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In the past few years, I’ve been hearing about a lot of movies -- 

there’s a genre being revived where killer robots conquer the Earth 

or, more recently, artificial intelligence decides it doesn’t want a 

human master anymore. These screenwriters are just reflecting on the 

world around them and it’s true that that world is changing.  

 

These days, you may hear the term machine learning, which is a subset 

of artificial intelligence; like those AI movies we were talking 

about, it too has had a resurgence in the past decade. It’s quite 

literally everywhere; even this early in the morning, I’m willing to 

bet that you’ve interacted with some technology that uses machine 

learning algorithms. Maybe you transcribed a text using a 

voice-to-text feature or scrolled through your Facebook feed. If 

you’ve deposited a check with an app or used a rideshare app 

recently, you’ve seen machine learning at work (Narula, 2018). It’s 

new, mysterious, and exciting -- which can also make it frightening, 

hence its use in so many films.  

 

A lot of the time, in an effort to simplify fairly technical 

concepts, people in industry (myself included) will abstract concepts 

to a point where they seem alarmingly anthropomorphized. We talk 

about machines “learning” or “making decisions” in such a way that 

can seem like these models are out of our control. Let me be clear: 

No model, no matter how complex or well-performing, is thinking in 

the way that we do as humans. No matter what, it is not a brain.  

 

What machine learning ​is​ is an exciting application of math that’s 
been around for a long time -- some of the concepts date back fifty 

years or more. The difference now is that we have the computational 

power and the access to data to start applying these algorithms on a 

number of tasks. Machine learning is showing state-of-the-art 

performance in healthcare, self-driving vehicles, and cybersecurity, 

sometimes surpassing human performance (He, Zhang, Ren, & Sun, 2015). 

So really, there’s a lot to be excited about! But people are still 

bound to be a little apprehensive. What we don’t understand can be 

intimidating, ​especially ​when we don’t understand ​why ​it’s doing so 
well.  

 

I don’t pretend to be able to make you all machine learning 

specialists in 45 minutes, but I think understanding the basics is 

well within anyone’s ability. I know it may be a little early for 



math, so I’ll try to keep it at a minimum. Once we cover a high-level 

overview, we can circle back to those sentient robot concerns and 

take a deeper look at the possible weaknesses of machine learning.  
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At its core, machine learning is a umbrella term for algorithms that 

use input data to better model a certain task. Here, an algorithm can 

be defined as a series of steps -- think of a recipe. The three main 

elements of a machine learning algorithm are the input, the model, 

and the output. The input, often referred to as ‘x’, is the data 

provided to the model. Our model, represented by the ‘h’, is a black 

box of sorts -- this is where the computations happen. The output of 

the model is ‘y’, which is the model’s prediction based off the input 

provided.  
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In a simple case, where we can think of the data as being represented 

by points on a graph, our model would be some sort of line that 

approximates the shape created by the points. Depending on the 

relationship in the data, the model could be a straight line -- 

 

[Show Slide 4] 

 

or a curve.  
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Curves will have higher polynomial orders, such as x ​2 ​, x ​3 ​, etc. 
 

Training the model to become better at predicting the correct output 

is essentially an optimization problem. But what exactly are we 

optimizing? To understand this, we’ll have to get a general idea of a 

few metrics. The first term to understand is the loss function: it 

compares our model’s prediction to the truth and reports how “wrong” 

our model was for a single prediction. The loss can be zero if the 

model was correct or a positive number if the model’s prediction was 

further from the truth. Here’s an example to think about it: if I was 

hoping the model would output a prediction of “apple”, and it gives 

me “banana”, these are similar enough that the loss would be smaller 

than if the model predicted something completely unrelated, like 

“tractor”.  



 

When the individual losses over the entire training set of input data 

are averaged, we get the empirical risk. Thinking back to the 

question “What do we want to optimize?”, the answer is now that we 

want to minimize empirical risk. This makes sense, since empirical 

risk is an average of how wrong our model’s predictions were: we want 

the model to be wrong as little as possible.  

 

We’ve talked about empirical risk as the average loss over the 

training set, but what exactly is a training set?  
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There is a standard practice in machine learning to divide your input 

data into three sections, or sets. Each set of data can help the 

model improve in different ways. The largest set is called the 

training set or just “train set” -- as a rule of thumb, about 60% of 

the total data should be put into the train set. This is the dataset 

that the model will train on in order to determine the best 

parameters. Parameters are values passed to a function and can be 

tuned, or changed, to impact the function’s output. Some parameter 

values work better for certain models, so it is necessary to tune 

them using the train set.  

 

The next set is the development set, also called the “dev set”, which 

contains about 20% of the total data. This set contains data that the 

model hasn’t seen yet. The model’s success on the dev set helps us 

choose which polynomial order works best for the model. If you think 

back to our example of the graph, the dev set helps us determine if a 

linear line or a higher polynomial curve will be the best fit. A sign 

of a good model is when results are strong for both the train and the 

dev sets.  

 

Finally, we have test set, which contains the final 20% of the total 

data. It’s important that the data in this set is not included in the 

train and dev sets, since we don’t want the model to have already 

learned how to predict this data exactly. The purpose of the test set 

is to see how the trained model will react to data that it didn’t 

train on, thus mimicking how the model will be used in the future. 

The ability of a model to still perform well on unseen data means the 

model is good at generalizing. 

 



If results from the test set look good, the parameters and polynomial 

orders determined from the train and dev sets will be stored. Then, 

if a model is deployed for general use, any new data can be fed into 

the model to produce an output without training all over again. If 

the results from the test set could be better, we start the process 

of training the model over again with different parameters.  

 

This process seems simple enough, but there are a few issues to be 

aware of.  
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The first is the problem of overfitting. Overfitting occurs when the 

training set has a very low prediction error rate because we have 

made the model very complex. Thinking of the graph example, this 

would be equivalent to making our model, represented by a curve, 

touch every single datapoint. Technically, this gives good results on 

the train set, but it loses sight of the overall flow of the data. 

When the test set is run, the model will be far worse at predicting 

the points because of how tailored it is to the training set.  

 

On the other hand, there is underfitting. This occurs when the 

prediction error rates for both the test and the train set are too 

high. Generally, this is because the model is too simple and not 

expressive enough. Think of trying to use a line to approximate a 

curve -- it just doesn’t do as well. Basically, overfitting involves 

a model that is too complex and underfitting involves a model that is 

too simple. A good model will be in between these two options, 

resulting in a lower prediction error rate for both the test and 

train sets.  
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Now that you have the basics down, we can look at a real life 

example. My team’s research over the past two years has included a 

series of machine learning algorithms -- today, we’ll take a look at 

some of the most recent work.  

 

For some background, my group’s project began as a result of an 

increase in student enrollment in STEM fields ("Our Reports", 2018). 

With higher enrollment, we were also seeing higher dropout rates. 

This may be caused by the fact that the traditional lecture-based 

teaching style doesn’t work for all students. Instructors looking to 



address this issue have started trying out new teaching methodologies 

-- for instance, does a certain subject lend itself best to more 

group discussion? How about additional silent work time? To see how 

effective these new methodologies are, teachers can compare how long 

they spend on certain activities to student grades and evaluations. 

Currently, a common way to “annotate” a class -- a method used to see 

what activity was happening when -- is to bring in a trained 

professional. This annotator may sit in on the class or listen to a 

recording of the class session. Either way, this process can be 

expensive to the school. There is also the issue of a time delay, 

especially when sending off a recording and waiting to hear back. By 

bringing the annotator to sit in on the class in order to get faster 

feedback, teachers risk disrupting their students; people who know 

they’re being watched may act differently and skew the results.  

 

My research group has teamed up with researchers at San Francisco 

State University to explore methods for cheaper, faster, and less 

disruptive classroom annotation; the goal is produce a tool where 

teachers can input a recording of their class and receive a breakdown 

of their class time automatically. We’ve implemented several machine 

learning models over the course of this project, but let’s take a 

look at the model I’ve done the most work with: our Deep Neural 

Network.  
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Neural networks are a subset of machine learning that are flexible 

and powerful. They’ve had many names over the years, such as 

Artificial Neural Networks or (my favorite) multi-layer perceptrons. 

If we look at a diagram of a neural network, you can see the same 

basic structure that we talked about at the beginning. There’s still 

an input layer ‘x’, an ‘h’ (this time called a “hidden layer”), and 

an output ‘y’. The different here is that they are vectors, which for 

the purpose of this conversation can be interpreted as a way to 

represent data.  

 

You can think of information moving through this neural network, 

where it undergoes a transformation between each layer. There are 

weight matrices and weight vectors that can be multiplied and added 

to the data before it is processed by activation functions. These 

functions produce variations of the data at different points in the 

model. For instance, ‘h’ is what we call a “learned representation” 

because it’s essentially a modified version of the input data. What 



we often think of as “learning” in machines is really just a lot of 

linear algebra.  

 

But hey, neural networks may be cool, but I promised you ​Deep ​Neural 
Networks -- so let’s take a look at those.  
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A Deep Neural Network, or DNN, looks a lot like the neural network we 

just saw. The “deep” part comes from having multiple hidden layers. 

The more hidden layers a model has, the “deeper” it’s considered. For 

the DNN used in my research, we have five hidden layers, so our model 

would look something more like this. Different problems require 

different model structures, so some projects may work better with 

fewer hidden layers. 

 

In the specific case of my research, our input is a numerical 

representation of an audio wave from the recorded class. We also 

input the true label associated with that clip of audio. For example, 

if the sound clip is of a person lecturing, we include the “lecture” 

label. This helps the model to correlate patterns in that audio 

representation to that label. To keep things simple, the goal is to 

classify classroom audio into four activities, or labels: lecture, 

discussion, silent work, and other. The “lecture” label currently 

covers any time a single person is talking; this can be a professor 

lecturing, a question and answer session, or a video being played. 

Similarly, the “discussion” label includes times when there are 

multiple voices, such as during group work or transitioning between 

activities. “Silence” almost exclusively represents silent, 

individual work time and the “other” label catches any noises that 

don’t fit into the other categories.  

 

After moving through the hidden layers, the output of our model is a 

predicted label associated with the audio representation provided as 

input. By adding up how many audio snippets are classified as each 

label, the system can tell the teacher how much of their class was 

spent on lecture, discussion, silent work, and other.  

 

Now, I know what you’re thinking: you were hoping my research would 

be more like those rebellious, sentient AIs we mentioned at the 

start. The basic fact that many of the extremely “intelligent” 

systems in use today are using similar deep learning architectures to 



what my team is using to annotate classroom audio. Remember when I 

said they were versatile?  

 

All jokes aside, walking through a DNN like we just did will 

hopefully put you a little more at ease. Machine learning models are 

not actually learning in the way humans do -- sure, they’re permuting 

data, but they’re doing so using same techniques as sophomores taking 

linear algebra. The only difference is that machines are much faster. 

John Pfeiffer said it best: “Man is a slow, sloppy, and brilliant 

thinker; computers are fast, accurate, and stupid” ("A quote by John 

Pfeiffer"). The computations they do are nowhere close to thoughts or 

feelings -- they are, quite simply, just doing the math.  

 

So, we’re safe, right? No issues or ethical concerns? What if I told 

you that the machines weren’t the problem? What if we need to be 

worried about ourselves? 
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When someone brings up ethics in terms of computer science, it 

usually boils down to three things. The first isn’t that specific to 

the field: it’s the case of doing something unethical, like faking 

safety tests. The second is what most people think of: what should we 

be allowed to do with technology? Self-driving cars fall in this 

category, I should mention. No matter what party I end up at, 

everyone who hears that I do machine learning has some concerns about 

self-driving cars. But it also goes beyond that into facial 

recognition and surveillance. As what problems we can apply machine 

learning to expands, so does the relevance of the question “Should 

we?”. Quite honestly, that topic could be another full presentation. 

What I’d like to talk more about today is the third branch, because 

it’s the most subtle of the three. What is the ethical responsibility 

of a creator to make their creation accessible to everyone?  

 

In recent years, there’s been a notable rise in people pointing out 

serious flaws in popular machine learning algorithms. Google has been 

a company which has been called out several times, likely because of 

their prominence in the machine learning field; their research 

chapter, called DeepMind, is well known for some of the most cutting 

edge machine learning technology. 

 

Google offers a service called Google Photos (you may have heard of 

it) which helps people store and organize their pictures. Since 



classification of images is a task well-suited to machine learning, a 

new algorithm was introduced to automatically tag and sort people’s 

pictures as they were uploaded. In theory, this is a handy addition. 

You can see all of your selfies or all of your nature shots in one 

place. But in 2015, Google Photos classified a photo of an 

African-American woman as a gorilla (Guynn, 2015). Keep in mind, this 

technology had already been trained, tested, and distributed to the 

public -- all the while deemed fit for use.  

 

In another case, Google Translate came under fire. For anyone who’s 

tried to translate anything over the course of the years, you’ll know 

that this Google product has improved leaps and bounds in the past 

few years -- this is largely due to machine learning advances. But as 

early as November of last year, Google Translate was reflecting some 

frustrating biases. The program was translating the Turkish gender 

neutral pronoun “o” into “he” or “she” based off the context of the 

sentence (Tousignant, 2017). The results were statements that aligned 

with traditional gender roles: “He is an engineer” or “She is a 

nanny”.  

 

These two cases are problematic for different reasons. The Google 

photos incident is quite literally dehumanizing and taps into a long 

history of systemic racism in both in America and other parts of the 

world. Meanwhile, while the Google Translate scenario isn’t directly 

impacting a specific person, it affirms harmful gender stereotypes 

about what different genders can or “should” do. Both cases highlight 

a carelessness that may start showing up more and more in machine 

learning.  

 

Not long ago, scientists had a bad habit of defending algorithms as 

perfectly impartial -- they were, after all, just a combination of 

math and facts. But really, all algorithms start with humans, who 

have all sorts of flaws. Machine learning is no exception; it, too, 

is just another type of algorithm. No one’s hardcoding racism or 

sexism into their neural networks, but their bias can still affect a 

model. You may be asking how this is the case, since the explanations 

we’ve gone over have shown most “learning” done by models is just 

math -- there’s no human hand in it. But what part of the process ​do 
developers and scientists have their hands all over? 

 

Data.  

 



Back before a single computation starts running, someone has to 

select what data to feed the model. What’s included in that dataset 

-- and possibly more importantly, what’s ​not ​included -- is up to a 
human decision. I want to be fair to the scientists working on these 

problems: data can be hard to come by. It can be expensive to obtain 

and hard to refine down to a representation useful to a model. But 

that’s not an excuse to ignore significant populations.  

 

For instance, based on how the Google Photo situation played out, I 

can make some educated guesses about their dataset. Their goal was to 

classify photographs, so I imagine they put together a dataset of as 

many types of photos as they could think of: people, animals, nature, 

things... you get the idea. They likely split their dataset into some 

sort of train, dev, and test structure (similar to what we talked 

about earlier) and proceeded to train their model. They evaluated on 

the dev and test sets until they were satisfied that the model could 

correctly classify data it hadn’t seen before. Then this trained 

model, after a series of checks, was released. But, what about their 

photos? Something tells me that there were likely not many 

African-American people pictured in this dataset. When they ran their 

model on the test set, there were likely very few photos of people 

with darker skin. If they were included, then the scientists failed 

to check which images were being misclassified. Either way, their 

model didn’t have enough data from this population in the train set 

to be able to recognize African American faces as just that -- human 

faces. If there had been more photos of people with dark skin in 

their test set, they likely could have caught this mistake. Instead, 

they had enough pictures of gorillas that their model had to fill in 

the blanks. And, well... we saw how that worked out.  

 

Data is also the crux of the Google Translate issue. Likely, Google’s 

model trained on sentences often used by people or seen in print. 

They also have the benefit of collecting more training data anytime a 

person uses their system. Likely, this data led the model to 

associate certain professions with certain pronouns. To a model, it’s 

simple: if nine times out of ten a profession is attributed to a man, 

then there must be a correlation.  

 

When technology permeates society to the level it has today, it 

becomes critical that this tech be usable by everyone. There’s a long 

history of the forefront of innovation ignoring minoritized groups. 

Healthcare is notorious for this, as well as inventions as simple as 

color TV. Originally, both color television and Kodak photos 



optimized their equipment to best show off white skin tones, since 

white models were the standard for color correction (Gross, 2015). 

Human bias in machine learning is the next generation of this.  

 

Virtually no project is immune to this. My team’s project is a 

classic example of how difficult it can be to obtain data. The 

classroom recordings we have were shared with us by our collaborators 

at San Francisco State University, mainly because this data is 

difficult to collect; class sessions are protected by federal privacy 

laws like FERPA. Regardless, if our model is unable to function 

correctly in virtually ​all ​environments, it isn’t at an acceptable 
level of generalizability. Currently, the way we address this is by 

using data from two colleges with recordings from seven instructors. 

Outside of the traditional train, dev, and test sets, our team added 

an additional test set. This extra dataset included instructors whose 

audio the model had not yet encountered. By checking the model’s 

performance on both tests sets, we could be more confident that it 

would generalize to more classroom environments.  

 

On a scale much larger than a university research team, there are 

even more options to address this issue. Companies like Google have 

an impressive reach when it comes to obtaining data -- they just need 

to be conscientious when selecting this data. Here are two ways that 

seem obvious to me: 

 

The first is to bring different perspectives onto your team. In 

recent years, we’ve seen a big push for women in computer science, 

which is honestly fantastic. But we can’t stop there. In this 

industry, we need more people of color, people with disabilities, 

people of different gender identities and sexual orientations, and so 

many more groups. Intersectionality is critical; if you’re trying to 

make something that helps a wide range of people, it’s important to 

work with a wide range of people.  

 

The other piece is that bringing these people onto your team doesn’t 

relieve you of responsibility. It’s important to educate ourselves 

about our own biases and privileges so that we can start holding 

ourselves accountable. We are just as responsible for our 

subconscious lapses as we are for our conscious choices.  

 

We’re on the verge of an exciting future right now. Most of us are 

just in college, yet in our lifetimes we’ve seen the transition from 

dial-up to the internet as it is today. But as we build tomorrow’s 



tools, it’s our responsibility not to bring along the baggage of 

today. Who knows where machine learning will take us in the next 

fifty years, but let’s make sure that we stick together. Technology 

should be universal in who it can help and we can’t be afraid to 

speak up when it fails to do so.  

 

I know many of you aren’t computer scientists. This problem can seem 

out of your hands in many ways. But you can absolutely still help. 

First and foremost, start examining these biases in your own life. Do 

some research. What are your privileges? How do they create blind 

spots for you? Then reach out and have these conversations with the 

people around you. You never know who in the world will make what 

decisions; someone you talk to may grow up to, or already be, someone 

who works on these problems.  

 

The other piece you can contribute is to encourage those around you 

to tackle these issues within machine learning and computer science 

as a whole. This doesn’t have to be limited to children who may grow 

up to scientists -- more and more, people later in life are finding 

ways to incorporate computer science into their work. I don’t think 

it’s too wild to say that in twenty years most professions will 

involve basic coding literacy. And I’ve become very suspicious of 

people who say that not everyone can code; I don’t think coding comes 

naturally to everyone, but I think to limit this valuable skill set 

to a very specific group of privileged people creates the sorts of 

problems we’ve seen here today.  

 

So encourage everyone and anyone to try their hand. If they doubt 

you, tell them the story of a woman who started looking at colleges 

in pursuit of an English degree -- tell them about how she’d never 

coded in her life, but four years later was completing machine 

learning research before graduating. Tell them the stories of how 

women, people of color, queer people, and so many other groups 

founded the basis of computer science today. And do more than believe 

in them! Donate to organizations that are bringing computer science 

to schools like mine, who didn’t have the resources to include it in 

the curriculum without help. Donate to scholarships for different 

groups in STEM. Don’t give up because it isn’t easy. 

 

I know this presentation is about technology. But to try and separate 

technology from humanity isn’t feasible. Machine learning has a lot 

to offer us in terms of innovation, but we need the human element. 

Machines aren’t brains -- they need ​us​ to make them the best they can 



be: high-performing, yes, but also accessible and universal. And 

that, to me, sounds like a job for a human brain.  
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Thank you for being a fantastic audience this morning. Before we 

start questions, I would like to thank Dr. Brian Hutchinson, my 

advisor for this project, and the other members of my research team. 

Their hard work pioneers new advances and it’s been my privilege to 

work with this group over the past two years. And, of course, a final 

shout out to the research team at San Francisco State University 

whose collaboration has made my team’s project possible.  

 

Thank you.  
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