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Supplemental Information 

Table S1. Descriptions and derivation of conditional probability tables (CPTs). CPTs were generated using 

equations, case learning, and pegging the corners, defined below. 

Equations, such as derived from regressions on exposure-response data, can be used to derive 

conditional probability tables.  The use of equations in Netica is described here 

(https://www.norsys.com/WebHelp/NETICA/X_Equations.htm).   

Case learning: Case learning is a machine learning tool used to derive relationships between variables.  

In the BN-RRM we are using parameter case learning since the causal relationships have already been 

identified.  Details on the methodology in Netica can be found at 

(https://www.norsys.com/WebHelp/NETICA/X_Learning_from_Cases.htm).   

Pegging the corners. When an interaction is indicated and data do not exist to quantify the interaction a 

‘pegging the corners” technique can be employed (Marcot et al. 2006, Marcot 2017).  Pegging the 

corners sets the extreme cases to the maximum or minimum response possible and then back 

interpolates the other entries. 

 

Node Description Rank 

Descriptions 
Description Data Source 

Spray scenario Describes the 

additional amounts 

of insecticide 

added given the 

scenario 

None 
Decrease 
Present 
Low 
Medium  
High 
 

None-no spraying of 

these pesticides in the 

future, Decrease-60 

percent decrease in 

present concentrations, 

Present-pesticide 

concentrations as 

described in Mitchel et al 

2021, Low-20 percent 

increase in pesticide 

concentrations, 

Medium-60 percent 

increase in pesticide 

concentrations, High-100 

increase in pesticide 

concentrations 

Current pesticide 

concentrations are derived 

from  Ecology 2016a, Tuttle 

2014. Distribution is derived 

from downloaded data for 

each of the watersheds.  

River and Region 

(Mitchell et al 2021) 

 

Lower Yakima, 

Upper Yakima, 

Naches 

NA Study areas Ecology 2016a, 2016b; Tuttle 

2014; WAC 2011a, 2011b. 

(Landis et al 2020, Mitchell 

et al 2021) 

Season (Landis et al 

2020, Mitchell et al 

2021) 

Time of year Spring (months 3-< 

6), summer (months 

6-< 9), fall (months 

9-< 12), winter 

(months 12-< 3)  

Captures seasonal 

variability in water 

temperature, DO and 

chlorpyrifos 

concentrations. 

Ecology 2016a, 2016b; Tuttle 

2014; WAC 2011a, 2011b. 

https://www.norsys.com/WebHelp/NETICA/X_Equations.htm
https://www.norsys.com/WebHelp/NETICA/X_Learning_from_Cases.htm
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Water Quality (WQ) 

Scenario 

This node specifies 

which water 

quality parameters 

to use from  Ficklin 

et al (2013.   

NA Selection here  

populates the DO mod 

and the Temp mod 

nodes.  When a scenario 

is selected the 

appropriate distribution 

populates each node. 

Ficklin et al 2013 is the 

source of the temperature 

and DO distributions. 

Malathion 

concentration 

(Landis et al 2020, 

Mitchell et al 2021) 

Measured 

concentrations of 

malathion over a 

ten-year period in 

each of the river's 

major waterways. 

0 to 2.6e-5 M, 
2.6e-5 to 2.6e-4 M, 
2.6e-4 to 5.4e-4 M, 
5.4e-4  to 0.001 M,  
0.001 to 0.005 M 

Ranks based on molar 

concentrations of 

malathion. Molar 

concentrations are 

adapted from regulatory 

criteria for OPs (reported 

in µg/L)  

Ecology 2016a, Tuttle 2014. 

Distribution is derived from 

downloaded data from each 

of the watershed. Then we 

calculated OP concentrations 

versus probability for each 

river and season. 

Malathion 

concentration 2  

 

Concentration of 

malathion by 

adding the spray 

scenario amount to 

that predicted 

from the River and 

Region node 

0 to 2.6e-5 M, 
2.6e-5 to 2.6e-4 M, 
2.6e-4 to 5.4e-4 M, 
5.4e-4  to 0.001 M,  
0.001 to 0.005 M 

Ranks based on molar 

concentrations as above.  

Derived from the 

addition of values from 

Spray Scenario and River 

and Region. 

The percent increases were 

derived from Table 1.  

Diazinon 

concentration 

(Landis et al 2020, 

Mitchell et al 2021) 

Measured 

concentrations of 

diazinon over a 

ten-year period in 

each of the river's 

major waterways. 

0 to 3.04e-5 M, 

3.04e-6 to 3.04e-5 

M, 

3.04e-5 to 1.52e-4 

M,  

1.52e-4 to 0.001 M,  

0.001 – 0.005 M 

Ranks based on molar .  

concentrations of 

diazinon. Molar 

concentrations are 

adapted from regulatory 

criteria for OPs (reported 

in µg/L) 

Ecology 2016a, Tuttle 2014. 

Distribution is derived from 

downloaded data from each 

of the watershed. Then we 

calculated OP concentrations 

versus probability for each 

river and season 

Diazinon 

concentration 2 

 

Concentration of 

malathion by 

adding the spray 

scenario amount to 

that predicted 

from the River and 

Region node 

0 to 3.04e-5 M, 

3.04e-6 to 3.04e-5 

M, 

3.04e-5 to 1.52e-4 

M,  

1.52e-4 to 0.001 M,  

0.001 – 0.005 M 

Ranks based on molar 

concentrations as above.  

Derived from the 

addition of values from 

Spray Scenario and River 

and Region. 

The percent increases were 

derived from Table 1.  

Water 

Temperature(Landis 

et al 2020, Mitchell 

et al 2021) 

Measured water 

temperature over 

a ten-year period 

in each of the 

river's main 

waterways.  

0 to 13,  13 to 16,  

16 to 18, 18 to 25, 

>25 (°C) 

Temperature ranges 

specific to salmonids 

based on Table 200 (1)(c) 

Aquatic Life 

Temperature Criteria in 

Fresh Water and survival 

data.  

Ecology 2016b, WAC 2011a. 

Distribution is derived from 

downloaded data for each of 

the watersheds. We 

calculated WT value versus 

probability for each river and 

season. 

Temp mod Change of 

temperature as 

derived by the 

climate change 

model (Ficklin et al 

2013) 

-13 to-11, -11 to -9, -

9 to -7,  to -7 to -5, -

5 to -3,-3 to -1, -1 to 

1, 1 to 3, 5 to 5, 5 to 

7, 7 to 9, 9 to 11, 1q 

to 13, 13 to 15 (°C)C) 

Change in temperature 

as predicted by Ficklin et 

al 2013. 

Ficklin et al 2013 

Water Temperature 

2 

 

Describes the 

change in water 

temperature with 

climate change 

introduced. 

0 to 13,  13 to 16,  

16 to 18, 18 to 25, 

>25 (°C) 

Distribution of 

temperature ranges as 

predicted by Ficklin et al 

2013. 

Derived from the 

Temperatures of Water 

Temp node to the Temp 

mod. Nodes. 
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Dissolved Oxygen 

(Landis et al 2020, 

Mitchell et al 2021) 

Measured oxygen 

concentrations 

over a ten-year 

period in each of 

the river's main 

waterways.  

0 to 3.5, 3.5 to 5, 5 

to 6.5, 6.5 to 8, 8 to 

9.5,  

9.5 to 11, 11 to 15, 

15 to 22.39 

(mg dissolved 

oxygen/L)  

Ranges specific to 

salmonids based on 

Table 200 (1)(d) Aquatic 

Life Temperature Criteria 

in Fresh Water and 

survival data.  

Distribution is based on 

downloaded data from 

each of the watersheds 

Ecology 2016b, WAC 2011b. 

Distribution is derived from 

downloaded data from each 

of the watersheds calculate 

DO value versus probability 

for each river and season. 

DO mod Change of 

temperature as 

derived by the 

climate change 

model (Ficklin et al 

2013) 

1.6 to 1.8, 1.4 to 1.6, 

1.2 to 1.4, 1 to 1.2, 

0.8 to 1, 0.6 to 0.8,  

0.4 to 0.6, 0.2 to 0.4, 

0 to 0.2, -0.2 to 0, -

0.4 to -0.2, -0.6 to -

o.4, -0.8 to -0.6, -0.6 

to -0.4, -0.8 to -0.6, -

1 to -0.8, -1.2 to -1, -

1.4 to -1.2,-1.6 to -

1.4, -1.8 to -1.6, -2 

to -1.8  

(mg dissolved 

oxygen/L) 

Amount of change in DO 

concentration with 

climate change 

introduced. 

Ficklin et al 2013 

Dissolved Oxygen 2 

 

Describes the 

distribution in 

dissolved oxygen 

with predicted 

changes. 

0 to 3.5, 3.5 to 5, 5 

to 6.5, 6.5 to 8, 8 to 

9.5,  

9.5 to 11, 11 to 15, 

15 to 22.39 

(mg dissolved 

oxygen/L)  

Resulting change in DO 

concentration with 

climate change 

introduced. 

Ficklin et al 2013. 

Simulation year 

(Landis et al 2020, 

Mitchell et al 2021) 

Year of simulation 

results.  

Years 1, 5, 10, 20, 50 The maximum model 

simulation year is 50.  

Plots summarized by 

describing results for years 1, 

5, 10, 20 and 50 from the 

metapopulation model 

simulations. 

AChE activity 

(Landis et al 2020, 

Mitchell et al 2021) 

AChE activity in 

salmonids exposed 

to OP 

concentrations 

dissolved in water. 

0 to 25, 25 to 50, 50 

to 75, 75 to 100, 100 

to 125, 125 to 200 

milli optical density 

(mOD) per minute 

per gram 

This describes the 

relationship between the 

malathion and diazinon 

concentrations and the 

change in AChE activity 

as determined by curve 

fitting.  

Laetz et al. 2009.  Curve 

fitted from the dataset 

kindly supplied by NOAA via 

C. Laetz using the drc 

package in R. 

Toxicological 

Effects-Percent 

Mortality (Landis et 

al 2020, Mitchell et 

al 2021) 

Mortality due to 

AChE activity 

0, 10, 20, 50, 90 AChE values that were 5-

20% as published by 

Fulton and Key (2005) 

was linked to mortality 

Coppage et al. 1975, 

Duangsawasdi 1977, Weiss 

1961, Wheelock et al. 2005, 

Fulton and Key (2001). 
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Toxicological 

Effects- Change in 

Swimming rate 

(Landis et al 2020, 

Mitchell et al 2021) 

Decreased AChE 

activity in 

salmonids exposed 

to OP 

concentrations 

dissolved in water. 

Change is 

swimming due to 

AChE activity 

0 to 25, 25 to 50, 50 

to 75, 75 to 100, 100 

to 150, 150 to 250 

AChE inhibition affects 

swimming,  

Results based on Sandahl et 

al. 2005 with Coho salmon as 

the surrogate. Ranking is set 

as equal intervals up until 

100%. >100% indicates a 

faster swimming speed.  The 

exposure-response curve is 

based upon the dataset as 

kindly supplied by NOAA via 

C. Laetz using the drc 

package in R. 

Toxicological 

Effects-Summing 

mortality and the 

change in 

swimming rate 

(Landis et al 2020, 

Mitchell et al 2021) 

Summation of 

toxicological 

effects due to 

acute mortality 

and change in 

swimming rate. 

None, 10, 20, 50, 90 

percent change 

Conditional probability 

table based on a “peg 

the corners” approach 

Marcot (2017). 

The CPT was compiled using 

an extrapolation (peg the 

corners) approach for the 

Yes Mortality.  The CPT was 

constructed using a peg the 

corners approach due to lack 

of data in the literature, with 

the highest (100%) 

probability of  effect set at 

270 (the summed maximum 

percent  in each of the three 

nodes (90+90+90= 270)).  to 

cause a 90% reduction in 

juvenile survival. 

Water Quality 

Effects - Juvenile 

Salmonids (Mitchell 

et al 2021) 

Effects specific to 

juvenile salmonid 

survivorship due to 

water quality in the 

Yakima. 

0, 10, 20, 50, 90 

percent  

Combines the effects of 

DO and temperature.  

Water quality effects was 

compiled using a case file 

based the Literature (Brett 

1952, Carter 2005, 2008). 

Water Quality 

Effects - Egg to 

emergence (Landis 

et al 2020, Mitchell 

et al 2021) 

Effects specific to 

eggs and larval 

salmonids, 

specifically the 

decline in 

survivorship of 

eggs to hatch due 

to water quality 

effects. 

0, 10, 20, 50, 90 

percent  

Combines the effects of 

DO and temperature.  

This CPT was completed 

using the literature (our 

expert 

judgement).References to 

support current CPT include: 

Carter 2005, 2008. Geist et 

al. 2006; Jager 2011; 

McCullough 1999; 

McCullough et al. 2001; 

Richter and Kolmes 2005. 

Juvenile % 

Reduction in 

Survival (Landis et 

al 2020, Mitchell et 

al 2021) 

Reduction in 

juvenile salmonid 

survivorship due to 

all effects. 

0, 10, 20, 50, 90 

percent  

Combines the ecological 

and toxicological 

pathways that affect 

juvenile survival. 

A pegging the corners 

approach was used. The sum 

of each combination % 10, 

20, 50, 90 was calculated. 

90+90+90= 270 was the 

highest probability of risk 

and was calculated as 100% 

probability of 90% reduction. 

Adult % Reduction 

in Survival (Landis 

et al 2020, Mitchell 

et al 2021) 

Reduction in adult 

salmonid 

survivorship due to 

all effects. 

0, 10, 20, 5 percent Combines the ecological 

and toxicological 

pathways that affect 

adult survival. 

This CPT was completed 

using the literature (our 

expert judgement) and case 

file learning. Carter 2005, 

2008; Jager 2011; 
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Summary of methods used in the BN from Mitchell et al (2021).  

Mitchell et al. (2021) constructed four age-based matrix population models representing each 

spring Chinook subpopulation in the Yakima River Basin, WA. The study focused on direct 

effects, and not the indirect effects that may be caused by changes to benthic communities and 

water flows. The transition matrices were based on stream-type Chinook salmon life history 

graphs and had a maximum age of 5 years. Matrix transition values (survival and reproduction) 

and dispersal rates were estimated from subpopulation-specific life history information 

described in detail in the Supplemental Data of Mitchell et al. (2021). The matrices used 

baseline models representing metapopulation dynamics prior to impact from pesticides and 

ecological stressors. An equation for diazinon-malathion synergistic mixture toxicity was derived 

using the drc package in R (Ritz et al. 2015) to model a log logistic 3 parameter model of the 

pesticide toxicity data from Laetz et al. (2013).  Diazinon and malathion concentrations were 

converted to toxic units (TU) in the equation for this model by normalizing measured 

concentrations with EC50s calculated from individual diazinon and malathion dose-response 

curves (Laetz et al. 2009, 2013).  

Measured organophosphate concentrations (malathion and diazinon in μg/L), water temperature 

7‐day average of the daily maxima (°C), and dissolved oxygen (DO) data (mg/L) were 

downloaded from the Washington Department of Ecology's Environmental Integrated 

Management (EIM) database (WDOE 2020) using search filters “Lower Yakima” and 

“fresh/surface waters” for the monitoring period of 2006 to 2016. The resulting frequency 

distributions of the data were discretized into bins and incorporated into conditional probability 

tables (CPTs) dependent on the season. For pesticide data, non-detects (“U” ‐qualified) and 

data detected below the reporting limit (“J”‐qualified) were captured in the lowest pesticide 

concentration bins in the Bayesian network. The lowest pesticide concentration bins were 

parameterized as 0 μg/L to the US Environmental Protection Agency (USEPA) aquatic life 

criteria for diazinon (0.17 μg/L) or malathion (0.1 μg/L) (USEPA 2020) and were associated with 

no toxic effect (no effect on AChE activity) in the model.  Additional details can be found in 

Mitchell et al. (2021) and the associated Supplemental Information. 

The Puget Sound Partnership’s (PSP’s) recovery goal for Chinook salmon is “no net loss” of 

population abundance (PSP 2020). This metric was used to define risk to Chinook in the 

present study and has previously been used to define risk by Landis et al. (2020) and Mitchell et 

al. (2021).The initial abundance for all subpopulation models was set to 500 000 fish, which 

approximates a typical salmon population’s spawner abundance under a stable age distribution 

for the region. Risk was defined as the probability that the resultant metapopulation size is 

below the initial abundance of 500 000 fish.  

The sensitivity of the Bayesian network Chinook population size endpoint to various nodes was 

calculated using Netica's “Sensitivity to findings” function to calculate percent mutual information 

(Norsys 2014).  
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Supplemental Information Tables 

SI Table 1. Modifications (additions) to the temperature and dissolved oxygen distributions for 

seasons and climate change scenarios. All modification (mod) distributions are normal 

distributions with the mean and standard deviation indicated below. Modifications adapted from 

Ficklin et al. (2013) percentile and standard deviation ensemble model statistics across the 

Sierra Nevada for the 2050s and 2080s for spring and summer. Low=25th percentile; medium = 

50th percentile; high = 75th percentile of SWAT model simulations forced with 16 general 

circulation models. 

Node Scenario 
states 

Season Mean 
(standard 
deviation) 

Temp mod 

(25th 

percentile) 

Low_2050 

Low_2050 

Low_2050 

Low_2050 

Low_2080 

Low_2080 

Low_2080 

Low_2080 

Spring 

Summer 

Fall 

Winter 

Spring 

Summer 

Fall 

Winter 

0.9 (0.2) 

1.5 (0.5) 

1 (1) 

1 (1) 

2.1 (0.4) 

3.1 (0.7) 

1 (1.4) 

1 (1.4) 

Temp mod 

(50th 

percentile) 

Med_2050 

Med_2050 

Med_2050 

Med_2050 

Med_2080 

Med_2080 

Med_2080 

Med_2080 

Spring 

Summer 

Fall 

Winter 

Spring 

Summer 

Fall 

Winter 

1.9 (0.3) 

2.5 (0.6) 

1 (1.2) 

1 (1.2) 

3.2 (0.5) 

4.4 (0.9) 

1 (1.8) 

1 (1.8) 

Temp mod 

(75th 

percentile) 

High_2050 

High_2050 

High_2050 

High_2050 

High_2080 

High_2080 

Spring 

Summer 

Fall 

Winter 

Spring 

Summer 

2.9 (2.5) 

3.4 (0.6) 

1 (5.0) 

1 (5.0) 

4.4 (0.6) 

5.5 (0.8) 
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High_2080 

High_2080 

Fall 

Winter 

1 (1.6) 

1 (1.6) 

DO mod 

(25th 
percentile) 

Low_2050 

Low_2050 

Low_2050 

Low_2050 

Low_2080 

Low_2080 

Low_2080 

Low_2080 

Spring 

Summer 

Fall 

Winter 

Spring 

Summer 

Fall 

Winter 

-0.8 (0.1) 

-1.2 (0.3) 

-0.1 (0.6) 

-0.1 (0.6) 

-1.4 (0.3) 

-1.6 (0.5) 

-0.1 (1) 

-0.1 (1) 

DO mod 

(50th 
percentile) 

Med_2050 

Med_2050 

Med_2050 

Med_2050 

Med_2080 

Med_2080 

Med_2080 

Med_2080 

Spring 

Summer 

Fall 

Winter 

Spring 

Summer 

Fall 

Winter 

-0.6 (0.5) 

-0.9 (1.0) 

-0.1 (2.0) 

-0.1 (2.0) 

-1.3 (0.5) 

-1.3 (1.0) 

-0.1 (2.0) 

-0.1 (2.0) 

DO mod 

(75th 
percentile) 

High_2050 

High_2050 

High_2050 

High_2050 

High_2080 

High_2080 

High_2080 

High_2080 

Spring 

Summer 

Fall 

Winter 

Spring 

Summer 

Fall 

Winter 

-0.3 (0.1) 

-0.6 (0.2) 

-0.1 (0.4) 

-0.1 (0.4) 

-0.6 (0.1) 

-0.9 (0.2) 

-0.1 (0.4) 

-0.1 (0.4) 
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SI Table 2. Scenarios explored in the amended Bayesian network model from Mitchell et al 

(2021) for the lower Yakima metapopulation. Present = original distributions from Mitchell et al. 

(2021) model. See Tables 1 and 2 and text for additional explanation of scenarios.  

 

Scenario # Spray scenario Season WQ Scenario 

1a 

1b 

2a 

2b 

3a 

3b 

4a 

4b 

5a 

5b 

6a 

6b 

7a 

7b 

8a 

8b 

9a 
9b 
10a 
10b 
11a 
11b 
12a 
12b 
13a 
13b 
14a 
14b 
15a 
15b 

 

None 

None 

None 

None 

None 

None 

Present 

Present 

Present 

Present 

Present 

Present 

High 

High 

High 

High 

High 
High 
High 
High 
Present 
Present 
High 
High 
None 
None 
None 
None 
Present 
Present   

Summer 

Spring 

Summer 

Spring 

Summer 

Spring 

Summer 

Spring 

Summer 

Spring 

Summer 

Spring 

Summer 

Spring 

Summer 

Spring 

Summer 
Spring 
Summer 
Spring 
Summer 
Spring 
Summer 
Spring 
Summer 
Spring 
Summer 
Spring 
Summer 
Spring 

 

Present 

Present 

High 2050 

High 2050 

High 2080 

High 2080 

Present 

Present 

High 2050 

High 2050 

High 2080 

High 2080 

Present 

Present 

High 2050 

High 2050 

High 2080 
High 2080 
Low 2050 
Low 2050 
Low 2080 
Low 2080 
Low 2080 
Low 2080 
Low 2080 
Low 2080 
Low 2050 
Low 2050 
Low 2050 
Low 2050 
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Supplemental Information Figures 

 

 

 

 

 

 

 

SI Figure 1. Conceptual flow for modifying monitoring concentration distribution nodes from 

Mitchell et al. (2021) for dissolved oxygen.  (a) “Present” state selected in Scenario with no 

resulting change to the original Dissolved Oxygen (mg/L) distribution so both Dissolved Oxygen 

(mg/L) nodes contain the same distributions, (b) “Future” state selected in Scenario so the 

distribution in the parent Dissolved Oxygen (mg/L)  is subtracted from the distribution in the 

modification node to create a modified distribution in the child Dissolved Oxygen (mg/L). A 

similar modification was made for the Water Temperature 7-DADMax distribution. Pesticide 

distributions were modified through percent additions or subtractions. 

A

B

Present Scenario

Future Scenario
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SI Figure 2. Adjustment network for the malathion, diazinon, water temperature, and dissolved 

oxygen monitoring nodes. Nodes are grouped into pesticides (green); scenarios (bright blue); 

and water quality (dark blue). Mod=modification factor; DO= dissolved oxygen; temp = 

temperature. Pesticide concentration distributions are reduced or increased by percentages 

based on hypothetical futures in the Spray scenario node. Water quality nodes are adjusted by 

adding their corresponding “mod” nodes based on scenario projections. 

 

 

River and Region

Upper Yakima
Lower Yakima
Naches

33.3
33.3
33.3

Season

spring
summer
fall
winter

25.0
25.0
25.0
25.0

Spray scenario

None
Decrease
Present
Low
Medium
High

16.7
16.7
16.7
16.7
16.7
16.7

Dissolved Oxygen (mg/L) 1

0 to 3.5
3.5 to 5
5 to 6.5
6.5 to 8
8 to 9.5
9.5 to 11
11 to 15
15 to 22.39

1.64
1.90
2.77
3.14
12.6
28.8
46.8
2.36

11.1 ± 2.9

Water temperature 7-DADMax 1

0 to 13
13 to 16
16 to 18
18 to 25
25 to 36

58.5
16.0
9.20
14.5
1.87

11.4 ± 7

WQ scenario

Present
Low 2050
Low 2080
Med 2050
Med 2080
High 2050
High 2080

14.3
14.3
14.3
14.3
14.3
14.3
14.3

Malathion concentration (ug/L) 2 

0 to 0.1
0.1 to 0.8
0.8 to 1.64
1.64 to 3.7
3.7 to 37.3

52.3
18.6
7.77
8.38
13.0

3.1 ± 7.6

Diazinon concentration (ug/L) 1

0 to 0.17
0.17 to 1.7
1.7 to 4.5
4.5 to 29
29 to 145

53.4
11.7
11.6
11.6
11.6

12.6 ± 30

Water temperature 7-DADMax 2

0 to 13
13 to 16
16 to 18
18 to 25
25 to 36

51.8
13.7
8.76
18.5
7.29

13 ± 8.3

Dissolved Oxygen (mg/L) 2

0 to 3.5
3.5 to 5
5 to 6.5
6.5 to 8
8 to 9.5
9.5 to 11
11 to 15
15 to 22.39

2.41
2.16
3.59
8.00
17.9
21.9
40.5
3.50

10.7 ± 3.3

Diazinon concentration (ug/L) 2

0 to 0.17
0.17 to 1.7
1.7 to 4.5
4.5 to 29
29 to 145

52.2
18.2
7.47
10.7
11.4

12.1 ± 30

Malathion concentration (ug/L) 1 

0 to 0.1
0.1 to 0.8
0.8 to 1.64
1.64 to 3.7
3.7 to 37.3

53.3
11.8
11.6
11.6
11.6

2.92 ± 7.2

DO mod

1.4 to 1.8
1 to 1.4
0.6 to 1
0.2 to 0.6
-0.2 to 0.2
-0.6 to -0.2
-1 to -0.6
-1.4 to -1
-1.8 to -1.4
-2.2 to -1.8
-2.6 to -2.2
-3 to -2.6
-3.4 to -3
-3.8 to -3.4
-4.2 to -3.8
-4.6 to -4.2

1.33
1.97
3.43
6.94
25.9
17.5
17.9
10.4
7.04
3.54
1.77
0.97
0.58
0.36
0.23
0.15

-0.538 ± 0.88

Temp mod

-13 to -11
-11 to -9
-9 to -7
-7 to -5
-5 to -3
-3 to -1
-1 to 1
1 to 3
3 to 5
5 to 7
7 to 9
9 to 11
11 to 13
13 to 15

.041
0.10
0.23
0.44
0.88
3.73
34.2
35.2
18.7
5.38
0.71
0.25
0.11
.041

1.71 ± 2.3



 

 

Supplemental page 16 

 

 

 

SI Figure 3. Scenario example for summertime monitoring data in the Lower Yakima with a high 

2080 projected adjustment to water quality (temperature and dissolved oxygen) and a high 

spray scenario. Note the changes in the values of the nodes compared to SI Figure 2. 

River and Region

Upper Yakima
Lower Yakima
Naches

   0
 100
   0

Season

spring
summer
fall
winter

   0
 100
   0
   0

Spray scenario

None
Decrease
Present
Low
Medium
High

   0
   0
   0
   0
   0

 100

Dissolved Oxygen (mg/L) 1

0 to 3.5
3.5 to 5
5 to 6.5
6.5 to 8
8 to 9.5
9.5 to 11
11 to 15
15 to 22.39

0.59
0.69
1.38
6.39
33.4
39.7
16.0
1.77

9.99 ± 2.3

Water temperature 7-DADMax 1

0 to 13
13 to 16
16 to 18
18 to 25
25 to 36

.025
12.6
19.0
64.8
3.65

20.1 ± 3.8

WQ scenario

Present
Low 2050
Low 2080
Med 2050
Med 2080
High 2050
High 2080

   0
   0
   0
   0
   0
   0

 100

Malathion concentration (ug/L) 2 

0 to 0.1
0.1 to 0.8
0.8 to 1.64
1.64 to 3.7
3.7 to 37.3

49.2
49.4
0.67
0.25
0.44

0.353 ± 1.5

Diazinon concentration (ug/L) 1

0 to 0.17
0.17 to 1.7
1.7 to 4.5
4.5 to 29
29 to 145

99.1
0.23
0.23
0.23
0.23

0.337 ± 4.6

Water temperature 7-DADMax 2

0 to 13
13 to 16
16 to 18
18 to 25
25 to 36

.014

.009
1.13
44.0
54.8

26.4 ± 5.3

Dissolved Oxygen (mg/L) 2

0 to 3.5
3.5 to 5
5 to 6.5
6.5 to 8
8 to 9.5
9.5 to 11
11 to 15
15 to 22.39

1.00
1.10
4.39
22.6
37.2
19.5
12.6
1.56

9.14 ± 2.5

Diazinon concentration (ug/L) 2

0 to 0.17
0.17 to 1.7
1.7 to 4.5
4.5 to 29
29 to 145

49.4
49.8
0.18
0.28
0.37

0.885 ± 5.8

Malathion concentration (ug/L) 1 

0 to 0.1
0.1 to 0.8
0.8 to 1.64
1.64 to 3.7
3.7 to 37.3

98.1
1.17
0.23
0.23
0.23

0.111 ± 1.1

DO mod

1.4 to 1.8
1 to 1.4
0.6 to 1
0.2 to 0.6
-0.2 to 0.2
-0.6 to -0.2
-1 to -0.6
-1.4 to -1
-1.8 to -1.4
-2.2 to -1.8
-2.6 to -2.2
-3 to -2.6
-3.4 to -3
-3.8 to -3.4
-4.2 to -3.8
-4.6 to -4.2

 0 +
 0 +
 0 +
 0 +
.023
6.65
62.5
30.2
0.62
 0 +
 0 +
 0 +
 0 +
 0 +
   0
   0

-0.899 ± 0.26

Temp mod

-13 to -11
-11 to -9
-9 to -7
-7 to -5
-5 to -3
-3 to -1
-1 to 1
1 to 3
3 to 5
5 to 7
7 to 9
9 to 11
11 to 13
13 to 15

   0
   0
   0

 0 +
 0 +
 0 +
 0 +
.089
26.5
70.3
3.04
 0 +
 0 +
 0 +

5.53 ± 1.1
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SI Figure S4.  Sensitivity analysis to population node for the present, 2050, and 2080 year 

scenarios with none, present, and high pesticide loads using mutual information (%). Note the 

differences in the contributions as measured by mutual information for the spring (yellow) 

compared to summer (blue).  Note the importance of the metapopulation node is in summer 

compared to the spring.  
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