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Abstract 

Our long-term goal is to develop a monodisperse high molecular weight hemoglobin-based 

oxygen carrier (HBOC) for clinical care. One short-term aim is to ligate hemoglobin (Hb) molecules 

to a dendritic scaffold utilizing “click-chemistry”. Towards this goal, we have genetically modified 

the C-terminus of one of the α subunits of a di-α globin to contain the S. aureus sortase A 

recognition sequence (LPETG) and we have expressed the modified globin in E. coli. Here, we 

demonstrate that these Hbs can be site-specifically functionalized through sortase-mediated 

ligation of peptides containing dibenzocyclooctyne (DBCO). We further demonstrated proof-of-

concept by conjugating an azide-funtionalized peptide with a fluorescent tag, 6-

carboxyfluorescein (6-FAM) to Hb(DBCO). Additionally, work has been done to crystallize Hb with 

a site-specific mutant N108K, which promotes T-state stability of Hb (low oxygen affinity). Cell-

free Hb is known to have high oxygen affinity and by determining the structural basis for 

improving T-state stability in our novel Hbs we hope to design our HBOC with ideal characteristics 

for reversible oxygen binding.  This work establishes that we can functionalize hemoglobin with 

“click-chemistry” groups such as cyclooctyne, and conjugate that group to an azide with the 

ultimate goal of decorating azide-functionalized dendrimers with hemoglobin molecules to 

transport and exchange oxygen in the body. 
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Introduction 

 Blood transfusions. Currently, blood transfusion is the standard of care for blood loss. 

Hospitals rely on blood donations to provide this life-saving treatment, and many operations 

cannot be performed without a blood transfusion. According to the World Health Organization 

(WHO), in high income countries blood transfusions are most commonly performed for 

cardiovascular and transplant surgery, trauma, and various hematological malignancies. In low 

income countries blood transfusions are most needed for pregnancy-related complications and 

severe childhood anemia1. 

 Blood transfusions require donations from healthy volunteers and this poses significant 

challenges. In many low and middle-income countries, the current level of blood donations does 

not meet the need for blood transfusions. High-income countries have a whole blood donation 

rate of 32.1 donations per 1,000 population per year, however, in low-income countries the 

donation rate is 4.6 donations per 1,000 population per year1 (Figure 1). In addition, there are 

low retention rates of blood donations because of blood transfusion safety.  A number of 

Figure 1. Whole blood donations per 1,000 population in 20131. Source: World Health 
Organization. 
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countries have a high percentage of transfusion-transmissible infections in the population, but 

not enough adequate resources to screen for them1. Identification of transfusion-transmissible 

infections, as well as the expiration of donated blood results in a discard rate ranging from 7% - 

11% of total donated blood around the world1. In the US, while blood donations meet the 

requirement, they rarely exceed it so storage of blood donations is not feasible2.  

 Of the many functions of blood, one of the most essential is the transportation of 

oxygen from our lungs to our tissues. Without oxygen, cells are unable to produce the energy 

necessary for our body to function. Loss of blood causes a deprivation of oxygen to cells and 

thus requires an immediate response, such as a red blood cell transfusion. The protein 

responsible for oxygen transport, hemoglobin (Hb), is housed inside the red blood cell, and so 

when a patient is given red blood cells, they are also given Hb. Hb is a 64 kDa protein with 2  

and 2  subunits. Each subunit contains a hemin group which chelates to Fe2+ and binds to 

oxygen. The red blood cell provides protection to Hb, separates Hb from reactive species, and 

provides the enzymes and small molecules necessary for Hb to function3,4. In addition, the red 

blood cell poses some challenges to blood transfusions. The antigens on the surface of red 

blood cells require blood type matching and red blood cells cannot be mass produced; they 

must be donated by healthy volunteers.  

 An alternative to red blood cell transfusions. In order to alleviate some of the demand 

for blood transfusions, researchers have been working to develop an alternative to red blood 

cell transfusions. The function of this therapeutic would be to transport oxygen and so one of 

the approaches has been to modify the natural carrier of oxygen, hemoglobin, and therefore 

develop a hemoglobin-based oxygen carrier (HBOC). By modifying Hb to function properly cell-
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free, patients could be given this therapeutic to alleviate immediate concerns of oxygen 

transportation. While a hemoglobin-based therapeutic could not address all of the functions of 

blood, it would reduce the need for red blood cell transfusions for patients dealing with trauma 

or other conditions involving acute blood loss. Of the many challenges associated with HBOCs, 

one is Hb’s small size relative to the red blood cell. Cell-free Hb is small enough to extravasate 

through the blood vessel wall and into the interstitial space between endothelial cells and 

smooth muscle5. In this space nitric oxide is a signaling molecule that relaxes smooth muscle 

cells6. When oxygenated, Hb mixes with nitric oxide, nitric oxide enters the distal pocket, and is 

converted to nitrate (NO3
-) while Hb is converted to methemoglobin (metHb)7. When this 

occurs, smooth muscle is unable to receive the signal to relax which results in an increase in 

mean arterial blood pressure and other smooth-muscle effects such as gastrointestinal 

discomfort8. These undesirable effects can be reduced by increasing the molecular weight of 

the cell-free Hb 9 (Figure 2). 

 In addition to increased extravasation, the Hb 22 heterotetramer has reduced stability 

in a cell-free environment which results in its dissociation into  heterodimers. These dimers 

are small enough to be rapidly cleared by glomerular filtration in the kidneys or by a Hb 

scavenging receptor in the liver. As  dimers, Hb is quickly cleared from the blood and 

therefore nonfunctional10. Increased renal filtration can also result in renal damage caused by 

the overload of the glomerular filtration capacity in the kidneys11,3,4. For this reason, Hb stability 

and molecular weight need to be addressed when developing a functional HBOC.
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 Another problem associated with cell-free Hb is the auto-oxidation of the iron chelated 

in the heme group from Fe2+ to Fe3+. The oxidation to Fe3+ forms metHb which is unable to 

transport and exchange oxygen12. Heme loss is also accelerated in the methemoglobin state 

because of a reduction in stability13. For cell-free Hb the oxidation reaction occurs over a few 

hours and is essentially irreversible, whereas in the red blood cell there are antioxidants such as 

NAD(P)H that maintain Hb in the reduced Fe2+ state14.    

 Strategies for developing HBOCs. The goal of HBOC development is to modify Hb so that 

it can function properly outside of a red blood cell. Many HBOCs have been tested in clinical 

trials but none has been approved by the FDA for use in humans. While there are many 

challenges associated with cell-free Hb, through rational design and protein modification these 

challenges can be overcome. In addition, by understanding the characteristics of HBOCs that 
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have been developed in the past, we can learn from both successes and failures. The three 

main strategies for modifying Hb have been polymerization, conjugation, and cross-linking3,15 

(Figure 3).  

Polymerization increases the size of HBOCs; thus, its 

main effect is to increase retention times in the blood. 

Polyheme, developed by Northfield laboratories, and 

Hemopure, developed by Biopure Corporation, are both 

glutaraldehyde-polymerized Hb products16. Polymerization 

results in an ultra-high molecular weight molecule, and so 

with this approach, retention times increased from the 

rapid clearance of cell-free Hb to a half-life of 16-20 hours 

for Hemopure and 24 hours for Polyheme10. The drawback 

to this approach is that the reaction, which links surface 

lysines on neighboring Hb together, is non-specific, and so 

the resulting product is a heterogeneous mixture of 

polymers10,16. 

 Conjugation, similar to polymerization, increases 

the apparent molecular size of Hb in order to increase 

retention time and to reduce extravasation. Sangart, Inc 

used this approach to develop Hemospan, which was 

made by  conjugating polyethylene glycol to Hb by site-

specific addition17. Hemospan was found to have a half-
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Figure 3. Strategies for development 
of HBOCs. Non-specific polymerized 
Hb (top), chemically or genetically 
cross-linked Hb (middle), Hb 
conjugated with PEG (bottom). 
Adapted from Stowell et al.3  
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life of 14-23 hours in patients, but it also appeared that Hemospan was eliminated from the blood 

by the scavenger receptor CD16310. In addition Hemospan had an overall high oxygen affinity and 

an increase loss of hemin and so while it went through early clinical trials, its development was 

eventually terminated15,17. 

 Lastly cross-linking Hbs subunits, both chemically or genetically, increases stability and 

prevents dissociation of Hb into heterodimers. HemAssist, developed separately by Baxter and 

the US army, chemically cross-linked the  subunits in purified human Hb with bis(3,5-

dibromosalicyl) fumarate. This approach increased stability and resulted in a half-life of 2.1-4.3 

hours in humans10. When tested more rigorously in humans, however, results indicated 

vasoconstriction and ultimately increased adverse effects in comparison with  the standard blood 

transfusion18. Optro, developed by Somatogen, genetically cross-linked the  subunits creating a 

di- subunit with a single glycine inserted between the  subunits19. While this produced a stable 

hemoglobin, other problems were still present including high oxygen affinity, nitric oxide 

scavenging, auto-oxidation, and hemin loss20.   

Developing a monodisperse HBOC. While previous HBOCs have shown many advantages, 

each had its disadvantages. The most prominent problems are Hb stability in the blood and 

nitric oxide scavenging. To address these problems our strategy has been to develop a 

polymeric Hb molecule that has a defined molecular weight and size. Based on evidence shown 

in Figure 1, increased molecular weight of Hb will reduce mean arterial pressure caused by 

nitric oxide scavenging. In addition, creating a molecule with one size will eliminate the smaller 

molecular weight products that are associated with increased extravasation and blood pressure 

elevation. Initially, the strategy for this work was to develop a recombinant single-chain Hb 
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(scHb) in three main steps. The first was to create a circularly permuted  globin by modifying 

the N and C-terminal sites21. The second was to then link the  and  globins together to create 

a single chain  dimer (sc-cp) and then lastly to link the -globins together by inserting a 

single glycine linker (Figure 4)22. We envisioned this sc-Hb as a monomer unit to be used in the 

construction of a recombinant poly-Hb of defined molecular weight.  

 The scHb was successfully expressed, however, in a very low protein yield22. This was 

mitigated by adding additional stabilizing mutants β G16A, β H116I, α G15A, and β K82D, which 

were reported by Graves et al. and Weickert et al23,24 to increase stability and expression yields 

of globins. Unfortunately, even with the addition of these stabilizing mutations, the expression 

Figure 4. Scheme for scHb development. -globin and circularly permuted  globins were linked 

together to create sc-cp. This was followed by linking the two dimers together with a glycine 
linker to create scHb.19,20 
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yield remained too low for this approach to poly-Hb to be economically feasible. Therefore, a 

new approach needed to be taken to create a Hb polymer with a defined molecular weight. 

 Sortase-mediated monodisperse HBOC. The approach we have taken combines genetic 

and chemical modifications of Hb to develop an HBOC polymer that is a defined molecular 

weight and size and can also be produced on a large scale. Our method is based on the concept 

of decorating a central scaffold with functional Hb molecules. With highly efficient click 

chemistry Hb molecules will be attached to a commercially available azide dendrimer, which 

will contain 4-12 sites for Hb attachment (Figure 5). The attachment will be achieved with a 

cyclo-alkyne azide addition which needs no metal catalyst but is instead catalyzed by the strain 

produced from the cyclo-alkyne25.  

For this method to work, Hb needs to contain a cyclo-alkyne tag which will be added 

with the help of the transpeptidase, sortase A. Found in many bacteria, but specifically in S. 

aureus, sortase attaches proteins to the peptidoglycan cell wall by recognizing a LPXTG motif, 

Figure 5. Scheme for development of oligomeric, monodisperse HBOC. A cyclooctyne-
modified Hb molecule will be added to a azide functionalized dendrimer. 
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cleaving between the threonine and glycine to form a thioester intermediate where an 

incoming N-terminal glycine can act as a nucleophile to form a new peptide bond26.  

In this way, sortase can attach small peptides with an N-terminal glycine to any protein 

containing the LPXTG motif (Figure 6).  With this in mind we synthesized Hb to contain a C-

terminal LPETG sortase A tag on the  subunit. With sortase A as a catalyst, we added a small 

peptide derivatized with dibenzocycloocytne [GGK(DBCO)] to Hb (Figure 8). To create a more 

stable construct we further modified Hb to be di- by covalently linking the  subunits with a 

glycine linker. Lastly, we included the 4 

stabilizing mutations mentioned above (β 

G16A, β H116I, α G15A, and β K82D) and 

included a hexa-histidine tag for purification 

(Figure 7). These modifications produced a 

stable Hb molecule that can be easily 

purified as well as modified by sortase A 

(Figure 8). 

LPETGG(H)6

α

α

β

β

Figure 7. Hb building block. A novel 
recombinant Hb was designed to include 
a glycine linker between the α subunits 
as well as a sortase tag followed by a 
hexa-histidine tag on the C-terminus of 
the di- α subunit. 

Figure 6. Sortase-mediated ligation. Sortase A recognizes the LPETG motif on a protein, 
forms an enzyme-bound thioester intermediate which is attacked by a glycine nucleophile 
derivatized with a cyclooctyne. 
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Modulating oxygen affinity. In addition to working to develop an HBOC with a high 

molecular weight, we also wanted to focus on the other physical properties of Hb to ensure our 

product has optimal functional properties. To transport oxygen efficiently, Hb has 2 

conformations. The first is the high oxygen affinity relaxed state (R-state) and the other is the 

low oxygen affinity tense-state (T state). These 2 conformations allow R-state Hb to bind to 

oxygen in the lungs and then to release oxygen by switching to the T state when it reaches 

various tissues in our body. Hb’s conformational changes are modulated by many allosteric 

regulators including 2,3-bisphosphoglyceric acid (2,3-BPG), protons, and CO2 
3. One regulator, 

2,3-BPG, is found at high concentration in red blood cells and is able to promote the change 

from R-state to T-state4. Cell-free Hb, however, is not regulated in this way because of the 

much lower concentration of 2,3-BPG in the blood plasma. For this reason, cell-free Hb has high 

oxygen affinity, which reduces the release of oxygen compared to Hb in red blood cells27.  

Figure 8. Sortase-mediated Hb ligation. Sortase A recognizes the LPETG motif on Hb, forms 
an enzyme-bound thioester intermediate which is attacked by a glycine nucleophile 
derivatized with a cyclooctyne. 
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 To alleviate this problem, mutations have been made to increase T-state stability in Hb. 

One in particular, βN108K, reduces Hb’s oxygen affinity to a value similar to that of whole 

blood28. In order to understand how this mutation affects the stability of the R and T states in 

our circularly permuted (cp) Hbs, work has been done to crystallize N108K in the -cp Hb 

construct. With X-ray diffraction data, the structure of the modified Hb can be solved revealing 

the structural details for this Hb variant, which may be different from those observed in the 

wild-type Hb. So far, we have been unable to get good resolution on X-ray diffraction data. 

Many crystal conditions have been tested but with further optimization X-ray diffraction data 

could be a possibility.  

The work described in this thesis suggests that our new approach shows merit in 

achieving our long-term goal. We have successfully expressed and purified di--cp sHb, ligated 

DBCO to it with sortase A, and conjugated an azide functionalized peptide to di-(DBCO)-cp 

sHb. Overall, the development of our polymeric HBOC has focused on reducing the effects of 

nitric oxide scavenging and increasing hemoglobin T-state stability. Through a combination of 

genetic modifications and mutations as well as chemical adaptations we plan to develop an 

oligomeric monodisperse product that can be used for acute blood replacement. Continued 

work is necessary to produce a poly-Hb in high yield and to optimize its properties. The 

development of a safe and effective HBOC will address the need for an alternative to red blood 

cell transfusions and therefore has the potential to save lives. 

 
 
 
 
 

 



12 
 

 
Materials and Methods 

 
Protein Expression  

Gene design. A di- subunit with a sortase A tag (LPETG) followed by 6 histidines on the 

C-terminal end was synthesized and cloned into a pUC plasmid which contained circularly-

permuted  Hb subunit with 4 stabilizing mutations (β G16A, β H116I, α G15A, and β K82D) (Di-

 cp- sHb).  The gene was then subcloned into an expression vector derived from the pDLIII13-

e plasmid described by Hoffman et al.29. 

Transformation. The expression plasmid was transformed into chemically competent 

BL21 E. coli cells by adding 1 l of the plasmid to 50 l of E. coli cells, which were then placed 

on ice for 30 minutes. Cells were incubated at 42C for 1 minute, immediately placed back on 

ice for 3 minutes, re-suspended in 1 mL Luria Bertani (LB) broth (10 g/L tryptone, 5 g/L yeast 

extract, 10 g/L NaCl), and incubated at 37C for 45 minutes in a shaker. Following this 

outgrowth, increasing amounts (25, 50, 100 l) of transformed cells were added onto 3 LB 

tetracycline agar plates (10 g/L tryptone, 5 g/L yeast extract, 10 g/L NaCl, 14 g/L agar, 23 M 

tetracycline, pH 7.0) and incubated for 26 hours at 37C. Two distinct colonies were picked and 

placed in 10 mL LB-tetracycline (23 M tetracycline) broth and incubated at 37C for 12 hours 

in a shaker to make seed stocks (1:1 overnight broth:50% v/v glycerol), which were then stored 

at -80C.  

Protein expression. Two different protein constructs were expressed, the first was  cp-

 Hb 4SM with the additional mutation N108K (N108K Hb) and the second was di- cp- sHb 

(sHb). The first, N108K Hb, was previously transformed into BL21 E. coli cells and seedstocks 
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were obtained from Johann Sigurjonsson. The cells were first grown by inoculating 10 mL LB-

tetracycline (23 M tetracycline) with 1 L seed-stock and incubated at 37C for 12 hours in a 

shaker. Cells were then added to 1 L of Terrific Broth (TB) medium [12 g/L tryptone, 24 g/L yeast 

extract, 4% (v/v) glycerol, 2.31 g/L KH2PO4, 16.43 g/L K2HPO4/trihydrate] with 23 M 

tetracycline and grown at 37°C with shaking at 200 rpm and induced with 1 mM isopropyl β-

thiogalactopyranoside (IPTG) when the optical density at 600 nm reached 1.8. The temperature 

was reduced to 33.5C and cells were grown for an additional 5 hours, with the addition of 2 mL 

of a stock hemin solution (12.5 g/L hemin, 200 mM NaOH) added every hour for a total of 0.05 

g of hemin added per liter. Cells were harvested by centrifugation at 5,000 x g for 10 min at 4°C 

(Thermo Scientific Sorvall Lynx 4000) and frozen in liquid nitrogen to be stored at -80°C. 

The second construct, sHb, was transformed as described above and cells were grown 

and induced as described for N108K Hb, except that the temperature was kept constant at 

33.5°C and during induction 100mL of 20% (w/v) glucose was also added in addition to ITPG to 

increase expression. 

 

Protein Purification  

Cell lysis. Cell pellets were thawed and resuspended in lysis buffer [N108K Hb (50 mM 

Tris-HCl, pH 8.5, 17 mM NaCl); sHb (20 mM Tris-HCl, pH 8.5, 300 mM NaCl, 10 mM imidazole)]. 

Cells were sonicated (power output: 5 @ 50% duty cycle, Branson Intruments, Inc. Sonifier, 

model 450) on ice for a total of 90 seconds (3 x 30 sec pulses) with 60 seconds rest between 

every 30 second pulse. The resulting lysate was clarified by centrifugation at 40,000 x g for 30 

min at 4°C. For the N108K Hb, 2 mM Zn(OAc)2 was added to the lysate and an additional 
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centrifugation was performed at 40,000 x g for 30 min at 4°C. Supernatants from each construct 

were collected and filtered through a 0.22 m cellulose acetate syringe filter.  

Immobilized metal affinity chromatography (IMAC). To purify Hb constructs a column 

was packed with 10 mL GE Healthcare Fast Flow Chelating Sepharose resin. The column was 

washed with 4 column volumes (CV) of 200 mM NaCl, 2 CV 20 mM Zn(OAc)2, and 6 CV 200 mM 

NaCl. N108K Hb lysate was then loaded onto the column and washed with 8 CV 20 mM Tris-HCl, 

pH 8.5, 0.5 M NaCl, then 2 CV 250 mM Tris-HCl, pH 8.5, followed by 6 CV 20 mM Tris-HCl, pH 

8.5. The protein was eluted with 20 mM Tris-HCl, pH 8.5, 15 mM EDTA. 

For the sHb construct the column was prepared with the same resin and washed with 4 

CV of 0.2 M NaCl, 0.5 CV 0.2 M NiSO4, 4 CV 20 mM NaOAC, 0.5 M NaCl pH 4, and 5 CV 0.2 M 

NaCl. Lysate was loaded onto the column and washed with 4 CV lysis buffer (20 mM Tris-HCl, 

pH 8.5, 300 mM NaCl, 10 mM imidazole), followed by 4 CV wash buffer (20 mM Tris-HCl, pH 8.5, 

150 mM NaCl, 50 mM imidazole). The protein was eluted with 20 mM Tris-HCl, pH 8.5, 50 mM 

NaCl, 300 mM imidazole. 

Dialysis. Buffer exchange was performed by adding the protein solution to Fisherbrand 

dialysis tubing with a molecular weight cutoff (MWCO) of 6,000-8,000 Da. Tubing was placed in 

2 L of Buffer A (20 mM Tris-HCl, pH 8.5) and incubated for 24 hours at 4˚C. Hb samples were 

collected and concentrated to less than 1 mL with Amicon Ultra concentrators with 10,000 

MWCO. 

  Anion-exchange chromatography. Protein was further purified with a Mono-Q 10/100 

GL strong anion exchange column (8 mL CV). Protein samples from IMAC were centrifuged for 

10 min at 10,000 x g (Eppendorf centrifuge 5415D) to pellet any insoluble impurities. The 
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Mono-Q 10/100 column was equilibrated with 5 CV water, 1 CV Buffer A, 1 CV Buffer B (20 mM 

Tris-HCl, 0.5 M NaCl, pH 8.5), then 5 CV Buffer A at 4 ml/min. Protein was then injected onto 

the column and eluted with a gradient that started at 100% Buffer A, 0% Buffer B and increased 

to 100% Buffer B and 0% Buffer A over 20 CV. Eluent, which was monitored at 280 nm, was 

collected, and samples with a red tint were kept. The presence of hemoglobin in the samples 

was confirmed with UV-Vis spectroscopy (see below).  

Size exclusion chromatography. The  cp- Hb 4SM N108K construct was further 

purified with an Amersham Pharmacia Biotech Superdex 75 HR 10/30 column (24 mL CV). The 

column was equilibrated with 2 CV water and then 2 CV ammonium acetate, pH 8.5 at 0.5 

mL/min. The protein sample was centrifuged for 10 min at 10,000 x g prior to injection onto the 

column. Eluent with a red tint was collected.  

 

Protein Characterization 

UV-Vis spectroscopy. Purifed Hb samples were characterized by UV-visible spectroscopy 

with a Thermo Scientific Nanodrop 1000 Spectrophotometer. The absorbance of the Soret band 

at 415 nm was measured to calculate Hb concentration (the extinction coefficient of oxy-Hb = 

12,500 M-1 cm-1). 

SDS-PAGE. Samples were prepared by 1:1 dilution with 2X Bio-Rad Laemmli sample 

buffer. Samples were added to wells in a stacking gel with a 15% resolving layer [15% (v/v) 

acrylamide, 375 mM Tris-HCl, pH 8.8, 0.1% (v/v) SDS, 0.1% (v/v) APS, TEMED] and a 5% stacking 

layer [5% (v/v) acrylamide, 125 mM Tris-HCl, pH 6.8, 0.1% (v/v) SDS, 0.1% (v/v) APS, TEMED]. To 

track protein migration Thermo Scientific PageRuler Prestained Protein Ladder was added to an 
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empty lane. Electrophoresis was carried out for 30 min at 90 V, which forced the samples to 

travel through the stacking layer. The voltage was increased to 150 V until the samples had 

traveled to the bottom of the gel. The gel was removed and then imaged. For fluorescence 

imaging the gel was immediately scanned using a Bio Rad Gel Doc EZ imager. Following the 

image, the gel was incubated in Coommassie protein stain [50% (v/v) methanol, 10% (v/v) glacial 

acetic acid, 0.1% (w/v) Coomassie Brilliant Blue R250], followed by destain (1:3:4 glacial acetic 

acid:methanol:water solution ). Images of Coomassie-stained gels were obtained with a Bio Rad 

Gel Doc EZ imager. 

Protein mass spectrometry. All electrospray ionization mass spectrometry (ESI-MS) 

analysis were done on an Advion expression CMS instrument attached to a Thermo Scientific 

Dionex Ultimate 3000 HPLC system. Protein samples were analyzed by ESI-MS on an Aeris 3.6 

m WIDEPORE XB-C8 200 Å LC column using Method A [Solvent A = 5% acetonitrile, 0.1% 

formic acid; Solvent B = acetonitrile, 0.1% formic acid (mobile phase). Flow rate = 4 mL/min. 

Gradient = 10% solvent B, 90% solvent A (0.0-2.0 min), 10% solvent B to 90% solvent B (2.0-12.0 

min), hold 90% solvent B (12.0-14.0 min), 90% solvent B to 10% solvent B (14.0-14.1 min), 

equilibrate back to 10% solvent B, 90% solvent A (14.1-17.0 min)]. Spectra were analyzed with 

MestReNova and reconstructed with Analyst. 

 

Conjugation and ligation of sHb 

Synthesis of GGK(DBCO). The peptide Fmoc-GGK, obtained from Sierra Reed and John 

Antos, was ligated to dibenzocyclooctyne (DBCO), deprotected and purified. To ligate Fmoc-

GGK to DBCO 5.49 mol DBCO-NHS was mixed with 11 mol Fmoc-GGK, 32.9 mol DIPEA, and 
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N-methyl-2-pyrrolidone (NMP) in a total reaction volume of 100 l. The reaction mixture was 

incubated at 25C for 25 min and product formation was confirmed with ESI-MS on a Kinetex 

2.6 m, C18 100 Å LC column (100 x 2.1 mm, C18, Phenomenex) using Method B [Solvent A = 

5% acetonitrile, 0.1% formic acid; Solvent B = acetonitrile, 0.1% formic acid (mobile phase). 

Flow rate = 0.4 mL/min. Gradient = 100% solvent A (0.0-1.0 min), 0% solvent B to 90% solvent B 

(1.0-7.0 min), hold 90% solvent B (7.0-9.0 min), 90% solvent B to 100% solvent A (9.0-9.1 min), 

equilibrate at 100% solvent A (9.1-12.0 min)] (Expected mass for Fmoc-GGK(DBCO) = 768.3 Da, 

observed mass = 768.3 Da). Product was then deprotected by mixing with 20% (v/v) piperidine 

followed by incubation at 25C for 45 min. The reaction was monitored by ESI-MS on the 

Kinetex C18 column using Method B and determined to be complete by 45 min (expected mass 

for GGK(DBCO) = 546.3 Da, observed mass = 547.3 Da). The reaction mixture was then purified 

with HPLC on the Luna 5u C18(2) 100 Å column (250 x 10 mm) (semi-prep, Phenomenex) using 

Method C [Solvent A = 5% acetonitrile, 0.1% formic acid; Solvent B = acetonitrile, 0.1% formic 

acid (mobile phase). Flow rate = 4 mL/min. Gradient = 10% solvent B, 90% solvent A (0.0-2.0 

min), 10% solvent B to 90% solvent B (2.0-15.0 min), hold 90% solvent B (15.0-17.0 min), 90% 

solvent B to 10% solvent B (17.0-17.1 min), equilibrate back to 10% solvent B, 90% solvent A 

(17.1-20.0 min)]. Eluent was monitored at 280 nm as well as 300 nm and the peak eluting at 

about 8.5 min was collected. Formic acid and acetonitrile were removed from the collected 

sample by rotary evaporation and the sample was then frozen over dry ice and lyophilized to 

remove any remaining solvent. The purified peptide was resolubilized in 100 l water and 20 l 

DMSO and its identity was confirmed by LC-ESI-MS with Method B as described above (Figure 
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A1 and A2). Final concentration of the GGK-DBCO stock solution was determined using UV-Vis 

at λmax = 309 nm and a molar extinction coefficient of 12,000 M-1 cm-1.   

Sortase-mediated ligation. Di- cp- sHb was ligated to the peptide GGK(FITC) (FITC = 

fluorescein isothiocyanate) as a proof-of-concept prior to ligation to GGK(DBCO). In ligation 

reactions 50 M di- cp- sHb was mixed with 100 M GGK(FITC) (obtained from Sierra Reed 

and John Antos) and 5 M sortase A heptamutant in sortase buffer (500 mM Tris-HCl, pH 7.5, 

1.5 M NaCl, 100 mM CaCl2). The reaction was incubated for 150 min at 25 C with samples 

removed and denatured every 30 min for SDS-PAGE and mass spectrometry. The di- cp- sHb 

ligation to GGK(DBCO) was repeated in the same manner except that the reaction was 

monitored for 120 min.   

Purification of di-(DBCO) cp- sHb product. Di-(DBCO) cp- sHb was purified from the 

sortase-mediated ligation reaction mixture with IMAC. The IMAC column [3 mL Thermo 

Scientific HisPur Ni-NTA (nitrilotriacetic acid )resin] was prepared by washing the packed resin 

with 10 CV water followed by 10 CV loading buffer (20 mM Tris pH 8.0, 150 mM NaCl, 10 mM 

imidazole). The reaction mixture was then loaded onto the equilibrated column and washed 

with 10 CV loading buffer. Di-(DBCO) cp- sHb was then eluted with a low imidazole buffer (20 

mM Tris pH 8.0, 150 mM NaCl, 50 mM imidazole) and di- cp- sHb was eluted with a high 

imidazole buffer (20 mM Tris pH 8.0, 150 mM NaCl, 250 mM imidazole). Eluents were initially 

characterized with UV-Vis spectrometry and then samples containing hemoglobin were 

characterized with SDS-PAGE and mass spectrometry.  

Cyclooctyne azide conjugation. Purified di-(DBCO) cp- sHb was then conjugated to 

fluorescent 6-FAM (fluorescein)-azide by adding 20 M di-(DBCO) cp- sHb to 10 M 6-FAM-
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azide (obtained from Sierra Reed and John Antos). The reaction was incubated at 25C for 60 

min and samples were taken and denatured every 15 min for analysis with SDS-PAGE and mass 

spectrometry.  

 

Crystallization 

Crystal trays. A total of 30 crystal trays were made and each tray was made with varying 

buffer conditions, protein concentration, and temperature (Table A1). Initially, the top of each 

well was coated with petroleum jelly to help create a seal and according to the conditions, and 

500 l of the specified buffer was placed in each well in a 24-well tray. On a cover slide, 1-2 l 

of buffer was mixed with 1 l of protein solution, producing a single drop. When specified in 

Table 1, 40 l of Hampton Research Al’s Oil was added on top of the protein:buffer drop. The 

cover slide was then flipped over and placed on the top of the well, where the slide was then 

pushed down and turned to ensure a good seal. The tray was placed in a dark area at the 

specified temperature and crystal growth was monitored by observation using a Motic digital 

light microscope. 

X-ray diffraction. Crystals were collected based on size, structure, and color. To collect a 

crystal, 15% glycerol cryo buffer (specified buffer with 15% glycerol) was added to the crystal 

slide followed by 30% glycerol cryo buffer (specified buffer with 30% glycerol). Crystals were 

then captured with a crystal loop and quickly transferred to liquid nitrogen. Crystals were 

stored in liquid nitrogen until diffraction data was collected. X-ray diffraction data were 

collected on Rigaku XtaLAB crystal X-ray diffractometer. A total of 3 images were collected with 

steps of 30 degrees. 
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Results 

 With the goal of developing a high molecular weight monodisperse hemoglobin, we 

expressed 2 Hb constructs to study further. The first construct, N108K Hb, was expressed in 

order to determine the structure of the low oxygen affinity mutant by X-ray crystallography. 

The second construct, sHb, was expressed to test the efficacy of sortase-mediated ligation, 

followed by azide-alkyne conjugation.  

 Protein expression and purification. Both protein constructs were successfully expressed 

in BL21 E. coli cells. After the IMAC purification step N108K Hb was recovered in a crude yield of 

35 mg/L.   N108K Hb was further purified with anion exchange chromatography followed by size 

exclusion chromatography to >95% homogeneity based on densitometry performed on SDS-

PAGE gels (Figure 9).  

 

Figure 9. Purification analysis of N108K Hb by SDS-PAGE. N108K Hb was purified first with 
IMAC (Step 1), followed by anion exchange chromatography (Step 2) and size exclusion 
chromatography (Step 3). 
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The sHb expression was significantly 

lower than that for N108K Hb, with a crude 

yield of 1.035 mg/L after IMAC. With the 

hexa-histidine tag, however, we were able 

to get good purification after 2 steps: IMAC 

followed by anion exchange 

chromatography.   The sHb was purified to 

98% homogeneity based on densitometry 

(Figure 10). 

 

 Sortase-mediated ligation of GGK(FITC) to sHb. In order to verify that the sortase-

mediated ligation would occur with Hb, we wanted to test the reaction with a fluorescent 

probe so that the reaction progress could be easily visualized. Thus, we initially tested this 

reaction by combining sHb with GGK(FITC) and sortase A (Figure 11).  The reaction occurred for 

Figure 11. Sortase-mediated ligation of GGK(FITC) to sHb. 

Figure 10. Purification analysis of sHb with 
SDS-PAGE. sHb was purified from lysate 
using IMAC (Step 1), followed by anion 
exchange chromatography (Step 2) 
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150 minutes and was analyzed both with ESI-MS and SDS-PAGE. By measuring the fluorescence 

in the gel as well as staining the gel with Coomassie stain we were able to monitor any changes 

among all of the proteins present as well as those that were modified with a fluorescent label. 

During the course of the reaction the migration of the cp- bands stayed constant, whereas the 

fluorescence intensity of the small GGK(FITC) linker decreased and the larger di-(FITC) band 

increased (Figure 12). In addition, from ESI-MS we were able to verify the presence of di-(FITC) 

as well as calculate the overall reaction yield of 75% (Figure 13).  

Figure 12. SDS-PAGE of GGK(FITC) ligation to sHb. Reaction ran for 150 min. Bands present 

include GGK(FITC) with a mass of 685.71 Da, cp- with a mass of 16,532 Da, sortase A with a 

mass of 17,851 Da, di-(FITC) with a mass of 32,052 Da, and di- with a mass of 32,361 Da. 
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Sortase-mediated ligation of GGK(DBCO) to sHb. Once we demonstrated that the 

sortase-mediated ligation to sHb worked, we then wanted to add the strained cyclooctyne 

(DBCO) to sHb (Figure 14). Since there is no fluorescent tag in this reaction the SDS-PAGE 

results are less informative due to the small molecular weight difference between di- and di-

(DBCO) (Figure 15). However, the successful ligation of DBCO to sHb was suggested by ESI-MS, 

which showed a prominent peak at 31,952 Da, which is just slightly below the expected mass of 

Figure 13. ESI-MS of GGK(FITC) ligation to sHb. A sample was analyzed before addition of 

GGK(FITC) (control) and again after 150 min. Peaks present in the spectra include cp- with an 

expected mass of 16,532 Da, di-(FITC) with an expected mass of 32,052 Da, di- with an 

expected mass of 32,361 Da and the double charge of cp- with an expected mass of 33,064 
Da. 

Figure 14. Sortase-mediated ligation of GGK(DBCO) to sHb. 
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di-(DBCO) of 31,969 Da. The di- peak at 32,361 Da also decreased in intensity and a reaction 

yield of 87% product was calculated (Figure 16).  

Purification of di-(DBCO) cp- sHb. Following the sortase-meditated ligation of DBCO to 

sHb we then wanted to establish that we could purify the desired product from the reaction 

mixture. To do this we took advantage of the loss of the hexa-histidine tag from sHb during the 

ligation. Due to several histidine residues on the surface of human Hb, Hb naturally has a 

moderate binding affinity for Ni2+ IMAC resin. Thus, while di-(DBCO) sHb still had some affinity 

for the Ni2+ IMAC column it had a reduced affinity compared to the unligated di- sHb and so 

Figure 15. SDS-PAGE of GGK(DBCO) ligation to sHb followed by purification. The reaction ran for 
120 min and was then purified. Samples were collected from the 50 mM imidazole elution as well 

as the 250 mM imidazole elution. Bands present include cp- with a mass of 16,532 Da, sortase A 

with a mass of 17,851 Da, di-(DBCO) with a mass of 31,969 Da, and di- with a mass of 32,361 
Da. 
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eluted at a lower imidazole concentration of 50 mM imidazole. The unligated di- sHb eluted 

from the Ni2+ column at 250 mM imidazole. The SDS-PAGE showed a slightly lower band at 32 

kDa in the 50 mM imidazole lane which suggests the presence of di-(DBCO), while in the 

higher imidazole lane, the di- band has slightly retarded mobilty (Figure 15). The expected 

lower mass for the purified DBCO-sHb was also confirmed by ESI-MS with a peak at 31,952 Da 

for 50 mM imidazole elution sample (Expected mass of di-(DBCO) = 31,969 Da) compared to 

Figure 16. ESI-MS spectra of GGK(DBCO) ligation to sHb followed by purification. A sample was 
analyzed before addition of GGK(DBCO) (control – top left) and again after 120 min (top right). 
The reaction mixture was purified with IMAC resulting in a 50 mM imidazole elution of di-

(DBCO) (bottom left) and 250 mM imidazole elution of di- (bottom right). Peaks present in 

the spectra include cp- with an expected mass of 16,532 Da, di-(DBCO) with an expected 

mass of 31,969 Da, di- with an expected mass of 32,361 Da and the double charge of cp- 
with an expected mass of 33,064 Da. 
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the peak at 32,362 Da for the 250 mM imidazole elution sample (Expected mass of di- = 

32,359 Da) (Figure 16). 

Cyclooctyne azide conjugation. The last proof-of-concept for the development of our 

monodisperse HBOC was the cycloocytne azide conjugation. The reaction was carried out in the 

absence of a copper ion catalyst with the addition of 6-FAM-azide to the purified di-(DBCO) 

Hb and monitored for 60 min (Figure 17). SDS-PAGE showed that while the migration of the cp-

 band was constant, the band for di- was slightly retarded. Additionally, the fluorescence 

intensity at the di- molecular weight increased as the reaction progressed consistent with the 

addition of 6-FAM to the di- globin (Figure 18). ESI-MS also showed a peak at 32,415 Da which 

is slightly lower than the expected mass of 32,430 Da for di-(DBCO-6-FAM-azide). The 

calculated yield was 68% (Figure 19). 

   

 

 

 

 

Figure 17. Cyclooctyne azide conjugation. 
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Figure 19. ESI-MS of 6-FAM-azide conjugation to sHb(DBCO). A sample was analyzed before 
addition of 6-FAM-azide (control) and then the reaction ran for 60 min. Peaks present in the 

spectra include cp- with an expected mass of 16,532 Da, di-(DBCO) with an expected mass of 

31,969 Da, di-(DBCO-6-FAM-azide) with an expected mass of 32,430 Da and the double 

charge of cp- with an expected mass of 33,064 Da. 

Figure 18. SDS-PAGE of 6-FAM-azide conjugation to sHb(DBCO). The reaction ran for 60 min. 

Bands present include cp- with a mass of 16,532 Da, di-(DBCO) with a mass of 31,969 Da, 

and di-(DBCO-6-FAM-azide) with a mass of 32,430 Da. 
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Crystallization and X-ray 

diffraction. A total of 31 crystal trays were 

made with the hanging drop method and a 

variety of buffer (mother liquor) 

compositions. Almost all trays were made 

with a maximum protein concentration of 

5 mg/mL because at higher concentrations 

Hb precipitated out of solution. The ratio 

of protein to buffer added to the hanging drop was 1:1 or 1:2 for the same buffer conditions. 

The pH of the buffer, 0.1 M Bis Tris, varied from 5.8-7.5. The largest crystals with the best 

structure were obtained in conditions where the buffer pH was between 5.8-6.2 (Figures 20-

22). Polyethylene glycol (PEG) 3350 was added with varying amounts ranging from 18-33% 

(w/v).  Larger crystals with better 

morphology were obtained when the 

PEG concentrations was 22-28% (Figure 

20-21). 

  Various salts were added such 

as sodium chloride, ammonium acetate, 

and ammonium sulfate which resulted 

in crystals with different geometric 

structures compared to those obtained 

5 mg/ml 
1:1 Protein:Buffer 
PEG 3350 28% 

0.1 M Bis Tris pH 5.8 

4ºC 

5 mg/ml 
1:1 Protein:Buffer 
PEG 3350 24% 

0.1 M Bis Tris pH 5.8 

4ºC 

Figure 20. Crystal conditions with varying PEG 
concentration.  

5 mg/ml 
1:1 Protein:Buffer 
PEG 3350 22% 

0.1 M Bis Tris pH 6.0 

10 mM NaCl 
4ºC 

5 mg/ml 
1:1 Protein:Buffer 
PEG 3350 22% 

0.1 M Bis Tris pH 6.0 

20 mM (NH
4
)
2
SO

4
 

4ºC 

Figure 21. Crystal conditions with the addition 
of sodium or ammonium sulfate.  
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without added salt. In the absence of added salt the crystals had a square geometry with a large 

surface area.  

With the addition of salt, the crystals formed were long, thin and rectangular.  Among 

the different salts conditions tested, the addition of ammonium sulfate resulted in the largest 

crystals with the best morphology (Figure 21).  To reduce precipitation, crystal growth was 

slowed by adding Al’s oil to some of the crystal trays, as well as reducing the temperature at 

which the trays were made and stored from 25C to 4 C (Figure 22).  

 Crystals with red color, regular 

morphology, and noticeably larger size 

were looped and frozen for X-ray 

diffraction. With the help of Professor 

Clint Speigel, crystals were mounted in 

the diffractometer and the diffraction 

images were collected. Unfortunately, 

none of these crystals diffracted with 

sufficient resolution for protein structure 

determination.   

 

Discussion 
 
 While the development of a monodisperse, oligomeric HBOC is by no means complete, 

the initial experiments reported here demonstrate the potential of our approach. We have 

established proof-of-concept for linking DBCO-modified Hb molecules to a scaffold that displays 

5 mg/ml 
1:1 Protein:Buffer 
PEG 3350 28% 

0.1 M Bis Tris pH 6.2 

4ºC 

5 mg/ml 
1:1 Protein:Buffer 
PEG 3350 28% 
0.1 M Bis Tris pH 6.1 
25ºC 

Figure 22. Crystal conditions at different 
temperatures. 
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azide groups. This proof-of-concept was achieved in a stepwise fashion by testing a series of 

reactions that could be easily monitored.  

One of the biggest concerns that needs to be resolved is the low expression yield of ~1.0 

mg/mL for the sHb construct. A large reason for this low expression is the inclusion of cp- 

globin into the sHb construct, which is known to have a reduced expression in comparison to wt 

 globin. This –globin variant was used in these initial experiments in the interest of time: we 

had expression vectors with the cp- gene readily available. Now that we have established 

proof-of-concept for sortase A’s ability to modify Hb, we will create an alternate version of sHb 

that co-expresses a wild-type (wt)  globin with the sortase-tag di- globin. With the addition 

of wt  the expression of sHb should increase dramatically (in our experience by > 10-fold). In 

the unlikely chance that expression does not increase, the sortase tag on the di- globin may be 

inhibiting expression. Other ways to optimize the expression yields include changing the 

amount of time the cells are grown, changing the temperature during the growth, or including 

additional nutrients. Increasing expression is necessary to support future preclinical testing of 

polymeric Hbs. 

 Once expressed and purified the sHb contruct was easily modified with reactions that 

produced good yields. While the yield for each reaction could be improved, the cyclooctyne 

azide conjugation has the most room for optimization. To increase product formation the 

reaction could continue for a longer period of time, and the linker, 6-FAM-azide, could be used 

in greater excess, such as 3x, 5x, 10x. Although tractable in the near-term, requiring a large 

excess of the azide reagent is not desirable; thus, optimizing yields through changes in reaction 

conditions will be a top priority.  
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 To optimize the sortase-mediated reactions, more focus should be placed on minimizing 

side reactions. Side reactions that could be occurring include the reverse reaction which results 

in the re-formation of the starting sHb as well as formation of a hydrolysis product (Figure 23). 

The reverse reaction occurs when the cleaved peptide with an N-terminal glycine acts as a 

nucleophile and reforms the starting material. To prevent this, a 2x excess of the linker peptide 

is added in order to push the reaction forward. Another strategy to minimize the reverse 

reaction is to add nickel to the reaction mixture which can then chelate with the cleaved 

peptide to prevent it from reacting30. There are fewer options for preventing the hydrolysis 

product. 

 

 

 

 

 

 

 

 

 

 

 
Figure 23. Side reactions during sortase-mediated ligations.  
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However, based on the initial experiments described above, it does not seem to be a significant 

problem for ligations with sHb. Only a small fraction of the total di- added to the reaction 

appears to form the hydrolysis product.  

 The next steps for the development of this HBOC are to conjugate sHb to a larger azide 

scaffold. First, sHb conjugation to a small azide tetramer will be tested, followed by increasingly 

larger azide scaffolds. We anticipate that the structure of the scaffold will need to be optimized 

to allow multiple high molecular weight proteins to react with the azide groups. Commercially 

available scaffolds will be tested first, but these reagents have relatively short arms that may 

sterically prevent multiple ligations with Hb. Furthermore, it will be necessary to test the 

oxygen binding affinities of the therapeutic as it is developed to verify that it can reversibly bind 

oxygen. If as expected, the product has high oxygen binding affinity, the mutant N108K can be 

incorporated into the protein, therefore reducing the oxygen affinity to a physiologically-

functional level.  

 In support of efforts to modulate poly-Hb oxygen binding, we undertook structural 

studies of N108K mutants. We have not yet obtained suitable diffraction data. In order to get a 

high-resolution X-ray data set, the production of N108K Hb crystals needs to be further 

optimized. While crystal nucleation is not an issue, the formation of crystals that are large 

enough with good morphology for crystallography is needed. With the conditions sampled, 

crystals are able to form but many have irregular morphology or a small size. For the time 

being, this effort will be suspended until we narrow down the Hb variant that is optimal for the 

sortase ligation work.  
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 Through rational design that combines genetic and chemical modifications, our strategy 

to generate an HBOC shows potential to provide a functional oxygen carrier for acute blood 

replacement. Employing sortase A to add a highly-specific, biocompatible DBCO functional 

group to Hb allows us to explore the potential of “click chemistry” to generate a monodisperse 

poly-Hb. Moreover, by investigating mutations to decrease oxygen affinity, our product will 

have increased capability of transporting oxygen.  
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Appendix 
 

Tray [Protein] Protein:Buffer 
Temperature 

°C 
Column Condition Variance Row Condition Variance Other 

1 5 1:1 25 0.1 M Bis Tris pH 5.9, 6.0, 6.1, 6.2 PEG 3350 (%) 25, 26, 27, 28, 29, 30 none 

2 5 1:1 25 0.1 M Bis Tris pH 5.9, 6.0, 6.1, 6.2 PEG 3350 (%) 28, 29, 30, 31, 32, 33 none 

3 5 1:1, 1:2 25 0.1 M Bis Tris pH 5.75, 6.05,6.6,7.0 PEG 3350 (%) 26, 28, 30, 32, 34 , 36 none 

4 5 1:1, 1:2 25 0.1 M Bis Tris pH 6.05,6.3,6.4, 6.6 PEG 3350 (%) 28, 29, 30, 31, 32, 33 none 

5 5 1:2, 1:3 25 0.1 M Bis Tris pH 6.05,6.3,6.4, 6.6 PEG 3350 (%) 28, 29, 30, 31, 32, 33 none 

6 3 1:1, 1:2 25 0.1 M Bis Tris pH 6.05, 6.3, 6.4, 6.6 PEG 3350 (%) 28, 29, 30, 31, 32, 33 none 

7 5 1:1, 1:2 25 0.1 M Bis Tris pH 6.0, 6.3, 6.5, 6.8 PEG 3350 (%) 28, 29, 30, 31, 32, 33 none 

8 5 1:1, 1:2 25 0.1 M Bis Tris pH 6.0, 6.3, 6.5, 6.8 PEG 3350 (%) 28, 29, 30, 31, 32, 33 none 

9 5 1:1, 1:2 25 NaCl (mM) 0, 10, 15, 20  PEG 3350 (%) 28, 29, 30, 31, 32, 33 0.1 M Bis Tris pH 6.0 

10 5 1:1 25 NaCl (mM) 0, 10, 15, 20  PEG 3350 (%) 28, 29, 30, 31, 32, 33 0.1 M Bis Tris pH 6.8 

11 5 1:1 25 0.1 M Bis Tris pH 6.0, 6.3, 4.4, 6.6  PEG 3350 (%) 28, 29, 30, 31, 32, 33 Al's oil 

12 5 1:1 25 0.1 M Bis Tris pH 6.0, 6.3, 4.4, 6.6  PEG 3350 (%) 28, 29, 30, 31, 32, 33 none 

13 5 1:1 4 NaCl (mM) 0, 5, 10, 20 PEG 3350 (%) 28, 29, 30, 31, 32, 33 0.1 M Bis Tris pH 6.0 

14 5 1:1 4 NaCl (mM) 0, 5, 10, 20 PEG 3350 (%) 18, 20, 22, 24, 26, 28 0.1 M Bis Tris pH 6.0 

15 5 1:1 4 0.1 M Bis Tris pH 5.8, 6.0, 6.2, 6.4  PEG 3350 (%) 18, 20, 22, 24, 26, 28 none 

16 10 1:1 4 0.1 M Bis Tris pH 5.8, 6.0, 6.2, 6.4  PEG 3350 (%) 18, 20, 22, 24, 26, 28 none 

17 5 1:1, 1:2 4 NaCl (mM) 10, 20, 30, 40 PEG 3350 (%) 22, 24, 26, 28, 30, 32 0.1 M Bis Tris pH 6.0 

18 5 1:1, 1:2 4 (NH4)2SO2 0, 5, 10, 20 PEG 3350 (%) 22, 24, 26, 28, 30, 32 0.1 M Bis Tris pH 6.0 

19 5 1:1 4 (NH4)2SO2 0, 5, 10, 20 PEG 3350 (%) 22, 24, 26, 28, 30, 32 0.1 M Bis Tris pH 6.0 

20 5 1:1, 1:2 4 NaCl (mM) 0, 20, 40, 60 PEG 3350 (%)  22, 24, 26, 28, 30, 32  0.1 M Bis Tris pH 6.0  

21 5 1:1, 1:2 4 (NH4)2SO2 0,10, 20, 30 PEG 3350 (%) 22, 24, 26, 28, 30, 32 0.1 M Bis Tris pH 6.0 

22 5 1:1, 1:2 4 (NH4)2SO2 0,10, 20, 30 0.1 M Bis Tris pH 5.8, 6.1, 6.4, 6.7, 7.0, 7.5 24% PEG 

23 5 1:1, 1:2 4 PEG 3350 (%) 24, 26, 28, 30 NH4(SO2)2 10, 20, 30, 40, 50, 60 0.1 M Bis Tris pH 6.0 

24 5 1:1, 1:2 4 (NH4)2SO2 0,10, 20, 30 PEG 3350 (%) 18, 22, 26, 32, 36, 40 0.1 M Bis Tris pH 6.0 

25 5 1:1, 1:2 4 0.1 M Bis Tris pH 6.0, 6.2, 6.4, 6.5 NH4(SO2)2 40, 50, 60, 70, 80, 90 24% PEG 

26 5 1:1, 1:2 4 PEG 3350 (%) 22,23,24,26 NH4(SO2)2 40, 50, 60, 70, 80, 90 0.1 M Bis Tris pH 6.0 

27 5 1:1, 1:2 4 0.1 M Bis Tris pH 6.0, 6.3,6.4, 6.5 PEG 3350 (%) 20, 22, 24, 26, 28, 30 Al's oil 

28 5 1:1, 1:2 4 PEG 3350 (%) 20, 22, 24, 26 NH4(SO2)2 0, 20, 40, 60, 80, 100 0.1 M Bis Tris pH 6.5 

29 5 1:1, 1:2 4 PEG 3350 (%) 18,20,24,26 NH4(SO2)2 0, 20, 40, 60, 80, 100 0.1 M Bis Tris pH 6.5 

30 5 1:1, 1:2 4 PEG 3350 (%) 23, 24, 25, 26 0.1 M Bis Tris pH 6.2, 6.3, 6.4, 6.5, 6.6 none  

31 5 1:1, 1:2 4 0.1 M Bis Tris pH 5.9, 6.1,6.27,6.43 PEG 3350 (%) 22, 22, 23, 23, 24, 24 none  

 

 

Table A1. Crystal Tray Conditions 
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Synthesis and purification of GGK(DBCO). The peptide GGK(DBCO) was successfully synthesized 

and purified. After the initial purification with Method A (see Materials and Methods) there was 

still residual Fmoc in solution so a second purification was carried out. Better separation of the 

DBCO and Fmoc peak was achieved with Method C, and we were able to purify GGK(DBCO) to 

>95%. 

 
 
 
 
 
 
 
 
 
 
  

 
 

      
 

Figure A2. HPLC spectra of GGK(DBCO). The main peaks seen both at 280 nm and 309 nm 
confirm purity of GGK(DBCO) purity. 

Figure A1. ESI-MS analysis of GGK(DBCO). Main peak at 546.2 Da confirmed the 
presence of GGK(DBCO) which has an expected mass of 546.26 Da. 
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