
159 BIOSTRATIGRAPHIC ZONATION OF LATE PALEOZOIC DEPOSITIONAL SEQUENCES 

ORDER CYSTOPORATA ORDER TREPOSTOMATA SCALETRIASSIC 

! ! 

UJ I 
<t 

00 

�~� 
0.. 
>­
a: 
I- w 
0 <t 
I 
<,! 

e 
a: 
�~� 

:J 

--I 

FIGURE 6B. Stratigraphic ranges of Paleozoic 
and Trepostomata (after Ross, 1981). 

increase in diversity and near the end of that 
stage shows another decline in several families. 
The Uppe r Carboniferous had a fairly stable, if 
somewhat low, diversity. 

Beginning in the Asselian, new genera were 
gradually added to a number of families, particu­
lar to the Hexagonellidae, Goniocladiiae, 
Rhabdomesidae, Hyphasmoporidae, �a�~�d� Fenestellidae 
(Ross, 1978, 1979). A few families having only 
one or two genera in the Lower Carboniferous, 
such as the Actinotrypidae, Anisotrypidae, 
Eridotrypellidae, Fenestraliidae, Girtyoporidae, 
and others, are not known from strata of t1iddle 
or Upper Carboniferous ages and presumably 
survived in paleogeographic refuges that are not 
known at present. Genera of these families start 
to reappear in the Asselian and this repopulation 
is completed by the beginning of the Guadalupian 
(= Kazanian). Accompanying these Early Permian 
reoccurrences are a few new and distinctive 
families, the Timanodictyidae, Etherellidae, and 
Araxoporidae . 

The Guadalupian (Kazanian) bryozoans show a 
change in faunal dominance as more and more 
genera of Rhabdomesidae and Fenestellidae became 
extinct. All the other bryozoan families de­
clined in diversity and abundance during the 
Guadalupian and only nine families survived into 
the lower part of the latest Permian (Djulfian) 
and of those only four into the upper part. Only 
a few Djulfian genera s urvived into the early 
Triassic before becoming extinct . 

These patterns of family level diversity are 
of interest because they reflect change that 
occurred at the same times as those seen in the 
second-order cycle sea-level curve and also many 
of the changes in diversity seen in other groups 
of marine organisms. 

Studies of the stratigraphic ranges and �
paleogeographic distribution of individual genera �

I 
families of bryozoans in the orders Cystoporata 

(Ross, 1978, 1<)7<), 1981, 1984 and Ross and Ross, 
1981) illustrate that genera commonly have 
significantly different stratigraphic ranges in 
different faunal provinces and that the times of 
dispersals from one area to another are more 
frequent than just at the beginning or end of a 
particular stage . For example, there were three 
or four times of dispersal during the Visean and 
these may relate to four sea-level highstands 
(see Lower Carboniferous Cycle Chart, this 
volume). The t1iddle and Late Carboniferous data 
show similar frequent dispersal patterns. In the 
Permian, there are three obvious times of changes 
in paleogeographic dispersals, one within the 
lower part of the Artinskian, another at the end 
of the Artinskian (or perhaps the Ufimian) and 
the thi rd a t the end of the Guada lupian. These 
few episodes of dispersals suggest that Permian 
bryozoan were less influenced by third-order 
sea-level changes in their dispersals than their 
Carboniferous ancestors. 

Detailed studies of bryozoan species distri­
butions in closely controlled stratigraphic 
successions aid in identifying different 
depositional sequences . Trizna (1958) in her 
study of Lower Carboniferous bryozoans of the 
Kuznets Basin (Fig. 7) found six assemblages 
which differed in species associations and in 
species abundances . Although Trizna' s data does 
not have detailed bed by bed distributions, we 
have reconstructed such a distribution using 
stratigraphic and faunal data from Selyatitsky 
and others (1975). The Lower Carboniferous of 
the Kuznets Basin includes many sandstones, 
evaporites, tuffs, and dolostones. There also 
are widespread fossiliferous Tournaisian lime­
s tones and, in the northwes te rn pa rt of the 
basin, some fossiliferous Visean limestones. As 
with the Moscow basin, the succession has numer­
ous unconformities that separate non­
fossiliferous and some fossiliferous sequences. 
Using reported foraminiferal data, we have 
assigned the bryozoan assemblages to the Russian 
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Platform and northwest Europe depositional 
sequences. 

CONODONTS 

Conodonts occur in a great variety of 
lithologies that represent many contrasting 
depositional environments and indicate that they 
were nektonic (Seddon and Sweet, 1971). Shallow 
water deposits typically have less diversity of 
conodont elements than deeper water deposits, and 
in some parts of the Paleozoic success ion, an 
approximate depth zonation of conodont-bearing 
organisms is possible (Merrill, 1972, 1975). 

Conodont zonations for the late Paleozoic, 
as with most other biostratigraphic zonations, 
have regional differences which probably relate 
to environmental and geographical separation. 
Conodonts show these regional differences less 
distinctly than some other faunal groups. They 
are widely used for correlating parts of the 
Carboniferous and Permian where they are extreme­
ly valuable. 

The conodont zones of the latest Devonian 
and earliest Mississippian (Kinderhookian) are 
known in remarkable detail. In western North 
America, Sandberg (in Sando, 1985a) has worked out 
a scheme based on the first occurrences of 
species of Siphonodella, Gnathodus, 
Scaliognathodus and ~olignathodus from the later 
part of the Devonian to about the middle of the 
Visean. The remainder of the Lower Carboniferous 
is based on assemblage zones utilizing a number 
species of Cavusgnathus and ~indeodus, 

Taphrognathus varians, Gnathodus girtyi, 
Adetognathus unicornis and Rachistognathus 
catus. Al though many of these assemblages are 
known from Europe, they are not represented well 
in the Mississippian type area where a generally 
similar set of assemblage zones using different 
species and some different genera is used 
(Collinson and others, 1971). 

The Kinderhookian part of the conodont 
zonation is particularly detailed in that it adds 
three zones below the first widely traceable 
foraminiferal zone. The middle Visean through 
lower Namurian part of the conodont zonation 
becomes less detailed and the Mississippi Valley 
and Arkansas sections have more provincial faunas 
than earlier ones. 

Early Pennsylvanian Morrowan zones again 
show a pattern of assemblage zones of short 
duration. Lane and others (1971) and Dunn (1974) 
and Lane and Straka (1974) generally agree on the 
ranges of most genera and species, however, they 
use quite different zonal units for the upper 
part of the Morrowan. As with the detailed zones 
near the base of the Tournaisian, these conodont 
zones are considerably more detailed for the 
Morrowan than are foraminiferal zones. 

Atokan, Desmoinesian, and Upper 
Carboniferous conodont zones have been reviewed 
by Merrill (1972, 1975). These assemblage zones 
have species with considerable overlap in species 

morphologies and require large numbers of speci­
mens to be usable. Permian conodonts are more 
diverse. Clark and Behnken (1971, 1979) and 
Behnken (1975) studied their ranges in some 
detail from both the Great Basin area of the 
western United States and from west Texas. Kozur 
(1978) examined conodont zones in the Permian of 
Europe. Sweet (1970) determined a number of 
upper Permian zones below the base of the 
Triassic in the PaleoTethys area. Wang and Wang 
(1981) were able to apply part of these two sets 
of ranges to a study of Chinese Permian conodonts 
and established preliminary zones. The Permian 
conodont zonation shown on the cycle chart is a 
compilation of this data. It is not complete and 
many zonal boundaries are likely to be moved as 
additional occurrences fill in the ranges. 

The Nealian (= Neal Ranch age beds) at the 
base of the Lower Permian has a conodont assem­
blage that contains many Late Carboniferous 
holdovers. The Lenox Hills age beds (Lenoxian) 
has the additional species Sweetognathus 
merrilli. In the Leonardian, a number of new 
species appear in fairly rapid succession to form 
the basis for a preliminary zonation. 
Neostreptognathus, Gnathodus, and Merrillina 
contribute most of the guide species to those 
zones that are younger than Leonardian. 

CEPHALOPODS 

Ammonoid cephalopods were one of the first 
groups to be used for a detailed subdivision of 
the Carboniferous (see sUlJllllaries by Paproth and 
others, 1983; Ramsbottom and Saunders, 1984; 
Miller and Furnish, 1958; Ruzhentsev, 1960, 
1962; Saunders and others, 1979) and Permian (see 
sUlJllllaries by Chao, 1965; Furnish, 1973; Miller 
and Furnish, 1940; Smith, 1929). They show very 
rapid evolutionary changes that are placed in 
well defined lineages. Their nektonic habitats 
were apparently depth partitioned because deeper 
water lithofacies tend to have increasingly 
diverse faunas. In contrast to the conodonts, 
which also show evidence of depth stratification, 
empty shells of ammonoids floated well and were 
commonly distributed great distances from their 
actual habitat range. Because of the shell's 
propensity to float after the death of the 
animal, many empty shells were deposited as wind 
and current flotsam on beaches in death assem­
blages representing mixed communities (or depth) 
faunas. In addition, ammonoids are a relatively 
common fossil (usually compressed) in black 
shales in environments of slow deposition. They 
are also known in some "deeper" water carbonate 
debris and turbidite beds, but as scattered 
individuals. 

Ammonoids show less provincialism than some 
of the benthic carbonate shelf faunas, probably 
as a result of their nektonic habitats by which 
some genera occupied deeper, more widely distrib­
uted cooler temperature water masses. Those 
ammonoids that display the greatest provinciali­
ty, such as the Perrinidea, likely were adapted 
to warm surface waters and had temperature 
restrictions on their dispersals. Distribution 
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FI,GURE 7. Distribution of some bryozoan species 
Kuznets Basin, U.S.S.R., (data from Trizna, 1958, 

of genera in other families, such as 
Rectuloceras, suggest random or fortuitous 
dispersals were common at certain times in the 
Carboniferous and Permian. 

As in most other faunal groups, ammonoids 
show expansions and reductions in their diversi­
ties and geographical ranges. The most obvious 
is the one at the base of the mid-Carboniferous 
boundary (Saunders and Ramsbottom, 1986) which 
may be the result of the effects of greatly 
lowered ocean temperatures or the result of 
diminished food supply because ammonoids were 
predators relatively high in the ecosystem food 
pyramid. 

Ammonoid zonations were the basis for 
subdividing the Belgium Tournaisian, Visean, and 
Silesian (Namurian and Westphalian) strata into 
zones (Paproth and others, 1983), based on 
species of Muensteroceras, Beyrichoceratoides, 
Goniatites and related genera. In the lower 
Namurian, species of Eumorphoceras, Cravenoceras, 
Cravenocertoides, and Nuculoceras form the 
typical zonal scheme. The species zones of 
Homoceras in the Chokierian and Alportian form 
the basal Middle Carboniferous zones and are not 
widely distributed outside of northwestern 
Europe. These zones are equivalent to the lower 
part of the Morrowan. Upper Morrowan zones 
include species assemb lages of Retites, 
Recticuloceras, Hudsonoceras, Verneultites, 
Baschkirites, Banneroceras, Gastrioceras, and 

and genera in the Lower Carboniferous of the 
and Selyatitsky and others, 1975). 

others. 

In North America, Atokan, Desmoinesian, and 
late Carboniferous cephalopods (Bose, 1919; 
Unklesbay, 1954; Miller and Furnish, 1958) are 
more common than in northwestern Europe where a 
generally impoverished fauna is associated with a 
few thin marine bands. The Midcontinent 
cephalopods are common in Missourian strata and 
occur as high as the lower part of the Wabaunsee 
of the Virgilian. They are not known in younger 
strata in that area because of unfavorable 
facies. Strata of Middle and Upper Carboniferous 
ages on the Russian Platform contain some genera, 
but few species, in common with those of the 
Midcontinent and southwestern North America 
(Ruzhentsev, 1960, 1965). 

Permian cephalopod zones were summarized by 
Furnish (1973). Although Furnish attempted to 
define or redefine time-stratigraphic stages to 
be the direct equivalent of cephalopod zones in 
that article, his discussion of the actual 
cephalopod zones showed that twelve well-defined 
assemblage zones can be recognized based on the 
distribution and stratigraphic ranges of genera 
in thirty-one families_ Furnish (1973) also 
showed that these families are not evenly dis­
tributed geographically. Asselian, Tastubian, 
Sterlitamakian, and Aktastinian (Wolfcampian to 
middle Leonardian on the cycle charts used here) 
have more widely distributed assemblages than do 
higher Leonardian and Upper Permian cephalopod 
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assemblages. Only in the middle part of the 
Leonardian and again in the lower part of the 
Guadalupian were Paleo-Tethyan and southwestern 
North America cephalopod families closely associ­
ated into biogeographical units. 

The Asselian saw the introduction of new 
genera and families, such as the 
Metalegoceratidae, Paragastriceratidae, and 
Popanoceratidae. In southwestern North America 
the provincial Perrinitidae first appear either 
just below or in lower Wolfcampian strata (Fur­
nish, 1973). Properrinites and Akmilleri appear 
in the Upper Wolfcampian Lenox Hills Formation. 

Lower Leonardian (Tazlarovian) cephalopods 
include Metalegoceras, Eothini tes, and lower 
Baigendzhinian cephalopods have Paragastrioceras 
and Uraloceras in eastern Europe. In southwest­
ern Nort~America species of Medlicottia, 
Metalegoceras, Popanoceras, and Metaperrinites 
are widespread in lower Leonardian beds. 

The Cathedralian (upper Leonardian) (Ross, 
1986) contains distinctive species of 
Medlicottia, Eumedlicottia, Pseudohalorites, 
Neocrimites, Almites, and Perrinites, many of 
which also appear in Coahuila (Mexico), western 
Guatemala, Timor, arctic Canada, South China, 
Pamir, and Darvas. 

The Roadian contains species of 
Eumedlicottia, Perrinites, Glassoceras, and 
others. One locality also contains Texoceras, 
Peritrochia, and Paraceltites. These assemblages 
are known mainly in western and northern North 
America. 

The Wordian has a large number of species 
and genera of cephalopods, particularly common 
are species of ~thiceJ:"as, Popanoceras, 
Stacheoceras, !laagenoceras, !'seudogastrioceras, 
and others. Similar species are known from 
Sicily and Timor. 

The upper Guadalupian (Capitanian) is 
characterized by several species of Timorites. 
The highest of these assemblages is known only in 
abundance from Timor (Furnish's, 1973, 
'Amarassian Stage') where species of 
§!rigogoniatites, Epadrianites, Stacheoceras, 
Timor~~es, primitive Cyclolobus, ~attoceras, 
Sundaites, ~denites, Episageceras, and 
Xenodiscus are reported. 

The highest Permian Series, the Djulfian 
includes three cephalopod zones (Furnish, 1973). 
The lower one has Araxoceras, Vescotoceras, 
Prototoceras, Pseudogastrioceras and Cyclolobus. 
The succeeding zone has Vedioceras and species of 
~lolobus, Dzhulfoceras, and longer ranging 
genera. The youngest assemblage has a diversity 
of heavily ribbed xenodiscids (Chao, 1965) as 
well as longer ranging forms. Phisonites 
triangulus is present in the lower part of this 
zone and Paratirolites kitti in the upper part 
and separate the zone into two subzones. 

BRACHIOPODS, BLASTOIDS, AND CORALS 

Three groups, the brachiopods, blastoids, 
and corals, have been used for many provincial 
correlations and, to a lesser extent, for 
interprovincial correlations. Of these, the 
brachiopods have abundant provincial faunas which 
show some dispersals between provinces during the 
Carboniferous. As with most benthic groups, 
brachiopods show tropical cosmopolitan distribu­
tions during the Tournaisian and early and middle 
Visean. By the late Visean and early Namurian, 
decreases in diversities and geographical re­
strictions becomes apparent. Middle and Upper 
Carboniferous and Early Permian distributions are 
very provincial with only a few common genera 
between even tropical provinces. The 
Ural-Franklin province is united by having a 
common brachiopod fauna at this time. During the 
Guadalupian, southwestern North America and the 
PaleoTethys had quite different brachiopod 
faunas. Relatively little consideration has been 
given to the dispersal history of brachiopod 
genera or the timing of dispersals. Grunt and 
Dmitriev (1973) examined some aspects of Permian 
dispersals in the Soviet Union, however, the 
overall subject remains not well studied or 
understood. 

Corals also are a group that have good 
provincial zonation (Federowski, 1981). In the 
Lower Carboniferous Vaughan (1915) and Hill 
(1948; 1957) described a good coral zonation for 
the Tournaisian and Visean (Dinatian) of north­
western Europe. Sando (1985a) and Sando and 
Bamber (1984) have detailed coral zonation for 
rocks of similar age in the western margin of the 
North American craton during the Mississippian. 
The Middle and Upper Pennsylvanian coral zonation 
in North America has been summarized by Sando 
(1985b) . 

The Lower Permian corals were divided by 
Minato and Kato (1965a, b; 1971) into two coral 
provinces, one dominated by waagenophyllid 
corals, the other by durhaminid corals. Stevens 
(1982, 1983) and Wilson (1982) have extended 
studies of colonial Early Permian corals to 
various parts of western North America. Hill 
(1958) used coral distributions to help examine 
Sakmarian geography. 

Blastoids in the Chesterian of the type 
region of the Mississippian show a remarkable 
species succession (Waters and others, 1985) 
which seems to be a useful provincial zonation. 
This group was not widely distributed outside of 
that province during the Mississippian and was 
not again abundant until the Permian, and then 
only in Timor. 

DISCUSSION 

From the preceding discussions of different 
fossil groups, it is possible to generalize many 
of the ecological and environmental conditions at 
different times during the late Paleozoic. 
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Changes in the geographic configuration of 
cratons during the late Paleozoic were sequen­
tial. Each major step in this sequence resulted 
in changes in ocean surface currents, in their 
temperatures, and in their directions. These, in 
turn, resulted in changes in world climates as 
shown by expansion and reduction in glaciation, 
particularly in Gondwana, in reduction and 
expansion of carbonate production, fluctuations 
in sea level, and in the dispersal, extinction, 
and evolutionary patters of warm water shelf 
faunas. 

The rapid evolution (and subsequent zona­
tion) of the shelf faunas is associated with 
depositional sequences and may be related to 
physical changes in the environment, such as 
temperature, and to the repeated flooding of 
shallow shelves which encouraged community 
diversification and specialization. Certainly 
the adaptive opportunities were greatly increased 
at these times of sea-level highstands. The 
subsequent lowering of sea level and restriction 
of shelf areas may have caused ecosystem disorder 
and the extinction of some species. 

The Tournaisian and most of the Visean were 
relatively warm and during sea-level highstands 
had many diverse carbonate-producing communities. 
Sea level fluctuations were of low magnitude with 
relatively long frequences. In most of the 
Tournaisian and Visean, general sea levels were 
high and the shift of shorelines remained on the 
shelves. Dispersals were very common with nearly 
cosmopolitan faunas having latitudinal gradients. 

Late in the Visean and in the Serpukhovian 
(Chesterian), world temperatures cooled rapidly 
and remained cool during the Bashkirian. Shelf 
faunal diversity became very low as a result of 
many extinctions. Surviving genera and families 
commonly contained only a few species. Carbonate 
production was generally minor except for a 
relative narrow equatorial belt. Sea level was 
generally low. Sea-level fluctuations, however, 
were of considerable magnitude and of relatively 
short frequency. Dispersal of benthic shelf 
faunas was poor. Yasamanov's (1981) studies of 
CalMg (Fig. 8) suggested the decline in diversity 
in the later part of the Lower Carboniferous was 
related to a lowering of surface water tempera­
tures and the gradual increase in diversity 
during the Early Permian was related to a gradual 
warming trend. 

The Moscovian was slightly warmer than the 
Bashkirian and, although there was minor faunal 
diversification, many of the surv1v1ng Lower 
Carboniferous genera became extinct by the end of 
this stage. Conservative, low diversity shelf 
communities were the rule, faunal dispersals were 
irregular and probably fortuitous. Although 
general sea level rose, sea-level fluctuations 
continued to be of large magnitudes and of short 
frequencies. 

Late Carboniferous and earliest Permian were 
times of gradual warming, few extinctions and 
modest diversification. Dispersals were only 
slightly more common than during the Moscovian. 
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FIGURE 8. A temperature curve for the 
Devonian through Permian derived from CalMg 
ratios in corals. brachiopods. and 
fusulinids (redrawn from Yasamanov, 1981). 

The low diversity carbonate mud-bank and mound 
communities of the Late Carboniferous gradually 
expanded into somewhat more complex biohermal 
communities during the earliest Permian. 
Sea-level fluctuations continued to have short 
frequencies and large magnitudes. 

Later Early Permian (Leonardian) was warm, 
perhaps as warm as the Tournaisian, and the shelf 
carbonate faunas show marked diversification. 
Reef-forming communities gradually evolved 
independently on both tropical shores of Pangaea. 
This pattern continued into Guadalupian. Dis­
persals were extremely rare across 
Paleo-Panthalassa giving rise to strongly provin­
cial faunas, which were further emphasized in the 
Guadalupian by increased faunal diversity, 
particularly in the PaleoTethys. During the 
later part of the Guadalupian, extinctions again 
became increasingly common. Although many 
families had a few surviving genera, they were 
composed of only a few speCies. Sea-level 
fluctuations in the Leonardian and Guadalupian 
became longer in duration and less in magnitude. 

The latest Permian (Djulfian) saw a burst of 
diversity in the Tethyan faunal realm, which 
produced some distinctive and briefly successful 
lineages. These, and the few remaining survivors 
of the Guadalupian, suffered extensive extinc­
tions before the end of the Permian. The 
stratigraphic records suggests four rapid 
sea-level fluctuations of relatively small 
magnitude which were superimposed on a general 
lowering of sea level. The shelf faunas in the 
Tethys include genera and species that may have 
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been adapted to warm, perhaps very warm water, 
however, in many other parts of the world, it is 
difficult to find any faunas or strata that can 
be identified as being of latest Permian 
(Djulfian) age. 

CONCLUSIONS 

Late Paleozoic sea-level fluctuations on the 
scale of 1 to 3 million years are identified 
worldwide by specific and generic range zones of 
many invertebrate groups. Although geographic 
provinciality was common in the Carboniferous and 
Early Permian, dispersals of some species and 
genera took place infrequently. 

The resulting fossil zone assemblages are 
provincial species and genera having independent 
evolutions and stratigraphic ranges in different 
provinces combined and mixed with more cosmopol­
itan (or at least more widely dispersed) species 
and genera which tie the correlations between 
different provincial zones together. This type 
of zonation is dependent upon infrequent dispers­
als of a relatively small number of species 
during usually brief times that were favorable 
for the dispersals. These were apparently warmer 
times having high sea levels. 

Changes in the configuration of continents 
during the Carboniferous to form Lesser Pangaea 
and in the middle Early Permian to form Greater 
Pangaea changed the pattern of oceanic surface 
currents and progressively isolated the tropical 
shelves on either side of the supercontinent. 
Although the Tethys portion of the huge single 
world ocean, Paleo-Panthalassa, contained many 
microplates, dispersals of warm water faunas 
eastward across the main part of the ocean was 
difficult because of a westward flow of equatori­
al currents (Ross and Ross, 1981). 

The zonation of the Carboniferous and 
Permian into about seventy warm-water shelf 
faunal zones is possible and permits the identi­
fication of individual third-order sea-level 
fluctuations worldwide. In part, these sea-level 
fluctuations themselves may be one of the main 
contributing causes of the rapid evolution that 
aids in the zonation. In their role as 
stratigraphic markers, the recognition of these 
depositional sequences along with their faunas 
offers a different and useful approach by which 
to add more precision to the correlation of late 
Paleozoic strata. 

C. A. Ross thanks Chevron U.S.A., Inc. for 
permission to publish. 
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