Apr 30th, 1:30 PM - 3:00 PM

Relative influences of human nutrient sources, the Pacific Ocean, and climate change on Salish Sea dissolved oxygen through 2070

Mindy Roberts
Washington (State). Department of Ecology, Mindy.Roberts@ecy.wa.gov

Teizeen Mohamedali
Washington (State). Department of Ecology

Brandon Sackmann
Integral Consulting Inc.

Tarang Khangaonkar
Pacific Northwest Pollution Prevention Resource Center

Wen Long
Pacific Northwest Pollution Prevention Resource Center

See next page for additional authors

Follow this and additional works at: https://cedar.wwu.edu/ssec

Part of the Terrestrial and Aquatic Ecology Commons

Roberts, Mindy; Mohamedali, Teizeen; Sackmann, Brandon; Khangaonkar, Tarang; Long, Wen; and Hamlet, Alan, "Relative influences of human nutrient sources, the Pacific Ocean, and climate change on Salish Sea dissolved oxygen through 2070" (2014).
Salish Sea Ecosystem Conference. 92.

This Event is brought to you for free and open access by the Conferences and Events at Western CEDAR. It has been accepted for inclusion in Salish Sea Ecosystem Conference by an authorized administrator of Western CEDAR. For more information, please contact westerncedar@wwu.edu.
Speaker
Mindy Roberts, Teizeen Mohamedali, Brandon Sackmann, Tarang Khangaonkar, Wen Long, and Alan Hamlet

This event is available at Western CEDAR: https://cedar.wwu.edu/ssec/2014ssec/Day1/92
Relative influences of human nutrient sources, the Pacific Ocean, and climate change on Salish Sea dissolved oxygen through 2070

Mindy Roberts¹, Teizeen Mohamedali¹, Brandon Sackmann¹, Tarang Khangaonkar², Wen Long², and Alan Hamlet³

¹ Washington State Department of Ecology
² Pacific Northwest National Laboratory
³ Notre Dame University

Funded by EPA – NEP
Low oxygen happens ... algae grows ... why?

Puget Sound Dissolved Oxygen
- Waters of Concern
- Impaired Waters
- Cities

Eyes Over Puget Sound
Hood Canal 2013

Pacific Ocean dissolved oxygen levels, coastal upwelling, Pacific Decadal Oscillation, other climate cycles, NE Pacific oxygen trends, ocean circulation, residence time, estuarine circulation, stratification, vertical mixing, wind, air temperature, organic matter decay, sediment burial rates, trophic-level dynamics, algae growth, water temperature, human wastewater input, river flows, river nutrient inputs, sediment-water processes, etc. ...
Relative impacts on dissolved oxygen

Pacific Ocean trends

- Increased air temperature
- Changes in circulation due to changes in freshwater inflows
- Increased wastewater from future population
- Higher river nitrogen concentrations from land cover change

... more study needed.
Local sources of nitrogen
(US and Canada)

- Pacific Ocean is the largest source of nitrogen
- Sediment-water exchanges highly influential

Mohamedali et al. (2011)
Current and Future Scenarios

(2020s, 2040s, 2070s)

- Population
- Climate change
- River Flows
- Estuarine Circulation
- Declining Pacific Ocean oxygen
- Land cover change
• 3D model (circ, WQ)
• 10,000s of elements
• 1,000,000,000s of outputs
• See me for modeling details...

Source: Khangaonkar et al. (2012)

Data courtesy of King County
Average DO depletion (mg/L)
- 0.00 – 0.05
- 0.05 – 0.10

Oxygen depletion – current sources (wastewater, watersheds)

- Biggest impacts in South and Central Puget Sound
- Not directly applicable to State of WA water quality standards

Average regional and seasonal oxygen deficit:
- Oxygen inventory
- Below pycnocline
- September - October
Oxygen depletion – future marine point sources and watershed inflows

<table>
<thead>
<tr>
<th>Year</th>
<th>Current Circulation, Current Ocean</th>
<th>Average DO depletion (mg/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2020</td>
<td>2020 loads, current circ, current ocean</td>
<td>0.00 – 0.10</td>
</tr>
<tr>
<td>2040</td>
<td>2040 loads, current circ, current ocean</td>
<td>0.11 – 0.20</td>
</tr>
<tr>
<td>2070</td>
<td>2070 loads, current circ, current ocean</td>
<td>0.21 – 0.50</td>
</tr>
</tbody>
</table>

Legend:
- 0.00 – 0.10
- 0.11 – 0.20
- 0.21 – 0.50
- 0.51 – 0.80
- 0.81 – 1.10

Study Area
Oxygen depletion – future human loads and future circulation

<table>
<thead>
<tr>
<th>Year</th>
<th>0.00 – 0.10</th>
<th>0.11 – 0.20</th>
<th>0.21 – 0.50</th>
<th>0.51 – 0.80</th>
<th>0.81 – 1.10</th>
</tr>
</thead>
<tbody>
<tr>
<td>2020</td>
<td>current</td>
<td>2020 loads, future circ, current ocean</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2040</td>
<td>2040 loads, future circ, current ocean</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2070</td>
<td>2070 loads, future circ, current ocean</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Future scenarios – Pacific Ocean trends

Oxygen declining at all isopycnals at Station P (50-year trend)

Faster decline near Strait of Juan de Fuca (Station P4)

Sources: Figs 1 and 4 from Whitney et al. / Progress in Oceanography 75 (2007) 179-199
Oxygen depletion – future human loads, circulation, and ocean

<table>
<thead>
<tr>
<th>Year</th>
<th>Average DO depletion (mg/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2020</td>
<td>0.00 – 0.10</td>
</tr>
<tr>
<td>2040</td>
<td>0.11 – 0.20</td>
</tr>
<tr>
<td>2070</td>
<td>0.21 – 0.50</td>
</tr>
</tbody>
</table>

Legend:
- 0.00 – 0.10
- 0.11 – 0.20
- 0.21 – 0.50
- 0.51 – 0.80
- 0.81 – 1.10

-1.5 mg/L
Future population growth will increase oxygen impacts; ocean trends would make it worse.

Average depletion (mg/L of oxygen decline compared with current conditions)

- 0.00 – 0.10
- 0.11 – 0.20
- 0.21 – 0.50
- 0.51 – 0.80
- 0.81 – 1.10
Relative impacts on dissolved oxygen

Pacific Ocean trends

- Increased air temperature
- Changes in circulation due to changes in freshwater inflows
- Increased wastewater from future population
- Higher river nitrogen concentrations from land cover change

... more study needed.
Influence

Uncertainty

Future ocean conditions

Future marine community shifts
Future climate
(air temperature, precipitation, hydrology)
Future sediment-water exchanges
Future watershed concentrations
(land cover)
Future watershed inflows
Future marine point source concentrations
Future marine point source flows
Current sediment-water exchanges

Current ocean conditions

Current watershed inflows
Current marine point sources
Next steps (2015):
Pacific Ocean trends?
Sediment diagenesis
Revisit scenarios

Project Team:
Mindy.Roberts@ecy.wa.gov
Teizeen.Mohamedali@ecy.wa.gov
Tarang.Khangaonkar@pnl.gov
Wen.Long@pnl.gov
Cope.Ben@epa.gov
Bsackmann@integral-corp.com

This project has been funded wholly or in part of the US EPA under assistance agreement PC-00J279-01 to Department of Ecology. The contents of this document do not necessarily reflect the views and policies of the EPA, nor does mention of trade names or commercial products constitute endorsement or recommendation for use.

Report:
www.ecy.wa.gov/programs/wq/PugetSound/DOModel.html