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RESEARCH ARTICLE
10.1002/2016JC012071

Nutrient and phytoplankton dynamics on the inner shelf of the
eastern Bering Sea
Calvin W. Mordy1,2 , Allan Devol3 , Lisa B. Eisner4, Nancy Kachel1,2, Carol Ladd2 ,
Michael W. Lomas5 , Peter Proctor1,2, Raymond N. Sambrotto6 , David H. Shull7,
Phyllis J. Stabeno2 , and Eric Wisegarver2

1Joint Institute for the Study of the Atmosphere and Ocean, University of Washington, Seattle, Washington, USA, 2Pacific
Marine Environmental Laboratory, NOAA, Seattle, Washington, USA, 3School of Oceanography, University of Washington,
Seattle, Washington, USA, 4Alaska Fisheries Science Center, Seattle, Washington, USA, 5Bigelow Laboratory for Ocean
Sciences, East Boothbay, Maine, USA, 6Lamont-Doherty Earth Observatory, Columbia University Earth Institute, Palisades,
New York, USA, 7Department of Environmental Sciences, Western Washington University, Bellingham, Washington, USA

Abstract In the Bering Sea, the nitrogen cycle near Nunivak Island is complicated due to limited nutrient
replenishment across this broad shelf, and substantial nitrogen loss through sedimentary processes. While
diffusion at the inner front may periodically support new production, the inner shelf in this region is gener-
ally described as a regenerative system. This study combines hydrographic surveys with measurements of
nitrogen assimilation and benthic fluxes to examine nitrogen cycling on the inner shelf, and connectivity
between the middle and inner shelves of the southern and central Bering Sea. Results establish the inner
shelf as primarily a regenerative system even in spring, although new production can occur at the inner
front. Results also identify key processes that influence nutrient supply to the inner shelf and reveal cou-
pling between the middle shelf nutrient pool and production on the inner shelf.

1. Introduction

The most notable topographical feature of the eastern Bering Sea is a broad shelf that extends >500 km off-
shore [Stabeno et al., 1999]. It is oceanographically partitioned into distinct cross-shelf domains: the coastal
(<50 m water depth), middle (50–100 m), and outer shelf (100–200 m) domains [Kinder and Schumacher,
1981a,1981b; Coachman, 1986]. Waters that occupy these domains are derived from two primary sources;
the nutrient-rich Bering Sea basin, and the fresher, nutrient-poor Gulf of Alaska shelf. The Aleutian North
Slope Current (ANSC) carries basin water northeastward along the northern slope of the Aleutian Island
archipelago, and upon reaching the southeast corner of the Bering Sea basin, the flow turns to the north-
west to form the Bering Slope Current (BSC). A portion of the ANSC flows into Bering Canyon supplying
Bering Sea basin water to the shelf (Figure 1) [Stabeno et al., 2016]. North of Unimak Pass, Bering Sea basin
water is joined by Gulf of Alaska shelf water (via the Alaska Coastal Current that flows north through Unimak
Pass), and it is this mixture of basin and shelf waters that serves as the origin of water that covers most of
the inner shelf (Figure 1) [Stabeno et al., 2016].

Downstream of Bering Canyon, flow over the inner shelf continues to the northeast supplying nutrients along
the Alaskan peninsula and into Bristol Bay. In Bristol Bay, the flow turns to the northwest toward Nunivak
Island. Because this flow is sluggish (�2 cm s21), the transit time from Bering Canyon to Nunivak Island is �1
year [Stabeno et al., 2016]. During this lengthy transit, waters over the inner shelf are modified by ice formation
and melt, runoff, primary production, nutrient drawdown and remineralization, and sedimentary processes,
and it is this modified water near Nunivak Island (Region 7 in Figure 1) that serves as the focus of this study.

In winter, the water column over the middle and inner shelf is usually well mixed [Stabeno et al., 2001]. In
spring, a two-layer system develops over the middle domain while the inner shelf remains vertically mixed due
to a combination of tidal and wind mixing [Schumacher et al., 1979; Kachel et al., 2002]. The inner front, which
separates these two regimes, is distinct from Unimak Pass to north of Nunivak Island, and is nominally located
along the 50 m isobath, although it can vary depending on the strength of wind and tidal mixing [Schumacher
et al., 1979; Schumacher and Stabeno, 1998; Overland et al., 1999; Stabeno et al., 2001; Kachel et al., 2002]. In
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summer, mixing at the inner
front can erode into the bot-
tom layer of the middle shelf
and introduce nutrients into
the upper water column
[Stockwell et al., 2001; Kachel
et al., 2002], and this in turn
supports primary and second-
ary production [Sambrotto
et al., 1986; Whitledge et al.,
1986; Stockwell et al., 2001;
Coyle and Pinchuk, 2002;
Kachel et al., 2002; Rho and
Whitledge, 2007; Coyle et al.,
2011; Zador, 2013]. The effec-
tiveness of nutrient pumping
at the front (i.e., the diffusive
nutrient flux), however, varies
on tidal to annual scales and
depends on the availability of
nutrients in the bottom layer
of the middle shelf adjacent
to the front [Stockwell et al.,
2001; Kachel et al., 2002].

The nutrient content on the middle shelf, and hence the potential for nutrient pumping at the inner front,
is governed in large part by winter replenishment from the slope. On the middle shelf, Stabeno et al. [2016]
found that during late fall and winter, on average �50% of middle shelf water is replaced by water from the
slope and Unimak Pass, but there was substantial interannual variability in the extent of wintertime replen-
ishment. On the inner shelf near Nunivak Island, replenishment is more limited. Isotopic evidence suggests
that nitrate is largely the result of local nitrification with little evidence of slope water reaching this far
inshore [Granger et al., 2013]. Compounding the low rates of nitrogen replenishment on the inner shelf is
the loss of inorganic nitrogen through denitrification and/or anaerobic ammonium oxidation (anammox),
i.e., microbial production of nitrogen gas [Horak et al., 2013]. As a result, portions of the inner shelf may
have chronically low concentrations of nitrate for much of the year.

The seasonal cycle of nitrate at the 50 m isobath was originally established in 1979–1981 off Cape Newenham
with concentrations declining each year from �10 lM in May to <1 lM in June, and a modest increase in
nitrate during late summer and fall [Whitledge et al., 1986]. In 1997–1999, observations across the middle and
inner shelves in May and August found that nitrate decreased from the middle to the inner shelf, and the
inner shelf was generally depleted in nitrate at Port Moller, Cape Newenham, and Nunivak Island [Kachel et al.,
2002]. It was unclear if nitrate depletion reflected postbloom conditions, or if nitrate was chronically low.
Strong gradients in nitrate across the shelf imply a shift from new production on the middle shelf (i.e., primari-
ly nitrate assimilation) to regenerated production on the inner shelf (i.e., primarily ammonium assimilation).

In the vicinity of Nunivak Island (Region 7, Figure 1), spring conditions on the inner shelf may differ from those
near Cape Newenham and along the Alaskan Peninsula. Region 7 is usually ice covered, and these waters have
likely been modified by the annual production cycle during the �1 year transit from Bering Canyon [Stabeno
et al., 2016]. In summer, the advective nutrient flux into this region is presumed to be small due to weak cur-
rents and low concentrations upstream of Nunivak, so other sources of nutrients are likely supporting primary
production. For example, in September 1997, Stockwell et al. [2001] observed moderate concentrations of
nitrate (�1 lM) and chlorophyll a (�3 lg L21) inshore on the NP Line, and attributed this to nitrification.

In this study, two sets of questions will be addressed that are critical for understanding the nitrogen cycle
in Region 7 of the inner shelf. The first set relates to the distribution and uptake of nutrients including:
what are nutrient levels in spring that support production; what is the timing of spring production and
rates of production and nutrient drawdown in these relatively shallow, ice-covered waters; and how do

Figure 1. Map of the eastern Bering Sea showing a generalized pattern of flow [Stabeno et al.,
2016] and inner shelf Regions 2 and 7 as defined by Ortiz et al. [2012]. Also shown are the
locations of long-term moorings M2, M4, M5, and M8 (blue dots); the MN and NP hydrographic
lines (dashed lines); assimilation stations (orange diamonds); and benthic sampling stations
(blue triangles).
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new and regenerated production vary across the shelf in spring and summer? To address this set of ques-
tions, we compiled spring and summer data collected in 2007–2010 as part of the Bering Sea Project
(http://www.nprb.org/bering-sea-project), a multidisciplinary investigation of the regional ecosystem.
These data are used to examine the seasonal distribution of nutrients in the region, and evaluate assimila-
tion rates of carbon, nitrate, and ammonium across the shelf in spring and summer.

The second set of questions relates to the source of nutrients in summer: what are the sources of nutrients
that sustain postbloom production; and how does postbloom production at the inner front vary with the
diffusive flux? To address these questions, we estimate the benthic efflux of dissolved inorganic nitrogen
(DIN 5 nitrate 1 nitrite 1 ammonium) using benthic rate measurements determined during the Bering Sea
Project, estimate nitrogen input from the Kuskokwim River, and estimate rates of nitrification. To examine
variability in the diffusive nutrient flux, we use data from the Bering Sea Project, as well as a chlorophyll
time series that began in 2003 as part of NOAA’s Bering Arctic Subarctic Integrated Survey (BASIS). The
BASIS chlorophyll data are related to an index of wind mixing, and an estimate of replenishment of bottom
waters on the middle shelf.

2. Methods

Data from the Bering Sea Project were collected during hydrographic cruises between 2007 and 2010 that
spanned the inner front with spring cruises in 2007–2009, and summer cruises in 2008–2010 (Table 1).
Measurements taken include temperature, salinity, oxygen, chlorophyll a, nutrients, rates of nitrogen and
carbon assimilation, rates of sedimentary denitrification/anammox, oxygen consumption, and efflux of
nitrogen (nitrate, nitrite, ammonium), but not all measurements were made in each year, in each season, or
at each station. Analytical methods for these measurements are described in sections 2.1–2.3.

The BASIS survey collected hydrographic data along a 0.58 latitude 3 18 longitude survey grid that spans
the shelf with stations spaced �60 km apart [Eisner et al., 2016]. Stations on the inner shelf south of 608N
(Regions 7 and 2, see Figure 1) were occupied between late August and mid-September. Integrated chloro-
phyll is the sole data set presented from BASIS, and sampling and measurement techniques were compara-
ble to methods described below for the Bering Sea Project.

2.1. Hydrographic Sampling and Analysis
Conductivity-temperature-depth (CTD) measurements were made using a Seabird SBE 911plus system with
dual temperature, conductivity (salinity), and oxygen (SBE-43) sensors, and single sensors for Photosyntheti-
cally Active Radiation (PAR, Biospherical Instruments QSP-200 L4S, QSP-2300, or QSP2000) and chlorophyll a
fluorescence (WET Labs WETStar WS3S). Data were recorded during the downcast, with a descent rate of
15 m min21 to a depth of 35 m, and 30 m min21 below that. Temperature probes were calibrated by the
manufacturer, and the primary and secondary probes generally agreed to within 0.0028C. Salinity calibration
samples were taken on alternate casts and analyzed on a laboratory salinometer. These calibrations indicate
instrument accuracy better than 0.01. The oxygen sensors were calibrated from Winkler analysis of discrete
samples collected at one or more depths on each cast. Chlorophyll a fluorescence was converted into con-
centration using discrete samples filtered on GF/F filters, and analyzed using the traditional acidification
fluorescence method of Strickland and Parsons [1972].

Samples for dissolved nutrient analysis (nitrate, nitrite, ammonium, phosphate, and silicic acid) were syringe-
filtered using 0.45 lm cellulose acetate membranes and collected in 30 mL acid-washed, high-density poly-
ethylene bottles after three rinses. Samples were analyzed shipboard within 1–12 h of collection. Nutrients

were determined using a combination of
analytical components from Alpkem,
Perstorp, and Technicon. We closely fol-
lowed the WOCE-JGOFS standardization
and analysis procedures specified by
Gordon et al. [1993], including reagent
preparation, calibration of labware, prep-
aration of primary and secondary stand-
ards, and corrections for blanks and

Table 1. Hydrographic Cruises During the Bering Sea Project

Year Season Vessel Cruise ID Cruise Dates

2007 Spring Healy HLY-07-01 4/10 to 5/12
2008 Spring Healy HLY-08-02 3/31 to 5/6

Summer Healy HLY-08-03 7/3 to 7/31
2009 Spring Healy HLY-09-02 4/3 to 5/12

Summer Knorr KN-195-10 6/14 to 7/13
2010 Early summer Thompson TN-249 5/9 to 6/14

Summer Thompson TN-250 6/16 to 7/13
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refractive index. Ammonium was measured using an indophenol blue method modified from Mantoura and
Woodward [1983].

2.2. Assimilation of Carbon and Nitrogen
Methods for determination of nitrate and ammonium uptake rates using 15N, and primary productivity
using 13C and 14C were detailed by Sambrotto et al. [2016] and Lomas et al. [2012]. The two referenced
methods were identical in sampling depths and on-deck incubations. Daily simulated in situ productivity
incubations were conducted on deck with incubation bottles screened to 100, 55, 30, 17, 9, 5, and 1.5% of
surface light levels; the light levels at each depth from which samples were originally collected. Incubations
were conducted for a full 24 h for 14C. This also was the incubation period for most of the combined 15N
and 13C tracer experiments that were done in a single incubation bottle. Shorter (�6 h), dual 15N and 13C
incubations were done in situ by suspending bottles through a hole in the ice at their original sample
depth. Estimates of daily rates were extrapolated from the in situ rates by assuming a 12 h production
period.

The amount of the 15N tracer added was based on the preliminary measurement of their respective pool
sizes to achieve a nitrogen tracer concentration equal to about 10% of the initial pool. Stable isotopic ratios
of N and C and total nitrogen and carbon content in the postincubation filtered particles were measured
with a Europa 20-20 mass spectrometer in continuous flow mode using an automated ANCA combustion
system. Uptake rates were calculated from the equations in Dugdale and Goering [1967].

Rates of net primary production (NPP) were calculated from the autotrophic incorporation of NaH14CO2
3

into particulate organic matter (i.e., particles� 0.7 lm; Ahlstrom 151 filters) using the ratio of added radio-
carbon, �10 lCi of NaH14CO2

3 , to total inorganic carbon present (based upon salinity) [Lomas et al., 2012].
Following filtration, samples were rinsed with 10% HCl to remove residual NaH14CO2

3 and counted on a Per-
kin Elmer TriCarb 2900LR after the addition of 5 mL of Ultima Gold (Perkin Elmer, USA) scintillation cocktail.
Daily volumetric rates of NPP were calculated from the mean light bottle value corrected for the dark bottle
value using the average total added activity for the profile [Lomas et al., 2012].

2.3. Sediment Denitrification, Respiration, and Nitrogen Efflux
Rates of sediment respiration and denitrification/anammox were determined by incubating intact sediment
cores at in situ temperatures and measuring the change in concentration of nutrients, dissolved oxygen
and dissolved nitrogen gas in the overlying water. Sediment cores were collected with an Ocean Instru-
ments MC 800 multicorer, which can collect up to eight undisturbed 10 cm diameter cores up to 40 cm in
length. Bottom water was collected at each station using a Niskin bottle attached to the multicorer. These
cores were subcored using 8 cm diameter polyethylene terephthalate tubes that held �20 cm segment
with �10 cm of head space. At each station, two or three replicate cores (depending on coring success)
were sealed with silicone stoppers and connected to a reservoir containing bottom water as described by
Davenport et al. [2012]. These flux cores were sampled for nutrients and dissolved gases over a period of 3–
5 days, depending on the reaction time.

Oxygen concentration in the overlying water of the incubation cores was measured using a PreSens Microx
TX3 fiber optic oxygen meter with a needle-type PreSens optode from 5 mL subsamples. The optode was
calibrated using air equilibrated seawater and seawater deoxygenated with sodium sulfite. The initial
change in oxygen concentration during the incubation period was determined by one of two methods: (1)
fit a polynomial to all the data and determine the derivative of that polynomial function at t 5 0; (2) if the
data did not fit a polynomial well, the flux at t 5 0 was calculated from the linear slope of the first two
points. Oxygen fluxes were corrected to account for the addition of reservoir water to the core incubation
and the slow desorption of oxygen from the silicone caps of the incubation cores [Davenport et al., 2012].

To determine rates of sedimentary denitrification/anammox, we measured dissolved nitrogen/argon ratios
in the overlying water of each flux core using a membrane inlet mass spectrometer [Kana et al., 1994; Chang
and Devol, 2009]. The incubation was terminated when the O2 concentration dropped below 50% of the ini-
tial concentration. At HLY0902, Station 9, a mass balance approach was used to estimate the denitrification
rate [Horak et al., 2013]. This assumes that the denitrification rate is the difference between NH1

4 produced
from sedimentary aerobic respiration and the net DIN flux out of the sediment.
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2.4. Reanalysis Winds and Sea Ice
An index of wind mixing was determined around the M2 and M4 moorings using data from the National Cen-
ter for Environmental Prediction (NCEP), Department of Energy Reanalysis. NCEP uses a state-of-the-art analy-
sis/forecast system to perform data assimilation on a 2.58 latitude by 2.58 longitude grid with data ranging from
January 1979 to present [Kalnay et al., 1996; Kanamitsu et al., 2002]. NCEP winds are well correlated with the
observed winds in the Bering Sea [Ladd and Bond, 2002]. Reanalysis data were obtained from the NOAA Earth
System Research Laboratory, Physical Sciences Division in Boulder, Colorado, USA, from their website at http://
www.esrl.noaa.gov/psd/. At each mooring location, the daily values of the winds were averaged in a 28 latitude
3 58 longitude box centered on the moorings. The wind mixing index is based on the friction velocity (u*3)
deduced from daily values of the surface stress/momentum flux (N. Bond, University of Washington, Seattle).

Sea ice extent and areal concentration was provided by the Advanced Microwave Scanning Radiometer
EOS, which consists of daily ice concentration data at 12.5 km resolution, and are available from the Nation-
al Snow and Ice Data Center (NSIDC) website.

2.5. Location of the Inner Front
The location and width of the inner front across the shelf was determined from the changes in the vertical
structure of the thermocline (|dT/dz|, where z is the vertical component and T is temperature). Kachel et al.
[2002] defined the offshore extent of the inner front as the location where the temperature gradient
declines by 50%, or |dT/dz|< 0.5 |dT/dz|max where |dT/dz|max is the absolute maximum value along the
cross-front transect. The inshore extent was defined as the location where |dT/dz|< 0.058C m21.

3. Results

Results from the Bering Sea Project are presented including oceanographic conditions across the shelf,
assimilation across the middle and inner shelves, and benthic oxidation and denitrification/anammox on
the inner shelf. Oceanographic conditions are described through a series of hydrographic sections in 2009
(supporting information figures include sections from 2008 and 2010), mapping the location of the inner
front on surface maps of physical and chemical properties, and the seasonal distribution of nutrients on the
inner shelf. BASIS data are presented in the discussion during an examination of the diffusive nutrient flux.
Mean values are given as the mean 6 SE (N), except when noted as SD.

3.1. Hydrography of the Middle and Inner Shelves
During the Bering Sea Project, a series of hydrographic transects were occupied in spring and summer that
crossed the middle shelf and converged in Region 7 (as defined by Ortiz et al. [2012]). The MN Line extends from
Nunivak Island toward St. Matthew Island, and the NP Line extends from Nunivak Island toward the Pribilof Islands
(Figure 1). The NP Line crosses the central middle shelf near the M4 long-term mooring while the MN Line lies in
the transition zone between the northern and southern shelves, and crosses the M5 long-term mooring.

In spring of each year (2007–2009), the distributions of properties across the middle and inner shelves were
similar, so only sections from the 2009 MN Line are shown (Figure 2). During our field years (2007–2010),
cold conditions prevailed in the Bering Sea with maximum ice extent usually as far south as �568N, and
occurring between 22 March (2007) and 3 April (2010) [Stabeno et al., 2012b]. Hence, during our spring sur-
veys, the MN and NP lines were mostly covered by sea ice, although in 2007, Region 7 was sampled later in
spring when ice retreat had commenced. The MN and NP lines were characterized by a weakly stratified or
well-mixed water column with temperatures typically 21.78C. Salinity and concentrations of nitrate and
silicic acid decreased from the outer shelf to the coastal domain: the middle shelf had relatively high con-
centrations of nitrate, ammonium and silicic acid, and low concentrations of chlorophyll a while the inner
shelf was nutrient-poor despite impedance of light due to spring sea-ice cover.

In summer, a two-layer system develops over the southern middle shelf, with a strong pycnocline separating
a 20–30 m wind-mixed surface layer (fresher, warmer, and nutrient poor) from a tidally mixed, nutrient replete
bottom layer [Stabeno et al., 2012a]. In 2008 (supporting information Figures S1 and S2) and 2009 (Figures 3
and 4), the stratified two-layer structure extended shoreward to�50 m isobath. Over the inner shelf, the water
column was well mixed or weakly stratified; and relative to bottom waters of the middle shelf, the inner shelf
was fresher, warmer, and nutrient poor. Most notably, in summer 2008 and 2009, there was little DIN on the
inner shelf. Nitrate concentrations were near the detection limit (0.08 lM), and ammonium was typically <0.5
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lM. Despite the paucity of reactive nitrogen, appreciable concentrations of chlorophyll a (10–15 lg L21) were
observed at the inner front along the MN Line in summer 2009, and associated with this feature was a surface
expression of silicic acid (9.4 lM) that was not evident in nitrate or ammonium (Figure 3). This result is consis-
tent with a diffusive flux of nutrients at the inner front and consumption of nitrogen by a phytoplankton com-
munity largely devoid of diatoms, resulting in a residual pool silicic acid. These features were not observed
along the inner front of the NP Line in summer 2009 (Figure 4). (Near the outer shelf of the NP Line, the water
column shoals and is fully mixed in the vicinity of the Pribilof Islands (�1708W) with enhanced chlorophyll
concentrations and associated nutrient drawdown (Figure 4). These features around the Pribilof Islands have
been addressed elsewhere [Sullivan et al., 2008; Stabeno et al., 2008] and will not be discussed here.)

In summer 2008, there was a small surface expression of silicic acid (2.3 lM) at the inner front along the NP Line
concomitant with a relatively small chlorophyll maximum (�1.5 lg L21) (supporting information Figure S2), but
similar features were not observed along the MN Line (supporting information Figure S1). In summer 2010, strat-
ification along the MN Line extended to the inshore station due to a pool of warm, low-salinity water that
resulted from late ice retreat, and this stratified water disrupted the inner front (supporting information Figure

Figure 2. Hydrographic sections along the MN Line during 6–9 April 2009 of (a) nitrate (color) and salinity (contours, 0.1 interval), (b) ammonium, (c) silicic acid, and (d) chlorophyll a.
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S3). Nevertheless, moderate levels of ammonium and chlorophyll were observed in the bottom layer of the
inner shelf. Together, results from these summertime hydrographic sections reveal the spatiotemporal variability
in the diffusive flux of nutrients at the inner front, as defined through patterns of stratification and silicic acid,
and these spatial patterns are further examined in the ensuing surface maps from summer 2009.

The inner front in summer 2009 was plotted on maps of near-surface (<8 m) temperature, salinity, and silic-
ic acid (Figure 5). Along the MN Line (�608N), temperatures in the inner front were cooler, and there was a
surface expression of silicic acid (as shown in Figure 3). South of the MN Line, the seaward edge of the inner
front followed the 50 m isobath southeast toward Bristol Bay, and cooler surface water was associated with
the inner front. However, south of the MN Line, surface concentrations of silicic acid in the inner front
remained low. North of the MN Line, a band of warmer and fresher water extended inshore from the 50 m
isobath. This water was stratified (not shown), and directed the inner front to the northeast. North of 618N,

Figure 3. Hydrographic sections along the MN Line during 1–2 July 2009 of (a) nitrate (color) and salinity (contours, 0.2 interval), (b) ammonium and temperature (18 interval), (c) silicic
acid and temperature, and (d) chlorophyll a and temperature. The thicker temperature contour line is 08C, and the dashed line is 218C. The bar on top of the figure indicates the location
of the inner front. The location of Cast 117 is also noted. Note a different scale for chlorophyll a than in Figure 2.
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the upper water column was cooler, fresher, and stratified (not shown). Although the inner shelf north of
the MN Line was stratified, there was a large pool of silicic acid (Figure 5c). Silicic acid concentrations at the
five inner shelf stations within this pool were relatively uniform with depth (14 6 3 lM (26), 6SD).

These results indicate that in summer, a surface expression of silicic acid is not necessarily an indicator of
the diffusive flux of nutrients (which was likely absent in stratified waters to the north) nor is the cold band
associated with the inner front always coupled with diffusion of nutrients (absence of surface silicic acid to
the south). The latter assumes that diatoms were of minor importance in summer [Stoecker et al., 2014],
although storm mixing can induce diatom production [Sambrotto et al., 1986].

3.2. Seasonal Distribution of Nutrients and Chlorophyll a on the Inner Shelf
To examine the variability of reactive nitrogen and chlorophyll a on the inner shelf west and south of Nunivak
Island, data from Region 7 in all years were combined (Figure 6). The highest nitrate concentrations (6.8–7.1 lM)

Figure 4. Hydrographic sections along the NP Line during 22–23 June 2009 as in Figure 3 except the temperature contour interval is 0.58C. The location of Casts 49 and 50 are indicated
at the top of the figure.
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were from a cast near the 50 m isobath in
2007 (45 m bottom depth). This station
appeared to be influenced by the deep
nutrient pool on the middle shelf, as con-
centrations were similar to concurrent
measurements on the 60 m isobath. Dis-
counting this cast, spring concentrations
of nitrate and ammonium were strikingly
similar in magnitude, with the highest
concentrations (2.1–4.4 lM) observed on
the earliest spring cruise (2008) when ice
concentrations were �100%. During a lat-
er spring cruise in 2007, ice concentrations
were highly variable, and nitrate and
ammonium concentrations were lower
(0.0–1.4 lM).

Assuming this pattern reflects the sea-
sonal drawdown of nutrients, nitrate and
ammonium drawdown rates in spring
were determined from the regression of
vertically integrated data, equaling
2.5 6 0.5 mmol NO3 m22 d21 (24) and
3.4 6 0.7 mmol NH4 m22 d21 (24),
respectively. (Drawdown rates could
have been determined from
concentration changes between spring
and summer cruises; however, blooms
on the shelf appeared to occur on much
shorter time scales [Sigler et al., 2014].) In
summer, although mean nitrate concen-
trations were near the detection limit
(0.07 6 0.01 lM (117)), there was mea-
surable ammonium (0.27 6 0.02 lM
(117)) that may have supported regener-
ated production (Figures 6a and 6b).

Large accumulations of chlorophyll a
were not observed during the 2008 and
2009 spring surveys on the inner shelf,
but were apparent on the 2007 spring
cruise (Figure 6c and Table 2), a pattern
also observed for assimilation rates (dis-
cussed below). Higher concentrations
were also observed during summer, and
observations in 2008 and 2009 found

that most of the chlorophyll on the inner shelf in summer was associated with small (<5–10 lm) particles
[Lomas et al., 2012; Eisner et al., 2016].

3.3. Assimilation Across the Shelf
To examine trends in assimilation across the inner front, assimilation rates of carbon, nitrate, and ammoni-
um were measured inshore of the 70 m isobath at 27, 10, and 7 stations, respectively, including three sta-
tions in <70 m of water between M4 and the Pribilof Islands. These data along with associated water
properties appear in supporting information Table S1. While most stations on the inner shelf were from
Region 7, the data set includes a sole inner shelf station from Region 2 that was sampled in summer 2009 (KN-
195-10, Station 18, supporting information Table S1) as this station provides contrast between new versus

Figure 5. Maps of near-surface (<8 m) temperature (8C), salinity and silicic acid
(mM) summer 2009 with location of the inner front (black lines) as determined by
Kachel et al. [2002] and described in section 2.5.
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regenerated production in summer.
Table 2 summarizes subsets of assimila-
tion data from different regions and peri-
ods from supporting information Table
S1, and is used to examine prebloom
(2008 and 2009) versus bloom (2007)
conditions over the middle and inner
shelves, and total nitrogen assimilation
on the inner shelf in spring, summer,
and over the entire measurement period
(April–August).

To determine the C:N uptake ratio
inshore of the 70 m isobath, simulta-
neous measurements of carbon, nitro-
gen, and ammonium uptake were made
in spring 2007 (N 5 4,) and summer 2009
(N 5 3). The ratio of carbon to nitrogen
(nitrate 1 ammonium) uptake averaged
7.9 6 2.4 (7), and was consistent with the
Redfield C:N ratio of 6.625 [Redfield, 1958]
supporting the use of Redfield C:N in sup-
porting information Table S1 for convert-
ing carbon uptake rates into nitrogen.

In spring, carbon and nitrate uptake
rates across the middle and inner
shelves were significantly higher in 2007
than in 2008 and 2009 (Table 2). These
results were consistent with higher con-
centrations of chlorophyll a in 2007 (Fig-
ure 6c and Table 2), and consistent with
prebloom sampling in 2008 and 2009
and sampling during the bloom in 2007
as inferred from patterns in the spring
nutrient data (Figures 6a and 6b).

Rates of total nitrogen assimilation on the
inner shelf in spring and summer were
determined by averaging together rates
of carbon assimilation (converted into
nitrogen units) and nitrogen uptake
(simultaneous measurements of nitra-
te 1 ammonium) in each season (Table

2). The total nitrogen assimilation rates in spring were approximately three times that in summer (p 5 0.04). For
comparing nitrogen assimilation with benthic rates of oxidation, rates of total nitrogen assimilation between April
and August was determined by giving equal weight to spring and summer (i.e., �60 days), and taking the mean
of these two seasons (5.8 6 5.5 mmol N m22 d21, Table 2).

The ƒ-ratio is an estimate of new versus regenerated production and is determined from the ratio of nitrate to
total nitrogen uptake (nitrate uptake/nitrate 1 ammonium uptake) [Dugdale and Goering, 1967]. Only seven
measurements of ƒ-ratios were available across the middle and inner shelf in this region, and those ratios var-
ied between 0.04 and 0.88 (supporting information Table S1). While there was no significant difference
between the ƒ-ratios in spring and summer (p 5 0.17), the lowest ƒ-ratios were found in summer. In spring,
there was a strong relationship (R2 5 0.997) between the ƒ-ratio and mean salinity (Figure 7). The highest
ratios were observed in saltier waters near the 70 m isobath where nitrate concentrations were relatively high
(>8 lM) compared to lower ratios in the coastal domain where nitrate concentrations were <0.7 lM

Figure 6. Seasonal distribution of (a) nitrate, (b) ammonium, and (c) integrated chlo-
rophyll a (full water column) in Region 7. In Figure 6a, crosses and the black line and
error bars (6SD) represent mean ice coverage 7 days prior to sampling. For example,
on 25 April 2007, six stations were sampled, and the average ice coverage 7 days pri-
or to sampling was determined at each station. These values ranged from 6% to
98%, and the mean of these weekly averages was 55 6 40% (6SD).
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(supporting information Table S1). In summer, only three measurements were made, and the ƒ-ratio was espe-
cially low (�0.05) at two stations having silicic acid concentration< 1 lM. But in summer 2009, Station 117
occupied a region of the inner front where mixing appeared to have eroded the deep nutrient pool of the
middle shelf, introducing silicic acid (Figure 3) and presumably nitrate into the upper water column. The ƒ-
ratio of 0.5 at this station was consistent with spring assimilation rates for that salinity (Figure 7).

3.4. Benthic Oxygen Demand and Production of Nitrogen Gas (N2) on the Inner Shelf
Flux cores on the inner shelf south of 608N were used to determine: (a) the benthic oxygen demand (BOD),
which provides a measure of remineralization of organic material; (b) the rate of N2 production from denitrifi-
cation and/or anammox (Table 3). As only five cores were collected in this domain, the data are too sparse to
examine spatiotemporal variability. On the inner shelf, BOD averaged 1.8 6 0.4 mmol N m22 d21 while mean
N2 production was 1.0 6 0.2 mmol N m22 d21. The difference between these values (0.8 6 0.5 mmol N m22

d21) represents remineralized nitrogen that may be available to sustain regenerated production and is pre-
sumed to be the average efflux in spring and summer in section 3.5. In Table 3, published data over the entire
shelf are provided for comparison. On the inner shelf, BOD was significantly higher than observed over the
entire shelf (p 5 0.0001) while mean N2 was comparable to measurements over the entire shelf (p 5 0.69).

3.5. Mass Balance Model for Nitrate and Ammonium
Using measurements of nutrient drawdown, assimilation, and efflux, a simple mass balance for nitrate and
ammonium is used to provide estimates of the advection/diffusion of nutrients and ammonification in Region
7 of the inner shelf as follows:

dNO3=dt 5 Nitrification 2 Assimilation NO3ð Þ6 AdvDiff NO3ð Þ (1)

dNH4=dt 5 Ammonification 1 Efflux 2 Nitrification 2 Assimilation NH4ð Þ6 AdvDiff NH4ð Þ (2)

where AdvDiff is the advective-diffusive
flux of nitrate or ammonium (negative
values are net flux off the inner shelf).
The model assumes that riverine inputs
and the sediment flux of nitrate are negli-
gible (discussed below). In equation (1),
AdvDiff NO3ð Þ is derived, and the ratio of
NH4/NO3 on the middle shelf is used to
convert this value into AdvDiff NH4ð Þ. Rates
of nitrification on the inner shelf are esti-
mated from integrated ammonium con-
centrations on the inner shelf each
season, and the specific nitrification rate,
knitrif (the ammonium oxidation rate
divided by the corresponding ammoni-
um concentration) provided by Deal et al.
[2008]. Parameters for spring and sum-
mer and the derived nutrient flux and

Table 2. Summarized Values From Supporting Information Table S1 of Integrated Chlorophyll and Assimilation Rates for Different Periods and Regions as Discussed in the Texta

Period Region (N)
Zeu Integrated

Chlorophyll (mg m22)
Carbon Assimilation
(mmol N m22 d21)

Nitrate Assimilation
(mmol N m22 d21)

Ammonium Assimilation
(mmol N m22 d21)

Total Nitrogen
Assimilation (mmol N m22 d21)

Spring 2007 IS (2) and MS (2) 108 6 21 (4) 13 6 2 (4) 6 6 2 (4)
Spring 2008 and 2009 IS (1) and MS (7) 11 6 3 (8) 2 6 1 (8) 0.2 6 0.1 (2)
Spring, all years IS 7 6 4.2 (4) 2.3 6 1.5 (3) 8.7 6 5.3 (2) 8.7 6 3.0 (6)
Summer, all years IS 1.9 6 0.5 (7) 0.5 6 0.2 (4) 4.5 6 2.5 (3) 2.9 6 0.9 (10)
Spring and summer,

all years
IS 5.8 6 5.5

aNot all measurements were made at each station. Carbon assimilation was converted into nitrogen using the C:N Redfield ratio of 106:16. Total nitrogen assimilation was determined by
averaging together carbon assimilation (converted to nitrogen) with nitrate+ammonium assimilation (only when these parameters were measured simultaneously, therefore N values do
not sum). Total nitrogen assimilation in spring and summer was determined by assigning an equal weight (60 d) to the mean in each season. Mean values are given as the mean 6 SE (N).

Figure 7. The relationship of the ƒ-ratio with mean water column salinity. Stations
were inshore of the 70 m isobath, and south of 608N. The two stations on the mid-
dle shelf were in spring with S> 31.6, all other stations were on the inner shelf. In
summer, values were low (high) in the absence (presence) of nutrient diffusion.
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ammonification rates are shown in Table 4. Ammonification is specific to water column processes rather
than sedimentary efflux. The results from this model suggest that nutrients are advected off the inner shelf
in spring, but the reverse occurs in summer; and that ammonification is the greatest source of DIN on the
inner shelf, especially in spring concomitant with ice-algal production and the spring phytoplankton bloom.

4. Discussion

During the earliest expedition (early April 2008), nitrate and ammonium concentrations in Region 7 were low,
but not depleted, and similar to each other in magnitude (�3 lM, Figures 6a and 6b). These relatively high
ammonium concentrations were consistent with remineralization of ice-algal production prior to our spring
expedition. However, concurrent chlorophyll concentrations were extremely low (<1 lg L21, Figure 6c), sug-
gesting that under-ice production was low, and measurements in 2008 might represent early-bloom condi-
tions. In 2007, data were collected later in spring during ice retreat in that year (late April and early May), and
concentrations more closely resemble spring bloom conditions with low nitrate and ammonium concentra-
tions (<1 lM), and elevated chlorophyll concentrations (100–350 mg m22). While the interannual patterns in
Figures 6a and 6b are consistent with the seasonal drawdown of nutrients, this pattern could be the result of
other processes (e.g., interannual variability in prebloom nutrient content, secondary production, or remineral-

ization). Nevertheless, rates of inte-
grated nitrate and ammonium
drawdown determined in section 3.2
were not significantly different from
mean spring assimilation rates for
each of these nutrients (Table 2,
spring all years, p 5 0.7 for nitrate
p 5 0.06 for ammonium), although
other processes contribute to the
nutrient mass balance (see equations
(1) and (2)), and these are discussed
below.

The timing and magnitude of chloro-
phyll accumulation in ice-covered
waters in Region 7 (Figure 6c) were
similar to the temporal variability
observed in ice-free conditions on
the inner shelf off Cape Newenham
in April 1981 [Whitledge et al., 1986,

Table 3. Benthic Oxygen Demand (BOD) and N2 Production Via Denitrification and/or Anammox at Stations on the Inner Shelf South of
608N, and Summarized for All Shelf Data Collected During the Bering Sea Project

Cruise Station Date
Longitude

(8W)
Latitude

(8N)
Bottom

Depth (m)

Benthic
Oxygen Demand

(mmol N m22 d21)

Denitrification/
Anammox

(mmol N m22 d21)

Inner Shelf
HLY0902 9 7 Apr 2009 169.99 59.94 55 0.88 6 0.05 (3) 0.86 6 0.15 (2)
TN249 95 31 May 2010 163.28 57.64 46 2.4 (1)
TN249 179 10 Jun 2010 168.16 58.83 46 2.8 6 0.3 (2)
TN250 39 24 Jun 2010 167.60 59.28 39 1.0 6 0.2 (3) 0.8
TN250 83 1 Jul 2010 168.66 59.90 41 1.9 6 0.3 (2) 1.3

Average inner
shelf

1.8 6 0.4 (5) 0.97 6 0.15 (3)

Inner, middle
and outer shelf

0.9 6 0.1 (29)a 0.8 6 0.1 (48)b

BOD was converted to nitrogen using an O2:N ratio of 138:16. Denitrification/anammox was measured via mass balance at Station 9
and was directly measured as N2 flux at Stations 39 and 83. Mean values are given as the mean 6 SE (N). Note that in the Bering Sea
Project, locations of stations and casts differ.

aMean value determined from Table 2 in Esch et al. [2013].
bMean value determined from Table 2 in Horak et al. [2013].

Table 4. Value of Parameters Used in the Mass Balance Model for Nitrate
(Equation (1)) and Ammonium (Equation (2)) in Spring and Summer (6SD) for
Region 7 of the Inner Shelfa

Process Units Spring Summer

Nutrient Drawdown
dNO3/dt mmol m22 d21 22.5 6 0.5 0
dNH4/dt mmol m22 d21 23.4 6 0.7 0

Nitrification
Specific nitrification rate day21 0.015 0.015
Integrated NH4 mmol m22 76 6 58 10 6 9
Nitrification rate mmol m22 d21 1.1 6 0.9 0.2 6 0.1

Assimilation Rates
NO3 mmol m22 d21 2.3 6 2.7 0.5 6 0.5
NH4 mmol m22 d21 8.7 6 7.5 4.5 6 4.4
Efflux (NH4) mmol m22 d21 0.8 6 0.5 0.8 6 0.5

Advection/Diffusion
[NH4]/[NO3] (middle shelf) 0.14 6 0.13 0.45 6 0.23
AdvDiff (NO3) mmol m22 d21 21.3 6 2.8 0.3 6 0.5
AdvDiff (NH4) mmol m22 d21 20.2 6 0.4 0.1 6 0.2

Ammonification mmol m22 d21 5.8 6 7.6 3.7 6 4.4

aThe specific nitrification rate is from Deal et al. [2008]; other values are from
this study. Values in bold are derived from the model.
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Figure 8] where they found that chlorophyll concentrations increased from �50 to 100 mg m22 during
April. However, the nutrient content in Whitledge et al. [1986] was dramatically different than observed in
this study. Along the 45 m isobath off Cape Newenham, April concentrations of nitrate (�8–12 lM) and
ammonium (<1 lM) favored new rather than regenerated production. Current speeds on the southern
inner shelf are estimated at �2 cm s21, and imply that water sampled off Cape Newenham in April entered
the shelf in early winter [Stabeno et al., 2016]. Thus, this water had not been modified from a spring produc-
tion cycle, and nitrate concentrations resembled fall concentrations in Bering Canyon (5–22 lM nitrate
between 30 and 40 m in a box from 548N to 558N, 1658W to 166.48W in August–September, 2003–2014,
n 5 44, data from various NOAA programs). Conversely, during the �1 year transit time to Region 7, these
waters had been stripped of nutrients during the prior year’s production cycle, and the nutrient content in
April remained relatively low due to denitrification [Horak et al., 2013] and weak flushing and nutrient
replenishment in winter [Granger et al., 2013]. Mass balance calculations suggest that in spring, water col-
umn ammonification is the greatest source of inorganic nitrogen on the shelf while the rate of nitrification
is �50% of nitrate assimilation. Hence, in Region 7, nutrients appear to be chronically low, and the system is
largely regenerative even under the ice in spring (Figure 7).

During the Bering Sea Project, DIN concentrations on the middle shelf were significantly higher in spring
2008 compared to spring 2009, both in the north (stations between M5 and M8) and in the south (stations
between M2 and M4) (Table 5) [Mordy et al., 2012]. These data represent prebloom conditions and incorporate
variability from replenishment and remineralization throughout the winter. Between M4 and M5, there was a
consistent intrusion of fresher (<31.6) and nutrient-poor inner shelf water over the 70 m isobath each spring
2007–2009 [Mordy et al., 2012]. Due to this feature, concentrations of DIN over the entire 70 m isobath were
lower than DIN in the north or south (Table 5). This feature also implies concurrent replenishment over the
inner shelf. The intensity of this feature varied among field years, and its signature salinity was preserved along
the 70 m isobath in summer. Freshening was also observed in 2005 but was larger in extent and farther north,
suggesting an ice-melt origin [Stabeno et al., 2010].

Figure 8. Relationships in (left) Region 2 and (right) Region 7 during late summer BASIS surveys of integrated chlorophyll a with (a, b) win-
ter replenishment at M2, and August wind mixing at (c) M2 and (d) M4.
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Early spring freshening over the middle
shelf, and implied replenishment on
the inner shelf, was inconsistent with
results of the mass balance model that
was derived using all available spring
data. The model showed a net loss of
nutrients due to advection/diffusion
(Table 4), although the propagated
error of this result was quite large such
that the net loss was not significantly
different than zero (section 3.5). The

large error was primarily due to the variance between the three measurements of nitrate assimilation on
the inner shelf. The lowest value in 2009 was most likely acquired during prebloom conditions while rates
acquired during the spring bloom in 2007 were considerably higher (3.4 6 2.6 SD mmol m22 d21, N 5 2,
supporting information Table S1). When substituting 2007 nitrate assimilation rates into equation (1), Adv-
Diff (NO3) was approximately zero (20.2 6 2.8 SD mmol m22 d21). Similarly, there was uncertainty in dNO3/
dt in Table 4 due to the assumption that prebloom nutrient content on the inner shelf was similar in 2007,
2008, and 2009 (section 3.2), a faulty assumption if interannual differences observed on the middle shelf
(Table 5) [Mordy et al., 2012] extended to the inner shelf. If prebloom nitrate concentrations were similar in
2009 and 2007, a 30 day bloom results in dNO3/dt of (20.7 6 0.6 SD mmol m22 d21) and a derived AdvDiff
(NO3) from equation (1) of (0.4 6 2.9 SD mmol m22 d21). Hence, a combination of these refinements in the
mass balance model can resolve these discrepancies between the mass balance model and observations of
cross-shelf exchange. Despite these uncertainties, derived estimates of ammonification from equation (2) in
spring were robust , and ranged from 5.4 to 5.8 mmol m22 d21 when applying these refinements. They sup-
port the notion that ammonification is greatest source of DIN on the inner shelf.

In summer, although nitrate was depleted on the inner shelf (<0.1 lM), there was measurable ammonium
(0.33 6 0.02 lM (144), Figure 6b). This implies that the moderate levels of chlorophyll biomass that were
observed on the inner shelf (Figure 6c) were supported by regenerated production. This inference was veri-
fied by the very low ƒ-ratios (0.05) observed at two summer stations on the inner front in 2010 (supporting
information Table S1, Casts 18 and 46; Cast 117 is discussed below), and support other studies that hypoth-
esize the inner shelf to be a net heterotrophic system [Cross et al., 2014].

The sedimentary efflux of remineralized nitrogen appeared minor relative to assimilation rates. Assuming
nearly all organic material reaching the benthos was oxidized [Hartnett et al., 1998], BOD then reflects total
ammonium regeneration. (This assumption is based upon oxygen penetration and bioturbation data on the
Bering Sea shelf that are consistent with a long oxygen exposure time and a low burial efficiency on the
shelf [Esch et al., 2013].) A large fraction (53%) of regenerated ammonium was lost through denitrification/
anammox (Table 3). The remaining fraction of remineralized nitrogen (0.8 6 0.6 mmol N m22 d21) could
efflux, but could only support �15% of total nitrogen assimilation on the inner shelf (5.8 6 5.5 mmol N m22

d21, Table 2).

While the efflux of remineralized nitrogen on the inner shelf was a minor fraction of primary production,
efflux on the inner shelf appeared greater than in other shelf domains. BOD on the inner shelf was approxi-
mately twice as high as that for the entire eastern shelf, and there was no corresponding increase in N2 pro-
duction (Table 3). This implies that the efflux of remineralized organic nitrogen was significantly higher on
the inner shelf compared to other domains. Whitledge et al. [1986] estimated a benthic release rate of 0.26
mmol N m22 d21 over the middle shelf in summer, and Horak et al. [2013] found that efflux of inorganic
nitrogen was highly variable, but the shelf-wide average benthic flux in spring and summer was not signifi-
cantly different from zero. Whereas the inner shelf exports more organic matter to the benthos [Cross et al.,
2014], the N2 flux changes little, indicating that the rate of denitrification/anammox is not limited by the
rate of sedimentary organic matter mineralization.

Other processes that may supply DIN to support summer production include the advective flux from Bristol
Bay, riverine input, local ammonification/nitrification within the water column, and the advective/diffusive
flux from the deep nutrient pool on the middle shelf. In summer, the alongshore advective DIN flux on the
inner shelf was presumed to be small as the nutrient gradients from Bristol Bay to Nunivak were weak

Table 5. Comparison of Dissolved Inorganic Nitrogen (DIN) Concentrations in
Early Spring 2008 and 2009 Along the 70 m Isobatha

Region
DIN in 2008

(mmol N m22)
DIN in 2009

(mmol N m22) p Value

North (M5–M8) 1079 6 15 (20) 887 6 18 (20) <0.001
South (M2–M4) 1099 6 21 (21) 1013 6 33 (20) 0.033
All Stations (M2–M8) 975 6 27 (58) 894 6 22 (57) 0.023

aRegions refer to portions of the 70 m isobath survey line between the des-
ignated moorings. Water column data were integrated to 70 m. Portions of this
table were presented in Mordy et al. [2012].
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[Kachel et al., 2002; Whitledge et al., 1986] and current speeds inshore of the inner front were low [Danielson
et al., 2011; Stabeno et al., 2016]. Nor does there appear to be substantial input of nitrogen from the Kusko-
kwim River, the second largest river in Alaska. Sixty-three years of streamflow data are available from the
USGS Crooked Creek monitoring station, which is located �270 km upstream from the mouth of the river
(National Water Information System, http://waterdata.usgs.gov/ak/nwis/inventory/?site_n o515304000).
The mean discharge at Crooked Creek in summer (May–August) is 1.86 3 108 m3 d21. When scaled to the
size of the Kuskokwim watershed (1.54), the estimated discharge is 2.86 3 108 m3 d21. Total nitrogen
(DIN 1 organic nitrogen) was measured at five different sites along the river between 1975 and 1997 with a
mean concentration of 39 6 2 (90) lM (Water Quality Portal, http://www.waterqualitydata.us/). This equates
to a discharge rate of �0.45 mmol N m22 d21 into Kuskokwim Bay (area of bay �25,000 km2), which repre-
sents only a small fraction (�16%) of total nitrogen assimilation measured in Region 7 over the inner shelf
in summer (Table 2). Danielson et al. [2011] found that, due to weak winds and frontal structures, most of
this freshwater was retained inshore of the 30 m isobath during summer. However, Aguilar-Islas et al. [2007]
observed significant concentrations of a terrestrial tracer (dissolved Mn) spreading out over the middle
shelf. Thus, although riverine input may sporadically spread beyond the 30 m isobath and over the inner
and middle shelves, it does not appear to contribute significantly to production on the inner shelf.

Within the water column, nitrification may serve as a significant source of DIN. For example, in 2005, there
was evidence of nitrification within the water column as nitrite appeared to accumulate at the expense of
ammonium [Mordy et al., 2010], and Tanaka et al. [2004] found that nitrate in bottom waters of the middle
shelf have a lighter isotopic signature that is consistent with nitrification. While specific rates of marine nitri-
fication vary by several orders of magnitude [Yool et al., 2007], results from a 1-D model in the Bering Sea
suggest that knitrif 5 0.015 day21 best replicates the seasonal dynamics observed for nitrate and ammonium
[Deal et al., 2008]. During the Bering Sea Project (2007–2010), integrated ammonium concentrations in
Region 7 on the inner shelf (�50 m water depth) were 76 6 12 (24) mmol m22 in spring, and 10 6 2 (25)
mmol m22 in summer. From these concentrations and the specific rate provided by Deal et al. [2008], nitrifi-
cation rates are estimated at 1.1 6 0.2 and 0.3 6 0.1 mmol m22 d21 in spring and summer, respectively.
These rates are about half of nitrate assimilation rates observed on the inner shelf (Tables 2 and 4), and sup-
port the conclusion of Granger et al. [2013] that much of the nitrate on the inner shelf is locally regenerated.

Diffusion at the inner front appears to sporadically inject nutrients onto the inner shelf. The location of the
inner front undulates between shallower and deeper water depending upon winds and tides [Kachel et al.,
2002]. Hence, there are periods when the inner front abuts, diffuses, and erodes into the cooler nutrient-
rich bottom layer of the middle shelf, and other periods when mixing is weaker and the inner front is shore-
ward of the deep nutrient pool. Along the MN Line in 2009, surface waters at the inner front were cooler
with enhanced concentrations of silicic acid and a large accumulation of chlorophyll a (Figure 3). These fea-
tures most likely originated from diffusion of the deep nutrient reservoir on the middle shelf, thereby
enhancing primary production and resulting in the accumulation of chlorophyll a. While any diffusive flux
of nitrate and ammonium appears to have been rapidly assimilated, enhanced concentrations of silicic acid
likely reflect the absence of diatoms from the dominant phytoplankton species in summer [Moran et al.,
2012; Stoecker et al., 2014]. In 2009, Cast 117 was centered in this cold band within the inner front (Figure
3). An ƒ-ratio of 0.5 at this station was consistent with enhanced new production relative to other summer
measurements (supporting information Table S1), and consistent with spring measurements at that salinity
(Figure 7). Hence, residual silicic acid concentrations in summer may be used to identify potential regions
and periods of new production despite the absence of nitrate. Correlation between weights of age-0 pol-
lock (Gadus chalcogrammus) and summer silicic acid concentrations suggest that nondiatom productivity is
a significant factor in the nourishment of pollock [Gann et al., 2016]. An exception to this concept was
observed north of the MN Line where silicic acid in surface waters were enhanced (Figure 5, section 3.1)
despite stratification and a presumed reduction in vertical diffusion.

In 2009, the distinctive cold band associated with the inner front extended south to 578N (Figure 5a). Yet
there was little evidence of a diffusive nutrient flux south of the MN Line, as there was no surface expression
of silicic acid (Figure 5c), nor shoaling of nutrient isolines or an accumulation of chlorophyll a on the NP
Line (Figure 4). The location of the inner front (bar atop Figure 4) was determined using the definition in
Kachel et al. [2002], and according to this definition, the front extended into the deep nutrient pool on the
middle shelf. While coupled production of diatoms and grazers could have masked the diffusive flux
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(drawdown of silicic acid and cropping of phytoplankton abundance), a more probable explanation is that
the derivation of Kachel et al. [2002] exaggerated the seaward extent of the front into stratified waters
where vertical mixing and the diffusive nutrient flux were greatly reduced. In their derivation, the offshore
location of the front is relative to the intensity of the thermocline on the middle shelf (50% |dT/dz|max, see
section 2.4). Along the NP Line in 2009, this placed the offshore location of the inner front at Cast 50; where
the water depth was 56 m, the water column was stratified, and the temperature difference between sur-
face and bottom waters was 4.68C. A more plausible location for the seaward location of the inner front
would be Cast 49, where the water depth was 46 m, the |dT/dz|max was only 0.38C, and the temperature dif-
ference between surface and deep water was only 0.58C. This would place the inner front shoreward of the
deep nutrient pool and account for the lack of chlorophyll and silicic acid in surface waters.

In other years, the diffusive flux was weak, but variable. In 2008, the deep pool of nitrate and silicic acid
along the MN Line was farther offshore (�60 m isobath), temperatures at the inner front were warmer, and
the concentration of chlorophyll a inshore of the 70 m isobath was <2 lg L21 (supporting information Fig-
ure S1). As the inner front was inshore of the 50 m isobath, the deep pool was too far offshore to be a
source of nitrate and silicic acid at the front. However, the ammonium pool extended farther inshore and
may have been available to support regenerated production. Along the NP Line, the inner front abutted the
deep nutrient pool, resulting in a slight increase in silicic acid at the surface, and a small increase in chloro-
phyll a at the front (supporting information Figure S2). In 2010, due to late ice retreat and insufficient wind
and tidal energy, there was a prominent low-salinity surface layer offshore of Nunivak Island that stratified
the inner shelf and promoted warming of the upper water column. Hence, inner front had yet to develop
along the MN Line (supporting information Figure S3). Although nitrate on the inner shelf was depleted,
ammonium concentrations in the bottom layer were �2 lM, and a subpycnocline chlorophyll a maximum
extended inshore of the 50 m isobath (supporting information Figure S3).

Thus, the diffusive nutrient flux of DIN onto the inner shelf is an episodic event related to tidal and wind
mixing but may be confounded by stratification over the inner shelf. This flux also depends on concentra-
tion in the deep nutrient pool of the middle shelf, which has significant seasonal and interannual variability
(Table 5) [Mordy et al., 2012]. Variability in the deep nutrient pool may be ascribed to a variety of factors
including winter replenishment [Stabeno et al., 2016], rates of primary production and remineralization
[Lomas et al., 2012; Mordy et al., 2008, 2012], strength of stratification [Ladd and Stabeno, 2012], mixed layer
depth [Stockwell et al., 2001], and erosion due to mixing and diffusion [Kachel et al., 2002].

Stabeno et al. [2016] estimated the fraction of water at the M2 mooring that was replenished by slope water
each winter between 1995 and 2013. These estimates were based upon salinity changes at the mooring from
the time the water column was well mixed (typically October) until February or the arrival of ice. While on
average �50% of water on the middle shelf is replenished each winter, there was extreme interannual vari-
ability with nearly complete (60–100%) replenishment in early 2000–2003, moderate replenishment in early
2008 (�40%), very little replenishment in early 2009 (�20%), and no detectable replenishment in spring 1997.
These findings were consistent with higher DIN concentrations on the middle shelf in spring 2008 compared
to 2009 (Table 2). Conditions in 1997 were exacerbated due to a strong May storm that mixed the water col-
umn at the M2 mooring to >50 m [Stockwell et al., 2001]. Calm conditions followed, resulting in a relatively
shallow (10–15 m) mixed layer and a subpycnocline euphotic zone. By June, subpycnocline production had
consumed all but 4 lM nitrate in the bottom 20 m of the water column on the middle shelf [Stockwell et al.,
2001]. Hence, the diffusive nutrient flux and postbloom production at the inner front are presumed to have
been anomalously low in 1997.

Interannual variability in the late-summer time series of integrated chlorophyll in Regions 2 and 7 might be
attributed in part to the diffusive flux of DIN along the inner front. In August, integrated chlorophyll a concentra-
tions in Region 2, the region adjacent to the M2 mooring, were not significantly correlated with winter replen-
ishment (Figure 8a). This result was not too surprising as waters at M2 would have advected�28 north in the six
months between estimates of winter replenishment at M2 (February) and BASIS measurements of chlorophyll a
(August) [Stabeno et al., 2016]. Farther north, in Region 7, there was a significant relationship between winter
replenishment estimates made at M2 and integrated chlorophyll a on the inner shelf (Figure 8b, excluding
2007, which is discussed below). This finding supports the hypothesis that interannual variability in the nutrient
pool at the onset of spring modifies the nutrient flux across the inner front farther north in summer.
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In Region 2, integrated chlorophyll a during BASIS was significantly related to wind mixing (Figure 8c). Simi-
lar relationships were observed on the middle shelf between wind mixing and net community production
[Mordy et al., 2012], and between wind mixing and integrated chlorophyll a [Eisner et al., 2016]; and these
relationships were attributed to vertical mixing of the deep nutrient pool. On the inner shelf, stratification
was generally weak and DIN concentrations in the water column during BASIS were low (average DIN 5 0.7
lM, except for 2007 when DIN averaged 2.1 lM). Increased winds likely expanded the inner front seaward
and enhanced erosion of the nutrient pool on the middle shelf. However, this relationship did not hold for
Region 7 (Figure 8d), demonstrating that factors other than winds and undulation of the inner front (e.g.,
grazing) were controlling chlorophyll a concentrations.

Chlorophyll a was anomalously low in 2007, both on the middle and inner shelves (Figures 8b and 8d)
[Eisner et al., 2016]. In most years, waters over the inner shelf were well mixed in summer. In 2010, ice retreat
was late and forestalled mixing on parts of the inner shelf (supporting information Figure S3), but by late
August 2010, the water column in Region 7 was well mixed with a mean dT/dz max of 0.28C. In 2007, the tim-
ing of ice retreat was not unusual; however, there were very few storms [Eisner et al., 2016], and moderate
winds in August were insufficient to mix the water column. As a result, the water column just south of Nuni-
vak Island remained stratified in late August with an intense thermocline (mean dT/dzmax 5 9.08C). This
band of stratified water disrupted the inner front in Region 7 and likely reduced the flux of nutrients that
are normally supplied through wind and tidal mixing.

5. Summary

In the vicinity of Nunivak Island, waters over the inner shelf are modified during the �1 year transit from
Bering Canyon, including the drawdown of nitrate from the previous year’s production cycle. In spring, due
to limited flushing in fall/winter and additional nitrogen loss through denitrification/anammox, initial nitrate
concentrations on the inner shelf near Nunivak Island remain relatively low and comparable to ammonium.
As a result, production over the inner shelf is regenerative, even in spring. As the system progresses from a
diatom system in spring to a microflagellate system in summer, there remains little inorganic nitrogen on
this portion of the inner shelf. Relative to rates of primary production, sedimentary regeneration and efflux
of DIN are low, as is the supply of dissolved and organic N supply from the Kuskokwim River, and the advec-
tive nutrient flux from Bristol Bay. Therefore, most of the inorganic nitrogen supply on the inner shelf is pro-
vided through resuspended sediments, water column remineralization, and the diffusive flux at the inner
front. The episodic diffusive flux of nutrients at the inner front promotes new production and may be identi-
fied from residual silicic acid at the surface. Gann et al. [2016] identified a relationship between residual silic-
ic acid and age-0 pollock (length and weight), suggesting a link between nutrient supply, phytoplankton
growth, and energy transfer to higher trophic levels.

Hence, the inner shelf in Region 7 appears to be regenerative in all seasons, except where diffusion injects
new nitrogen at the inner front (or stratification extends over the inner shelf as in 2010). The diffusive flux is
dependent in part on stratification, wind mixing, and winter replenishment of bottom waters on the middle
shelf. Correlations between winter replenishment and summertime concentrations of phytoplankton bio-
mass (i.e., chlorophyll a) over portions of the inner shelf indicate that the influence of winter replenishment
on the ecosystem is prolonged, and partly governs energy flow through the ecosystem. The new findings in
this study include the availability and drawdown of spring nutrients in ice-covered waters of the inner shelf,
direct measurements on the regenerative nature of the inner shelf, especially in spring, and the spatiotem-
poral variability of the diffusive nutrient flux, and its connectivity to winter replenishment. Additional sam-
pling and time series measurements on the inner shelf will help to refine our understanding of the nitrogen
cycle, and reduce uncertainties in the advective-diffusive flux of nitrate and ammonium, and rates of ammo-
nification on the inner shelf.
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