.
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such a way as to force the choices into a finite number of
possible energy comparison terms—e.g., “greater than,”
“less than,” “the same as.” Note that this is an important
difference between our assessments and typical concept
inventories: The distractors do not necessarily represent
common misconceptions, but rather all the possibilities.
Therefore, we did not use student interviews to generate the
distractor options.
Consistent with the definition of cross-disciplinary

learning, the EAppChem included some additional ele-
ments for the integration component. First, the questions
were organized into four subcontexts: (1) atomic-level
phenomena, (2) interatomic phenomena, (3) phase changes,
and (4) chemical changes. Second, we inserted “instruc-
tion” in what energy forms are important for, and how they
apply to, each subcontext, thus representing discipline-
specific knowledge that must be combined with a more
general understanding of LCE in order to successfully
apply LCE across disciplines. This instruction takes the
form of short narratives paired with 2–3 reading compre-
hension questions (RCQs) at the beginning of each sub-
context. The RCQs contain feedback and are not included
in the scoring of the instrument. Because this instruction
does not contain explicit information about LCE, but
essentially gives the student the tools to use to reason
with LCE, the cross-disciplinary learning being measured
by the EAppChem is the energy conservation principle
applied to the new energy forms and context in which the
participants were just “instructed.”

E. Evaluating and revising the items

The candidate items underwent several rounds of pilot-
ing that included administration of a version of the assess-
ment that had a written explanation field after each
question. This version was given to students in the teacher
education physics course and a traditional introductory
physics course, as well as faculty members in physics (for
the EResPhys) and chemistry (for the EAppChem). To
further evaluate the construct validity of the assessments
[31], the written explanations were then examined by at
least one research assistant and one principal investigator
for (a) incorrect explanations accompanying a correct
choice, (b) correct explanations accompanying an incorrect
choice, and (c) evidence for misunderstanding the state-
ment of the question. Changes were made to questions with
significant evidence of any of the above, and another round
of piloting was done involving the same steps. Changes to
wording to improve clarity were made throughout the
piloting process.
After several iterations of piloting, students’ written

explanations matched the intention of the questions to a
high degree, as evaluated by the observation that any
remaining mismatches, which were few, were limited to
one student and thus did not reveal generalizable patterns in
student interpretation of the questions. Notably, this

process was facilitated by the nature of the questions
themselves, which involved proscribed answer choices
describing a qualitative comparison of an energy quantity
before and after an interaction or between two parts of a
system. The process of assessing face validity thus
depended almost entirely on students’ interpretation of
the question stems, not the choices. When we reached this
stage, the content experts (faculty members) who took the
assessments were also answering every item correctly. At
this point, we administered the instruments without explan-
ation fields to larger samples of students to generate
quantitative measures of validity. For the EResPhys, the
sample included students in the same two courses as before:
teacher preparation and traditional physics (N ¼ 271). For
the EAppChem, the sample also included students from the
geology, biology, and chemistry courses from the teacher
education sequence, as well as more advanced students in
both physics and chemistry (N ¼ 291). There was substan-
tial overlap between the samples, with 248 students being
part of both. Although the majority of these students
attended our own institution,we also included some students
from a two-year college that was a partner on this project.
These samples were used to calculate item difficulty and

a discrimination index, i.e., how well an item distinguished
between low scorers and high scorers on the assessment.

FIG. 2. Example items from the EResPhys instrument.
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Percent correct responses was used as a measure of item
difficulty, and point-biserial correlation was used for the
discrimination index. None of the item difficulties had
extreme values (all were between 0.2 and 0.8), suggesting
that the items were neither too easy nor too difficult for this
population. However, for the discrimination index, two of
the items on the EResPhys and six of the items on the
EAppChem had values below 0.2, suggesting that
responses to these items were only slightly related to the
overall score on the assessment. These eight items were
excluded from the analyses below. The final versions of the
EResPhys and EAppChem contain 14 and 10 questions
(excluding RCQs), respectively.
Given the nature and purpose of our assessments, we did

not use two reliability and validity criteria that are com-
monly used for concept inventories. First, on many

instruments, distractors are chosen to reflect common
misconceptions. Our assessments were not intended to
identify or quantify misconceptions related to energy;
rather, they focus on application of a principle (LCE) in
the original disciplinary context, and then again in a novel
disciplinary context. Because LCE involves a kind of
energy accounting, appropriate answer options generally
are specific quantities of energy, or a relationship between
quantities of energy, e.g., less than, same as, more than. For
most items this created a natural, symmetric set of answer
options representing all possible choices, making it inap-
propriate to include only those answer options correspond-
ing to specific misconceptions.
Second, it is very common for authors to report a

measure of internal consistency for their instrument, such
as Cronbach’s alpha or KR20 [32]. These measures are

FIG. 3. Example of a teaching narrative and reading comprehension questions from the EAppChem instrument.
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based on the assumption that each item in the measure is
tapping into the exact same construct; i.e., in the absence of
measurement error, one would expect the score for each
item to be the same (what statisticians call tau equivalence
[33]). For an assessment instrument, this assumption is very
often violated, as such instruments generally include
questions on multiple topics. Furthermore, as noted in
the Introduction, we would not necessarily even expect
strong correlations between student responses to questions
that ask about the same energy concepts in superficially
different ways. In fact, to the extent we are comparing
performance in near-transfer and far-transfer contexts, we
are deliberately setting up superficially different presenta-
tions of the same ideas with the expectation that student
performance in the two contexts can and will diverge.
For that reason, measures of internal consistency can be

misleading in this context. Taber provided a detailed review
of appropriate and less appropriate ways that Cronbach’s
alpha has been applied in science education research, and
recommended that “In developing instruments of this kind—
tests, diagnostic instruments, concept inventories—research-
ers should carefully consider whether seeking a high value of
internal consistency in the sense measured by alpha (i.e.,
equivalence across the set of items) is actually desirable in
terms of their research aims” (Ref. [32], p. 1292). Beyond
addressing the samegeneral theme (LCE), our itemswere not
designed to be equivalent, and sowe did not expect or seek a
particularly high alpha value.

F. Example items

To illustrate the structure and logic of the instrument pair,
herewe share example items from both instruments. Figure 2
illustrates two items from the EResPhys. Figure 3 shows one
of the teaching narratives from the EAppChem, along with
the corresponding reading comprehension questions. Note
that real-time feedback was provided for these questions, but
the questions were not included in the scoring of the

instrument. Finally, Fig. 4 presents one of the scored items
from the EAppChem. Note that although the instruments are
intended to be a paired set, the individual items on one
instrument are not directly pairedwith individual items on the
other. The complete instruments are available upon request.

G. Increasing the sample size

Once we had settled on a set of items that had suitable
psychometric properties, we sought further evidence
regarding the validity of our assessments, such as whether
the assessments correlate in sensible ways with other
measures (convergent validity), and whether the assessment
can distinguish groups that one would expect to perform
differently (known groups validity). For this purpose a
larger set of data was needed. In expanding our dataset, we
continued to focus on students in teacher education and
traditional physics courses. However, we also gathered data
from students in an introductory psychology course, to
check that the assessments are in fact usable with a broad
range of students. At this point in the process we had begun
to shift from an instrument development process to actually
applying the instrument, so we report on these data in the
next section.

V. RESULTS

A. Descriptive statistics

Currently, one or both of the assessments have been
administered nearly 3000 times, including the initial
samples described above. Tables I–III provide a general
overview of these administrations. In the teacher education
science courses (labeled SCED in Table I) as well as
traditional physics, both the EResPhys and EAppChem
were administered at the end of the term. For the physics
courses only (teacher education or traditional), the
EResPhys was also administered at the beginning of the
term. This additional administration was not critical for our

FIG. 4. Example item from the EAppChem instrument.
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project, but it was useful for the physics instructors, as a
pretest to posttest comparison could be used to evaluate the
effect of instruction.
As we transitioned from instrument validation toward

collecting usable data, we added several demographics
questions to the survey. Since we only have this informa-
tion for a subset of the sample, the characteristics of the
entire sample may differ somewhat from the numbers
reported here. For each demographic statistic, we also
indicate the number of students we have that information
for. These numbers vary because different questions were
added at different points in the process, and some students
did not answer some of the questions.
We previously reported item difficulty and discrimina-

tion indices for our initial samples. To ensure that these
values continued to fall in an acceptable range even with a
larger and more diverse sample, we calculated them again
for the expanded dataset. For the EResPhys, item difficulty
ranged from 0.25 to 0.79, and the discrimination index
ranged from 0.19 to 0.40. For the EAppChem, item
difficulty ranged from 0.22 to 0.63, and the discrimination
index ranged from 0.24 to 0.37. The data used to calculate
these values included the initial samples discussed in
Sec. IV, but excluded any data from items that were not

part of the final measures. These values suggest that the
instrument is likely to have acceptable psychometrics for a
fairly broad range of populations.

B. Assessing validity

The construct of cross-disciplinary learning is more
abstract than what typical assessment tools aim to measure.
Although the questions on our assessments focus on
energy, wewere not trying to tap into student understanding
of energy ideas per se, but rather the ability to reason with
these ideas across multiple disciplinary contexts. This
makes establishing the validity of the instrument more
complex. However, the design of our assessments and the
measurement model we adopted lead to several predicted
patterns in the scores. Confirming that these predicted
patterns can be observed in the actual data would support
the interpretation of CDLI scores that we offered earlier.
Here we step through each prediction in turn. Note that we
used a significance level of 0.05 for all statistical tests
reported in this paper.

1. Correlation between the EResPhys and EAppChem

Both the assessments involved questions about the same
topic, namely, LCE. Thus, we would expect that a student
who does well on one assessment would tend to do well on
the other as well; i.e., the scores should be correlated. Our
dataset included 1240 instances where both assessments
were completed at the same time. 86% of these instances
occurred with end-of-term administrations of the assess-
ments in either traditional or teacher education physics
courses, with the remainder spread across several other

TABLE I. Summary of unique EResPhys and EAppChem
assessments completed, by course.

Sample size

Course EResPhys EAppChem

SCED Physics 1137 560
SCED Physics (2YC)a 203 95
SCED Biology 67 67
SCED Geology 54 54
SCED Chemistry 23 23
Introductory Psychology 56 60
Traditional Introductory Physics 1111 578
Upper-division Physics 0 17
Honors Introductory Chemistry 0 24
Upper-division Chemistry 34 34
Other 7 5

a2YC designates data collected from students at the two-year
college.

TABLE II. Demographics of the sample. Note that most of our sample was currently in a physics course and may have varied in
whether they decided to consider or not consider that course in making their response. In the latter part of data collection we clarified the
question wording so that the appropriate response would be “no” for a pretest but “yes” for a posttest.

Gender (N ¼ 1134)
Class standing
(N ¼ 1428)

Has taken college physics
(N ¼ 1431)

Has taken college chemistry
(N ¼ 1437)

Total college science
courses (N ¼ 1364)

74.8% female 15.5% freshmen 39.0% yes 42.9% yes Mean of 4.2
23.5% male 33.3% sophomores 61.0% no 57.1% no
1.7% nonbinary 34.5% juniors

16.7% seniors

TABLE III. Descriptive statistics for the two assessments and
the cross-disciplinary learning index. Note that EResPhys and
EAppChem statistics are in terms of percent correct, while the
CDLI is a difference score, which can be either positive or
negative and is expected to have a mean near zero.

Measure N Mean Standard deviation

EResPhys 2661 49.8% 21.9%
EAppChem 1499 40.2% 23.1%
CDLI 1240 −0.02 18.6
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science courses. Using these paired data points, we regressed
the EAppChem scores against the EResPhys scores.
We found a significant positive correlation, r ¼ 0.57,
Fð1; 1239Þ ¼ 594.77, p < 0.001, R2 ¼ 0.32. To provide
some context for interpreting this correlation, the math
section of the SAT and grades in first year college math
courses have a positive correlation of r ¼ 0.52, quite similar
to what we found. In contrast, the correlation between SAT
math scores and grades in first year English courses is
r ¼ 0.29. [34]. Thus, the correlation we observed is con-
sistent with what would be expected for two different
measures of the same ability, and is higher than what we
would expect if it was only due to the shared impact of more
general factors like test-taking skills or motivation.

2. Impact of instruction

Although the primary use for the instrument pair is to
measure cross-disciplinary learning, the EResPhys alone
can be interpreted to assess students’ understanding of LCE
within a physics context. Thus, one would expect scores on
the EResPhys to be impacted by physics instruction. As
noted above, when data were collected from physics
courses, whether teacher education or traditional, the
EResPhys was administered as both a pretest and a posttest.
Examination of class average pretest and posttest scores
revealed that students performed significantly better on the
posttest (52.2%) compared to the pretest (47.0%),
Fð1; 2423Þ ¼ 35.0, p < 0.001, although the effect size
was modest (d ¼ 0.24). By way of comparison, a
Cohen’s d of 0.42 has been reported for engineering
students on the Heat and Energy Concept Inventory for
learning gain from beginning to end of a course addressing
those topics [35]. It is worth nothing that students in teacher
education physics courses exhibited much larger gains
(from 43.7% to 51.3%, d ¼ 0.37) than students in the
traditional physics course (50.8% to 53.5%, d ¼ 0.12). We
do not know for certain why this occurred. Two possibil-
ities are that the teacher education course has a heavier
emphasis on the LCE, and that it utilizes a more conceptual
teaching approach that matches well with the type of
questions asked on the assessment.

3. Tapping into transformation and integration

Although the EResPhys and EAppChem assessments
both focus on LCE, the items on the EAppChem ask
students to combine prior learning with new content
presented in the context of the assessment itself. This is
an extra step that is not needed for the physics items, and
was intended to correspond to the transformation and
integration aspects of cross-disciplinary learning. Thus,
the EAppChem scores should in part reflect students’
facility with these higher-order thinking skills, above
and beyond content knowledge, while the EResPhys scores
should be less impacted by those skills.

To test this, we conducted a pair of regression analyses,
one using EResPhys and EAppChem scores to predict year
in college, the other using them to predict number of
science courses completed. These demographic variables
served as a general and a science-specific measure of how
much academic experience the student has. If the
EAppChem taps into the cross-disciplinary learning skills
of integration and transformation more than the EResPhys,
we would expect it to predict more of the variance in these
variables. Note that for year in college, we coded freshman
as 1, sophomore as 2, junior as 3, and senior as 4. In doing
so, we assumed that the difference between a freshman and
a sophomore is equivalent to the difference between a
junior and a senior, which is probably not the case.
However, the logic of the analysis still works so long as
some variance can be predicted.
The results of the year-in-college analysis are shown in

Table IV. EResPhys scores were a very weak but sta-
tistically significant predictor of year in college. By
comparison, EAppChem scores were a much better pre-
dictor, though they were still a weak predictor in an
absolute sense. This is hardly surprising, since year in
college is an extremely broad and coarse-grained measure
of academic accomplishment. The most important result
comes when both scores were used as predictors simulta-
neously. EAppChem scores explained unique variance
beyond that explained by the EResPhys scores. In contrast,
EResPhys scores did not explain a statistically significant
amount of variance beyond what EAppChem scores did.
The results of the science courses analysis are shown in

Table V. Both EResPhys scores and EAppChem scores
were significant predictors of number of science courses
taken. The correlations were much larger than in the
previous analysis, which makes sense given that there is
a more obvious and direct relationship between the vari-
ables. Again, the most important result is that the
EAppChem scores continued to have predictive power
even when both scores were used as predictors simulta-
neously. However, the EResPhys scores added no addi-
tional predictive power beyond the EAppChem scores.
These analyses support the claim that the EAppChem

measures something beyond what the EResPhys does, and

TABLE IV. Predicting year in college.

Each assessment on its own

Measure r Significance test Effect size

EResPhys 0.07 Fð1; 1367Þ ¼ 5.72, p ¼ 0.017 R2 ¼ 0.003
EAppChem 0.18 Fð1; 769Þ ¼ 26.82, p < 0.001 R2 ¼ 0.03

After controlling for the other assessment

Measure R2
change Significance test

EResPhys 0.004 Fð1; 709Þ ¼ 3.23, p ¼ 0.073
EAppChem 0.03 Fð1; 709Þ ¼ 22.26, p < 0.001
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that what is being measured is related to academic
experience but not closely tied to content knowledge.
We cannot know for certain that this something is trans-
formation and integration ability; the nature of a latent
variable limits us to inference rather than deduction.
However, the main difference in the design of the two
assessments is whether transformation and integration is
required or not. Thus, the most plausible inference is that
what is being captured by the EAppChem scores relates to
the need to engage in cross-disciplinary learning.

C. Assessing utility

It was our goal was to create an instrument that not only
measured what it is intended to measure, but also to
maximize the utility of the instrument. Two criteria were
considered in examining the utility: that the assessment pair
be usable with a broad range of students, and that it be short
enough that it could be incorporated into classes without
creating a significant burden for students. Usability with a
range of students was assessed by examining the range of
scores for different student populations and analyzing the
item difficulty. Group mean scores on the EResPhys range
from 43.6% for students in teacher education physics
taking the assessment as a pretest to 68.1% for students
in teacher education chemistry taking the assessment as a
posttest. Thus, this assessment is sensitive enough to detect
meaningful differences between groups, while still leaving
room for both lower and higher scores if used with more
“extreme” groups than we collected data from (e.g., high
school physics students, graduate-level physics students).
Group mean scores on the EAppChem range from 27.0%
for psychology students (typically novices for the content
on the measures) to 80.0% for upper division physics
undergraduates. Thus it appears the EAppChem is a
somewhat more sensitive assessment than the EResPhys.
However, the EAppChem might not be able to detect
differences between college undergraduates with minimal
science instruction and younger groups, since the psychol-
ogy students were effectively at chance on the assessment.
In principle, there is room for more advanced students

(e.g., graduate students in physics or chemistry) to score
higher on the scale.
Item difficulty was already mentioned above, but to

reiterate, for the EResPhys it ranged from 0.25 to 0.79,
while for the EAppChem it ranged from 0.22 to 0.63. Item
difficulty also gives us information to assess the range of
populations that the assessments can give useful information
for. Varying item difficulties are desirable for an assessment
intended to be used with a broad range of students, as it
allows the assessment to continue to differentiate between
groups even at the low and high ends of the range.
Brevity is also an important aspect of the utility of an

instrument. Any instrument that is too long will not be used
by instructors, and is at risk of generating assessment
fatigue, and thus untrustworthy data, from students. As
discussed earlier, we removed poorly performing items
early in the process of developing the assessments. We also
examined completion time once we moved toward online
administration of the assessments. Completion times varied
widely. However, most students spent between 10 and
15 minutes on individual assessments when administered in
isolation but 20 minutes when the two assessments were
administered as a package. Thus, there is a time savings
when the assessments are given together, and even the
combined assessments place only a modest demand on
student time. Although there is less control over adminis-
tration of the assessments in an online environment, we
have been able to find numerous meaningful patterns in the
data. The disadvantages of online administration probably
do add more “noise” to the scores, but the ability to collect
data from large numbers of students offsets this. However,
caution should be exercised in using the scores for
individual students, such as for placement purposes, or
as a basis for differentiated instruction. The fact that the
assessments produce useful data at the group level does not
mean they are appropriate for use at the individual level.

D. Preliminary application of the CDLI:
Relation to amount of science education

The previous section presented several analyses that
tested predictions emerging from the design of our assess-
ments and the measurement model used for the CDLI. The
general pattern in the data is consistent with the proposed
interpretation of CDLI scores as a measure of cross-
disciplinary learning. This remains a tentative conclusion
and more work is needed to continue the validation process.
However, we believe that to motivate that additional work it
is helpful to present an illustration of how the CDLI can be
applied to address practical issues.
As mentioned earlier, CDLI scores must be interpreted in

the context of the sample used to create the regression
equation. That is, they are norm referenced, with the score
of a given student resulting from comparison with other
students. This is in contrast to a criterion-referenced

TABLE V. Predicting number of science courses.

Each assessment on its own

Measure r Significance test Effect size

EResPhys 0.21 Fð1; 1305Þ ¼ 60.1, p < 0.001 R2 ¼ 0.04
EAppChem 0.38 Fð1; 760Þ ¼ 131.4, p < 0.001 R2 ¼ 0.15

After controlling for the other assessment

Measure R2
change Significance test

EResPhys 0.001 Fð1; 702Þ ¼ 0.64, p ¼ 0.43
EAppChem 0.11 Fð1; 702Þ ¼ 85.6, p < 0.001
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instrument, where students are compared to an external
benchmark such as a set of learning objectives. Thus, the
most natural way to use CDLI scores is for comparing
different subgroups of students.
Building on our earlier analysis using raw assessment

scores, we examined the relationship between number of
college science courses taken and a student’s CDLI score,
which combines information from the two assessments. For
this purpose, we calculated CDLI scores based on the 1240
instances in our dataset where we had scores on both
assessments from the same administration (this is the same
set of data points we used for examining the correlation
between EResPhys and EAppChem scores). Of those 1240
instances, we had data on number of college science
courses for 705 of them.
There was a significant correlation between courses taken

and CDLI score, r ¼ 0.32, Fð1; 703Þ ¼ 81.54, p < 0.001,
R2 ¼ 0.10. Since theCDLI effectively controls for amount of
content knowledge, this suggests that takingmultiple science
courses improves thinking and reasoning skills that support
productive application of that knowledge.
This conclusion is neither novel nor surprising.

However, it helps illustrate the value of the approach used
to generate the CDLI scores. In particular, we are able to
make meaningful comparisons between students with
different educational histories by factoring out the role
of content knowledge. This can be useful in situations
where variability in background cannot be easily con-
trolled, as occurs with transfer students or students pursu-
ing different specializations within a major.

VI. DISCUSSION

College students majoring in the natural sciences are
frequently asked to take foundational courses from multiple
science disciplines. Realizing the full benefits of this
investment requires that students are able to productively
draw on concepts first learned in one disciplinary context in
order to understand new concepts introduced in a dif-
ferent disciplinary context. We have labeled this cross-
disciplinary learning. Despite its practical significance,
there have been few efforts to assess this kind of learning,
relative to the substantial number of measures designed for
use within a single disciplinary context. In this paper we
have described the creation of a unique pair of assessments
built around the law of conservation of energy that can be
used together to generate a cross-disciplinary learning
index. The EResPhys measures original learning of LCE
in a physics context, while the EAppChem measures an
individual’s ability to apply this knowledge in chemistry.
Results from administration of the assessments with

several different populations provide preliminary evidence
that the CDLI is a valid metric of cross-disciplinary
learning. Cross-disciplinary learning is a more abstract
construct than what is targeted by a typical concept
inventory, and fully establishing the validity of the metric

will require additional data collection. However, based on
the results of our initial analyses we believe both the
specific instrument and the general approach show promise.
We are sharing our work at this time in order to make the
instrument known and available to a broader audience and
to help stimulate further research and discussion on what
cross-disciplinary learning is and how best to measure it.

A. Potential applications

Although the CDLI could be used within the context of a
single course, we see the most natural application being at
the program level. The pedagogical methods that maximize
mastery within the context of a specific course are not
necessarily the same as those that help students broadly
apply what they learn. A distinction is often drawn between
learning disconnected facts and learning a coherent con-
ceptual framework [36]. The latter is more effective at
promoting generalization, but is slower than superficial
learning of facts. Consequently, if the assessment tools we
use measure narrow, context-specific mastery, pedagogical
methods that emphasize the ability to generalize may
appear to produce poorer results. This is likely to discour-
age instructors from persisting with such methods. Thus, if
we wish for students to be able to integrate ideas across
courses and disciplines, it is important that we have
assessment tools focusing on that outcome. The CDLI is
one such tool.
In carrying out program assessment, there are two

methodological approaches that can be used. Programs
sometimes state learning objectives involving a specific set
of content or skills. For example, the chemistry program at
our institution identifies atomic theory and thermodynam-
ics as two such content areas. One could then evaluate
success by developing an assessment testing mastery of
these topics. This would be a criterion-referenced assess-
ment. In physics, the Force Concept Inventory is an
instrument that adopts this approach [20].
However, for many program goals, it may be very

difficult to determine an appropriate criterion in this
way. For example, six-year-graduation rate is a metric
often used in program assessment, but there is no particular
value of this metric that can be said to indicate success.
Thus, programs typically compare their rate with other
programs, or may compare the rates within their program
for different subgroups of students. Similarly, our chem-
istry program also has an objective for students to be able to
“Effectively communicate scientific information in written
and oral forms.” It is again not clear what absolute level of
performance should count as success with respect to this
objective. However, the program could evaluate success by
examining the improvement in student communication
skills between introductory courses and capstone courses.
These examples illustrate a norm-referenced approach.
The CDLI also uses a norm-referenced approach.

Accordingly, it cannot be used to determine whether or
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not students have “achieved” a learning objective of
demonstrating cross-disciplinary learning. However, it
may be quite useful for comparing the performance of
different groups of students, or tracking student perfor-
mance over time. In the PFL framework discussed in the
Introduction [11], one of the core ideas is that students can
experience learning that is not immediately evident on a
traditional test, but becomes evident in quicker mastery of a
related topic down the road. Focusing on student learning
within the context of a specific course would obscure this
kind of learning, and perhaps lead to the conclusion that
instruction had been unsuccessful. Thus, it is important to
be able to track the development of student understanding
over a longer time span than a single course. Because the
questions on our assessments do not assume specific
technical knowledge or utilize discipline-specific jargon,
the assessments are well suited to such longitudinal assess-
ment. The fact that the assessments are appropriate for a
broad range of students also makes them useful for cross-
sectional comparisons across different types of courses. For
example, since they require minimal mathematical reason-
ing, they could be used to compare a calculus-based
physics course to an algebra-based physics course to a
conceptual physics course.

B. Limitations

Although we believe the CDLI can be a valuable tool for
instructors and programs, there are several limitations to the
existing dataset and the assessments themselves that are
important to keep in mind.
First, interpretation of CDLI scores is heavily context

dependent. For example, if students have already taken a
college-level chemistry course that touches on the applica-
tion of LCE to chemistry, they will most likely respond to the
EAppChem items by drawing on their learning from that
course, rather than a previous physics course.This issue is not
specific to our instrument, but it ismore important to consider
when examining learning across courses, where the context
is arguably a student’s overall educational history.Webelieve
this context dependence is not a bug but a feature, in that it is
both desirable and useful to consider student learning in a
larger context than individual courses. At the same time, it is
important to not blindly compare CDLI scores collected in
different contexts.
Second, the assessments are not intended to be a

comprehensive inventory of student understanding of
energy ideas. They are meant specifically to probe students’
ability to apply the energy conservation principle. Both
assessments do correlate with total number of science
courses taken, suggesting that they are sensitive to a
student’s increasing level of scientific sophistication as
they complete more coursework. However, these assess-
ments on their own are not going to be appropriate as an
overall measure of how student thinking about energy
concepts develops across courses.

Third, both assessments use a multiple-choice format and
yield a quantitative score. The multiple-choice format makes
the assessments convenient to administer but does not
provide deep insights into student thinking. Consequently,
the assessments are good for answering “how much” ques-
tions, but less useful for answering “how” or “why” ques-
tions. This is especially truegiven that the distracterswere not
chosen to target particular lines of student reasoning. In our
previous paper describing our overall measurement approach
[2], we discussed the value of think-aloud interviews to
characterize students’ thinking during cross-disciplinary
learning.Weplan to further describe results froman interview
component of our project in an upcoming paper.
Fourth, our initial analyses using the CDLI have been

based on a cross-sectional dataset. Thus, the relationships
between the CDLI and other factors may not be causal in
nature. For example, students who have taken fewer versus
more science courses may differ in ways other than amount
of science coursework. Students taking more science may
have a greater interest in science, or may have more
confidence in their ability to perform well in science.
Consequently, students may self-select into different
groups in a way that concentrates students “good” at
generalization into certain groups, rather than students
learning to generalize through instruction. To test for this
possibility, a longitudinal study must be conducted. We
have a modest amount of longitudinal data in our dataset,
but not enough for a meaningful analysis.
Finally, we only have data from two institutions, and

most of those data come from a single university.
Collecting data from a range of institutions will be
necessary to establish that the assessments truly are usable
with a broad range of students, and that the patterns we
have identified are general rather than being idiosyncratic
to our specific population.

C. Future directions

Moving forward, we see several next steps for this line of
work. First, as mentioned in the previous section, we
currently have a rather homogeneous sample. By partnering
with other institutions, we can augment our sample with
students representing different types of institutions, differ-
ent educational histories, and different relationships with
science. To facilitate these partnerships, we have begun
constructing a Web-based portal that will allow instructors
to distribute the assessment pair to their students and review
the resulting data. We intend this to be an easy-to-use tool
that instructors or assessment coordinators can deploy to
get some quick feedback on particular interventions, and
which will serve as one part of a larger portfolio of
assessment measures for a program.
Second, and also mentioned above, although there are

suggestive relationships in our data, without following the
same students over time we cannot definitively establish a
causal relationship between particular coursework and their
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ability to integrate concepts across disciplines. To partially
address this limitation, we have been collecting data across
the sequence of teacher education courses mentioned in the
Introduction. At this point we do have some data from
multiple courses for some students, but the numbers are too
small to permit a meaningful analysis. Further longitudinal
data collection will help address this deficit. We hope that
as other institutions start using these assessments they will
collect data across multiple courses. In particular, it would
be useful to follow students through a more traditional
science course sequence, so the effects of that kind of
instruction can be compared with the effects of the
pedagogy used in the teacher education courses.
Third, with larger samples, it should become possible to

more fully explore which students are demonstrating a
strong ability to integrate ideas across disciplines and
which students find this more challenging. Identifying
the various factors that are related to integration ability
will help researchers develop more sophisticated theoretical
models. In turn, more sophisticated models can help
instructors design more effective pedagogical interventions
and target those interventions more effectively.

VII. CONCLUSION

The primary goal of this project was to create an easy-to-
use instrument for measuring the construct of cross-
disciplinary learning. In this paper we have described
the development and initial validation of two assessments,
EResPhys and EAppChem, as well as how the scores from
these two assessments can be used to calculate an index—
the CDLI—that appears to be largely independent of
content knowledge, but is sensitive to a student’s ability
to integrate ideas across disciplinary boundaries. As our
assessments are fairly narrow in scope, this instrument
would not be appropriate as a stand-alone approach to

assessing student learning, whether within or across
courses. However, we believe it can be a useful comple-
ment to other types of assessment, especially at the program
level, because it taps into an aspect of student learning
that few other quantitative measures seek to capture.
Furthermore, we believe our overall approach may provide
a useful model for other researchers and educators who
seek ways to go beyond measuring what a student knows to
explore how that student is able to generalize and apply that
knowledge in novel situations. As we have noted previ-
ously, placing the focus on cross-disciplinary learning
requires thinking of ourselves as STEM educators first
and disciplinary experts second [2]. Although we certainly
hope that others find our assessments useful, the surest
indicator that our project has been successful is if it
stimulates productive conversations about what aspects
of student learning are most important to measure and
spurs innovative approaches to doing that measuring.
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