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Abstract

For a fixed graph F , we would like to determine the maximum number of edges
in a properly edge-colored graph on n vertices which does not contain a rainbow copy
of F , that is, a copy of F all of whose edges receive a different color. This maximum,
denoted by ex∗(n, F ), is the rainbow Turán number of F , and its systematic study
was initiated by Keevash, Mubayi, Sudakov and Verstraëte [Combinatorics, Proba-
bility and Computing 16 (2007)]. We determine ex∗(n, F ) exactly when F is a forest
of stars, and give bounds on ex∗(n, F ) when F is a path with l edges, disproving a
conjecture in the aforementioned paper for l = 4.

1 Introduction

For a fixed graph F , we would like to determine the maximum number of edges in a
properly edge-colored graph on n vertices which does not contain a rainbow copy of F ,
that is, a copy of F all of whose edges receive a different color. This maximum, denoted
by ex∗(n, F ), is the rainbow Turán number of F , and its systematic study was initiated by

∗Research supported by University of Montana University Grant Program, grant no. M25364.
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Keevash, Mubayi, Sudakov and Verstraëte in 2007 [12]. Among other things they proved
that when F has chromatic number at least 3, then

ex∗(n, F ) = (1 + o(1))ex(n, F )

where ex(n, F ) is the (usual) Turán number of F . They also showed that

ex∗(n,Ks,t) = O(n2−1/s)

where Ks,t is the complete bipartite graph with classes of size s and t. This research was
continued by Das, Lee and Sudakov [7], who partially answered a question from [12] on
even cycles (this case has an interesting connection to additive number theory). In this
paper, we determine ex∗(n, F ) exactly when F is a forest of stars, and give bounds on
ex∗(n, F ) when F is a path with l edges, disproving a conjecture in [12] for l = 4.

Our methods also yield short proofs of the classic results on Erdős and Gallai on the
(usual) Turán numbers of matchings [8], and of some recent results of Lidický, Liu and
Palmer [13] on the Turán numbers of forests of stars. For all notation not defined see
Bollobás [5].

2 Matchings

Write Mk for a matching with k edges. The usual Turán number for matchings was
determined by Erdős and Gallai [8], who proved the following. Define Gn,k = (V,E) to
be the graph containing a clique Gk on vertex set Vk ⊂ V , where |V | = n, |Vk| = k, and
in which each v ∈ Vk is joined to every vertex of W = V \ Vk. Then

ex(n,Mk) = max{e(Gn,k−1), e(K2k−1)}

= max

{(
k − 1

2

)
+ (k − 1)(n− k + 1),

(
2k − 1

2

)}
= n(k − 1) +O(k2),

and, for sufficiently large n, Gn,k−1 is the unique extremal graph. The second term of the
maximum is necessary since a clique on 2k−1 vertices also contains no Mk, and for small
n it has more edges than Gn,k−1.

In other words, for sufficiently large n, ex(n,Mk) =
(
k−1
2

)
+ (k− 1)(n− k+ 1). Rather

surprisingly, the same is true for ex∗(n,Mk). First we establish a weak version of this
result. Although both the next two theorems are special cases of the results in the next
section, their proofs will serve as templates for what follows.

Theorem 1.
ex∗(n,Mk) = n(k − 1) +O(k2).

Proof. Suppose G = (V,E) has the maximum number of edges such that there exists a
proper edge-coloring χ of G with no rainbow Mk. Then G must contain a rainbow Mk−1,
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on vertex set A, say. Write B = V \A, C ⊂ A for those vertices of A which send at least
t = 2k edges to B, and set c = |C|.

We must have c 6 k − 1, or else we could greedily build a rainbow matching from
A to B of size k as follows. First choose an edge c1b1 ∈ E, where c1 ∈ C and b1 ∈ B,
where without loss of generality χ(c1b1) = 1. Then choose an edge c2b2 ∈ E of a different
color, say χ(c2b2) = 2, where c2 ∈ C and b2 ∈ B with b2 6= b1. This is possible since
d(c2) > 3. Continuing, we finally choose ckbk ∈ E with χ(ckbk) = k, which is possible
since d(ck) > 2k − 1 (we have k − 1 vertices b1, . . . , bk−1 and k − 1 edge colors to avoid).

At least (and in fact, exactly) k − 1 − c of the edges of our Mk−1 contain no vertex
of C; write M ′ for this set of edges. We claim that G′ = G[B] is (k − 1 − c)-colorable.
Indeed, it is (k − 1− c)-colored by χ. For if e ∈ E(G′) has a color not appearing among
the colors of M ′, we can form a rainbow copy of Mk by starting with M ′ and e, and then
greedily extending from the vertices of C as above (at the last stage we have k− 1 colors
and at most (c− 1) + 2 6 (k− 2) + 2 = k vertices to avoid). Consequently, the maximum
degree in G[B] is at most k − 1− c, and so e(G[B]) 6 k−1−c

2
(n− (2k − 2)). Therefore,

e(G) = e(G[A]) + e(A,B) + e(G[B])

6

(
2k − 2

2

)
+ (2k − 2− c)(2k − 1) + c(n− (2k − 2)) +

k − 1− c
2

(n− (2k − 2))

= (k − 1)(6k − 5)− c(2k − 1) +
k − 1 + c

2
(n− (2k − 2))

6 (k − 1)(6k − 5) + (k − 1)(n− (2k − 2))

= n(k − 1) + (k − 1)(4k − 3).

Next we refine this argument to get an exact result, at least for sufficiently large n.

Theorem 2. For n > 9k2,

ex∗(n,Mk) =

(
k − 1

2

)
+ (k − 1)(n− k + 1).

Proof. We already know that ex∗(n,Mk) > ex(n,Mk) =
(
k−1
2

)
+ (k− 1)(n− k+ 1), so we

only need to show that ex∗(n,Mk) 6
(
k−1
2

)
+ (k − 1)(n − k + 1). To this end, suppose

again that G = (V,E) has the maximum number of edges such that there exists a proper
edge-coloring χ of G with no rainbow Mk. Following the proof of Theorem 1, we see that
we must have c = k − 1, since otherwise

e(G) 6
2k − 3

2
(n− 2(k − 1)) + (k − 1)(6k − 5) <

(
k − 1

2

)
+ (k − 1)(n− k + 1),

as long as n > 9k2. Armed with this information, we deduce that G[(A∪B)\C] contains
no edges. Otherwise, if e ∈ E(G[(A ∪ B) \ C]), we could greedily extend e to a rainbow
matching Mk using the vertices of C. Consequently,

e(G) 6

(
|C|
2

)
+ |C|(|A| − |C|+ |B|) =

(
k − 1

2

)
+ (k − 1)(n− k + 1).
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The theorem of Erdős and Gallai that ex(n,Mk) =
(
k−1
2

)
+ (k − 1)(n − k + 1) follows

immediately from Theorem 2 (at least for sufficiently large n)1.

3 Forests of stars

In this section we address the rainbow Turán number of a forest F where each component
is a star. In this case, the Turán number was determined by Lidický, Liu and Palmer [13].
We give a new proof of this result at the end of this section.

Let F be a forest of k stars S1, S2, . . . , Sk such that e(Sj) 6 e(Sj+1) for each j. We
will construct a family of n-vertex graphs that each have a proper edge-coloring with no
rainbow copy of F . For 0 6 c 6 k − 1, define f(c) to be

f(c) =

(
k−c∑
i=1

e(Si)

)
− 1.

The graph HF (n, c) is defined as follows. For c = k − 1, we connect a set C of c = k − 1
universal vertices to an edge-maximal graph H of maximum degree f(c) = f(k − 1) =
e(S1)− 1 on the remaining n− k+ 1 vertices. (A universal vertex is one that is joined to
every other vertex, so that in particular G[C] is a clique.) When c 6 k − 2, we connect
a set C of c universal vertices to an edge-maximal f(c)-edge-colorable graph H on n− c
vertices.

Note the slight distinction in the definition of the subgraph H in the two cases c = k−1
and c 6 k − 2. In both cases, it is easy to see that H can only contain k − c − 1 of the
stars in F . The remaining c+ 1 stars must each use at least one vertex from C, which is
impossible. Therefore, in both cases, HF (n, c) does not contain a rainbow copy of F .

When c = k− 1, the subgraph H is (e(S1)− 1)-regular when either n− c or e(S1)− 1
is even. Otherwise, H has one vertex of degree e(S1) − 2 and n − k vertices of degree
e(S1)− 1. Therefore, the total number of edges in HF (n, k − 1) is

e(HF (n, k − 1)) =

(
k − 1

2

)
+ (k − 1)(n− k + 1) +

⌊
(e(S1)− 1)(n− k + 1)

2

⌋
.

When c 6 k−2, there are exactly bn−c
2
c edges of each color in H, so that H has f(c)bn−c

2
c

edges. Therefore, the total number of edges in HF (n, c) is

e(HF (n, c)) =

(
c

2

)
+ c(n− c) + f(c)

⌊
n− c

2

⌋
=

(
c

2

)
+ c(n− c) +

((
k−c∑
i=1

e(Si)

)
− 1

)⌊
n− c

2

⌋
.

1In fact, to get a short direct proof of the theorem of Erdős and Gallai simply remove all reference to
edge-colorings in the argument above. Note that this proof avoids Hall’s theorem.
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Consequently, for all c 6 k − 1, the number of edges in the graph HF (n, c) is

e(HF (n, c)) = cn+
1

2

((
k−c∑
i=1

e(Si)

)
− 1

)
n+O(1). (1)

Furthermore, the subgraph H of HF (n, c) has average degree f(c)− ε, where ε < 1.
Of particular interest is the construction HF (n, 0), which is simply an edge-maximal

(e(F )− 1)-edge-colored graph, since f(0) = e(F )− 1.
The key to our analysis is the following technical lemma, which allows us to restrict

our attention to the family HF (n, c).

Lemma 3. Let F be a forest of k stars. Suppose that G is an edge-maximal properly
edge-colored graph on n vertices containing no rainbow copy of F . Then, for sufficiently
large n, G is isomorphic to one of the graphs HF (n, c).

Before turning to the proof of this lemma, we explain its use in the proof of our main
result, Theorem 4. Specifically, suppose we have proved Lemma 3, and consider a fixed
forest of stars F . In order to find the extremal graphs for a rainbow copy of F , we just
need to determine the value of c = c(F ) that maximizes the number of edges e(HF (n, c))
of HF (n, c).

For example, when F is a forest of stars each of size 1 (i.e., a matching), then, for large
n, the sum in (1) is maximized when c = k − 1. Therefore, for large n, an edge-maximal
properly edge-colored graph G containing no rainbow copy of F must be isomorphic to
HF (n, k − 1). In this case, f(k − 1) = e(S1) − 1 = 0 (this holds whenever F contains a
star of size 1), so that G consists of a universal set of size k− 1 joined to an independent
set of size n− k + 1. This reproves Theorem 2.

It turns out that, for every F , the maximum of e(HF (n, c)) is attained at either c = 0
or c = k − 1.

Theorem 4. Let F be a forest of k stars. Suppose that G is an edge-maximal properly
edge-colored graph on n vertices containing no rainbow copy of F . Then, for sufficiently
large n, 1) if F contains no star of size 1, then G is isomorphic to HF (n, 0);
2) otherwise, G is isomorphic to the larger of HF (n, 0) and HF (n, k − 1).

Proof. First consider the case when F contains no star of size 1. In this case, if F contains
at least one star of size at least 3, then, for sufficiently large n, the right hand side of (1)
is maximized when c = 0. Therefore, by Lemma 3, G must be isomorphic to HF (n, 0)
(for large n).

If every star in F has size 2, then the sum of the two main terms in (1) is constant
over all c 6 k− 1, so we need to examine the error term. In both the cases c = k− 1 and
c 6 k − 2, we have

e(HF (n, c)) =

(
c

2

)
+ c(n− c) + (2(k − c)− 1)

⌊
n− c

2

⌋
.
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Simple computations show that this is maximized at c = 0. Therefore, G must be iso-
morphic to HF (n, 0).

To summarize, if F contains no star of size 1, G must be isomorphic to HF (n, 0), if n
is sufficiently large. As already mentioned, this extremal graph is just an edge-maximal
graph that is properly edge-colored with f(0) = e(F )− 1 colors.

Now suppose that F contains a star of size 1. Write s > 1 for the number of stars of
size 1, t for the number of stars of size 2, and p = k − s − t for the number of stars of
size at least 3 in F . If p = 0, then we should clearly take c = k − 1 to maximize the sum
of the two main terms in (1). Consequently, we may assume p > 0. We now have three
estimates for the number of edges in HF (n, c), depending on the value of c. If c < p (and
p > 0), then

e(HF (n, c)) = cn+
1

2

(
s+ 2t+

(
k−c∑

i=s+t+1

e(Si)

)
− 1

)
n+O(1),

which is maximized (for large n) when c = 0 (as each e(Si) in the above sum is at least
3). Thus, when c < p (and p > 0), we should take c = 0, and then

e(HF (n, c)) =
1

2

(
s+ 2t+

(
k∑

i=s+t+1

e(Si)

)
− 1

)
n+O(1). (2)

If next p 6 c < p+ t, then

e(HF (n, c)) = cn+
1

2
(s+ 2(t− (c− p))− 1)n+O(1) =

1

2
(s+ 2t+ 2p− 1)n+O(1), (3)

which (for large n) is clearly smaller than (2) if p > 0. If lastly p+ t 6 c 6 p+ t+ s− 1 =
k − 1, then

e(HF (n, c)) = cn+
1

2
(s− (c− (p+ t))− 1)n+O(1) =

1

2
(s+ t+ p+ c− 1)n+O(1),

which is maximized (for large n) when c = k − 1. (We remind the reader that in the
case we are considering, f(k− 1) = e(S1)− 1 = 0, so that both constructions of HF (n, c)
coincide when c = k − 1.) Thus, when p+ t 6 c 6 p+ t+ s− 1 = k − 1, we should take
c = k − 1 = s+ t+ p− 1, and then

e(HF (n, c)) = (s+ t+ p− 1)n+O(1) = (k − 1)n+O(1),

which is larger than (3) when n is large. Therefore, for sufficiently large n, the number
of edges in HF (n, c) is maximized when c is either 0 or k − 1.

The choice of c to maximize the sum of the two main terms in (1) can be illustrated
as follows (see Table 1). Write down a row of k 2s, and underneath this row, write down
the star sizes e(Sk), e(Sk−1), . . . , e(S1) in decreasing order. Next, take the sum of the first
c entries in the top row and the last k − c entries in the bottom row, where c 6 k − 1.
This sum represents twice the coefficient of n in (1).

We now turn our attention to the proof of Lemma 3. We begin with a simple lemma.
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p t s
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
5 4 4 3 3 2 2 2 2 2 1 1 1 1 1

Table 1: Illustration of the proof of Theorem 4

Lemma 5. Fix positive integers d and ∆ and a constant 0 6 ε < 1. If G is a graph with
average degree at least d− ε and maximum degree at most ∆, then the number of vertices
in G of degree less than d is at most

∆− d+ ε

∆− d+ 1
n.

In particular, the number of vertices in G of degree at least d is Ω(n) (i.e. at least Cn
where C = C(d,∆, ε) > 0).

Proof. The sum of the degrees in G is at least (d − ε)n. On the other hand, if x is the
number of vertices of degree less than d in G, then the sum of the degrees in G is at most

(d− 1)x+ ∆(n− x).

Combining these two estimates and solving for x gives the result.

We are now ready to prove Lemma 3.

Proof of Lemma 3. Let G be as in the statement of the theorem, and let C be the set
of vertices in G of degree at least 3e(F ). Write c = |C|. Observe that c 6 k − 1, since
otherwise we could greedily embed the components of F into G, using the vertices of C
as their centers.

The subgraph G′ = G[V \ C] has maximum degree at most 3e(F ). Since G has at
least as many edges as the graph HF (n, c), it follows that G′ must have average degree at
least f(c)− ε, for some ε < 1. Therefore, by Lemma 5, the subgraph G′ has at least Ω(n)
vertices of degree

f(c) =

(
k−c∑
i=1

e(Si)

)
− 1.

Now suppose (for a contradiction) that G′ has a vertex v of degree greater than f(c).
Then we can form a rainbow copy of F in G as follows. Choose k − c − 1 vertices
of G′ of degree f(c) that are at distance at least 3 from each other and from v (this
is possible since the maximum degree is constant). We can build a rainbow forest of
the stars S1, S2, . . . , Sk−c−1 on these vertices, since these stars use f(c) + 1 − e(Sk−c)
edge colors. The vertex v has degree at least f(c) + 1, so it is incident to at least
f(c) + 1 − (f(c) + 1 − e(Sk−c)) = e(Sk−c) unused colors. Therefore, we can extend
the rainbow forest to include Sk−c. Finally, the remaining c stars of F can be greedily
embedded using the vertices in C as their centers, so that G contains a rainbow copy of F .
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This is a contradiction. Therefore, G′ has maximum degree at most f(c). When c = k−1
we are done, since we have shown that G has at most as many edges as HF (n, k − 1).

Let us now consider the case c 6 k − 2. Recall that by its construction if we remove
the set of c universal vertices (i.e. vertices of degree n−1) from HF (n, c), then we are left
with an edge-maximal f(c)-edge-colorable graph H on n−c vertices (see the construction
at the beginning of this section). On the other hand, we remove c vertices of degree at
most n− 1 from G to get G′. Therefore, as e(G) > e(HF (n, c)) we have that the number
of edges in G′ is at least the number of edges in H. Thus,

e(G′) > e(H) = f(c)

⌊
n− c

2

⌋
> f(c)

(
n− c

2

)
−
⌊
f(c)

2

⌋
. (4)

In particular, G′ has n−O(1) vertices of degree f(c), since G′ has maximum degree f(c).
We claim that G′ must be colored with f(c) edge colors. Suppose, for a contradiction,
that G′ is colored with at least f(c) + 1 colors. Then there is a color class, say red, with
at most

1

f(c) + 1

⌊
n− c

2

⌋
edges. Therefore, there are Ω(n) vertices in G′ of degree f(c) that are not incident to a
red edge.

Since c 6 k − 2, the sum in f(c) has at least two terms, so that

2e(S1) 6 e(S1) + e(S2) 6
k−c∑
i=1

e(Si) = f(c) + 1.

As e(S1) is an integer, this implies that e(S1) 6 df(c)/2e.
We now embed S1 in G′ using a red edge. If n − c is even, then by (4) and the fact

that G′ has maximum degree at most f(c), we have that every vertex in G′ has degree
f(c). As f(c) > df(c)/2e > e(S1), we can choose a vertex v incident to a red edge and
embed S1 using that red edge.

When n − c is odd, G′ may contain vertices of degree less than f(c). Consider a red
edge uv and observe that at least one of the vertices u and v (say v) has degree at least
df(c)/2e; otherwise the number of edges in G′ is less than f(c)

⌊
n−c
2

⌋
. Therefore, we can

embed S1 using the red edge uv with v as the center.
Now, among the vertices not incident to red edges, pick k − c − 1 vertices of degree

f(c) that are at distance at least 3 from each other and from the center v of S1. Using
these vertices as centers, we can greedily build a rainbow forest of stars S2, S3, . . . , Sk−c,
since we have only used at most e(S1) − 1 of the f(c) colors incident to these vertices.
Finally, the remaining c stars of F can be greedily embedded using the vertices in C as
their centers, so that G contains a rainbow copy of F . This is a contradiction. Therefore,
G′ is properly f(c)-edge-colored.

We now give a new proof of the result of Lidický, Liu and Palmer on the Turán number
of forests of stars.
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We begin by describing the extremal graph for the forest of stars S1, S2, . . . , Sk, where
e(Sj) 6 e(Sj+1) for each j. Let H ′F (n, i) be the graph obtained by connecting a set of
i universal vertices to an edge-maximal graph of maximal degree e(Sk−i) − 1 on n − i
vertices. Observe that if one of e(Sk−i) − 1 or n − i is even, and n is large enough, then
H is (e(Sk−i) − 1)-regular. If both are odd, then H has exactly one vertex of degree
e(Sk−i) − 2, and n − i − 1 vertices of degree e(Sk−i) − 1. Each of the graphs H ′F (n, i)
is F -free, since otherwise each of the i + 1 stars Sk, Sk−1, . . . , Sk−i must use at least one
vertex from the universal set of size i, which is impossible.

Theorem 6 (Lidický, Liu, Palmer [13]). Let F be a forest of k stars S1, S2, . . . , Sk, such
that e(Sj) 6 e(Sj+1) for each j. Then

ex(n, F ) = max
06i6k−1

{
i(n− i) +

(
i

2

)
+

⌊
(e(Sk−i)− 1)(n− i)

2

⌋}
.

Proof. Note that G has at least as many edges as H ′F (n, i) for all i 6 k − 1. Suppose
that G has a set C of c vertices of degree at least e(F ). We must have c 6 k − 1, since
otherwise we could greedily embed F from the vertices of C. Let G′ = G[V \ C] be the
graph on the remaining n− c vertices. The maximum degree of G′ is less than e(F ). First
let us suppose that c = k − 1. In this case, we claim that the maximum degree of G′ is
at most e(S1)− 1. Indeed, if there is a vertex v of higher degree, then we can embed S1

into G′ using v, and complete the forest F by greedily embedding the stars S2, S3, . . . Sk

using the vertices of C as their centers.
Next suppose that c < k − 1. Suppose (for a contradiction) that e(Sk−c−1) = e(Sk−c).

Comparing G to H ′F (n, c+1), we see that G′ must have average degree at least e(Sk−c−1)−
ε = e(Sk−c)− ε. Therefore, by Lemma 5, the graph G′ contains Ω(n) vertices of degree at
least e(Sk−c). Now we can embed F as follows. Choose k−c vertices of G′ of degree e(Sk−c)
that are at distance at least 3 from each other. We can embed the stars S1, S2, . . . , Sk−c
on these vertices. Next we can greedily embed the remaining stars Sk−c+1, . . . , Sk into G
using the vertices of C as their centers; a contradiction.

Therefore, we may assume that e(Sk−c−1) < e(Sk−c). By comparing G to H ′F (n, c),
we see that G′ must have average degree at least e(Sk−c) − 1. Therefore, by Lemma 5,
the graph G′ contains Ω(n) vertices of degree at least e(Sk−c) − 1. Now suppose that
G′ has a vertex v of degree greater than e(Sk−c) − 1. Then we can embed F as follows.
Choose k − c − 1 vertices of G′ of degree e(Sk−c) − 1 that are at distance at least 3
from each other and from v. We can embed the stars S1, S2, . . . , Sk−c−1 on these vertices,
since e(Sk−c) − 1 > e(Sk−c−1). Next we embed the star Sk−c at v, and then greedily
embed the remaining stars Sk−c+1, . . . , Sk into G using the vertices of C as their centers;
a contradiction. Therefore, the maximum degree of G′ is e(Sk−c)− 1.

4 Paths

In this paper, Pl will denote a path with l edges, which we will call a path of length l. The
usual Turán number for paths was determined asymptotically by Erdős and Gallai [8],
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and exactly by Faudree and Schelp [9]. Erdős and Gallai proved that, given a path length
l, if l divides n then

ex(n, Pl) =
n

l

(
l

2

)
=
l − 1

2
n,

and the unique extremal graph is the disjoint union of n
l

copies of Kl. We briefly recall
the proof. First we show that any graph G with minimum degree at least δ contains a
path of length 2δ (provided of course that 2δ < n). Next, consider a graph G of order
n with more than l−1

2
n edges (i.e., of average degree greater than l − 1). By repeatedly

removing a vertex of minimum degree, we can show that G must contain a subgraph H
whose minimum degree is at least l

2
, and so H contains a path of length l.

Following this approach for the rainbow Turán problem therefore requires us to find
a rainbow path of length cδ in a graph of minimum degree δ. To this end, we have the
following theorem, which generalizes a result of Gyárfás and Mhalla [11], and is itself a
special case of a theorem of Babu, Chandran and Rajendraprasad [3]. For completeness,
we provide a short proof of the result we need, which is less technical than the proof in [3].

Theorem 7. Let G be a graph with minimum degree δ = δ(G). Then any proper edge-
coloring of G contains a rainbow path of length at least 2

3
δ.

Proof. Suppose that c is a proper edge-coloring of G. Take a longest rainbow path P =
v0v1 · · · vl in G, of length l. Without loss of generality, c(vi−1vi) = i for each i (i.e., the ith

edge of P receives color i). Write so for the number of edges colored with colors 1, . . . , l
that v0 sends to vertices outside P , and note that v0 can send no other edges outside P ,
or else P could be extended. Also write si for the number of edges of colors 1, . . . , l that
v0 sends to other vertices of P (including v1), and write s× for the number of edges of
other colors that v0 sends to vertices of P . Finally, define to, ti and t× to be the analogous
quantities for vl.

Observe now that
so + si 6 l, (1)

since c is a proper coloring, that
si + s× 6 l, (2)

since there are exactly l vertices on P other than v0, and that

so + t× 6 l, (3)

since if vivl ∈ E(G) with c(vivl) > l then there is no w 6∈ V (P ) with c(wv0) = c(vivi+1) =
i + 1, or else wv0v1 · · · vivlvl−1 · · · vi+1 would be a rainbow path in G of length l + 1.
Analogous inequalities hold for to, ti and t×.

Consequently, combining (1), (2) and (3) with the minimum degree condition, we have

2δ 6 (so + si + s×) + (to + ti + t×) = (si + s×) + (so + t×) + (to + ti) 6 l + l + l = 3l,

so that l > 2
3
δ, as desired.
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We remark that the constant 2
3

cannot be improved in general. To see this, let G be
the disjoint union of r copies of K4, and properly 3-color the edges of each K4 (there is a
unique way to do this, up to isomorphism). Then δ(G) = 3, and the longest rainbow path
in G has length 2. However, when considering complete graphs, Alon, Pokrovskiy and
Sudakov [1] proved that a proper edge-coloring of Kn contains a rainbow cycle of length
n− o(n) (improving the bound 3

4
n− o(n) by Chen and Li [6], and independently Gebauer

and Mousset [10]). On the other hand, Maamoun and Meyniel [14] showed that we are
not always guaranteed a rainbow path of length n− 1. In their construction, n = 2k, and
we identify the vertices of K2k with the points of the Boolean cube {0, 1}k. If we now
color each edge uv with color u− v 6= 0, a monochromatic path v0v1 · · ·vn−1 of length
n− 1 in Kn would involve all possible colors (except for 0), so that

v0 − vn−1 =
n−2∑
i=0

(vi − vi+1) =
∑

0 6=x∈{0,1}k
x =

∑
x∈{0,1}k

x = 0,

which implies that v0 = vn−1, a contradiction.
A slight modification of the proof of Theorem 7 yields a short proof of the full result

of Babu, Chandran and Rajendraprasad [3] mentioned above. Their result deals with
general (not necessarily proper) edge-colorings, in which, given an edge-colored graph G,
θ(G) is the minimum number of distinct colors seen at each vertex. Clearly θ(G) = δ(G)
if the coloring is proper.

Theorem 8. Let G be an edge-colored graph in which every vertex is incident to at least
θ = θ(G) edge-colors. Then G contains a rainbow path of length at least 2

3
θ.

Proof. We follow the proof of Theorem 7, with a slight change in the definitions of so, si
and s×. This time, so is the number of colors of edges that v0 sends to vertices outside
P (as before, each of these colors already occurs on P ), and s× is the number of colors
not seen on P which occur as the colors of edges v0 sends to P . Now si is the number of
colors from 1 to l that occur as colors of edges v0 sends to P and which are not counted
in so. The rest of the proof goes through as before, with δ replaced by θ.

Returning to the problem at hand, we can use Theorem 7 to obtain a bound on the
rainbow Turán number of paths.

Theorem 9. For each fixed l > 1, we have

l − 1

2
n ∼ ex(n, Pl) 6 ex∗(n, Pl) 6

⌈
3l − 2

2

⌉
n.

Proof. We will make use of the standard fact that a graph G of average degree more than
2d contains a subgraph H of minimum degree at least d+ 1. This is proved by repeatedly
removing a vertex of minimum degree from G.

First, suppose that l is even, and write l = 2k. Let G be a graph of order n with more
than 3l−2

2
n = (3k − 1)n edges (and so of average degree more than 2(3k − 1)). Then G
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contains a subgraph H of minimum degree at least 3k, which by Theorem 7 contains a
rainbow path of length 2k = l.

Second, suppose that l is odd, and write l = 2k + 1. Let G be a graph of order n
with more than 3l−1

2
= (3k + 1)n edges (and so of average degree more than 2(3k + 1)).

Then G contains a subgraph H of minimum degree at least 3k + 2, which by Theorem 7
contains a rainbow path of length 2k + 1 = l.

For small values of l, one can do considerably better. It is trivial that ex∗(n, P1) =
ex(n, P1) = 0 and that ex∗(n, P2) = ex(n, P2) =

⌊
n
2

⌋
. When l = 3, we have the following

simple result.

Theorem 10. Suppose that n is divisible by 4. Then ex∗(n, P3) = 3n
2

= 3
2
ex(n, P3)+O(1).

Proof. The example already shown, namely n
4

disjoint copies of properly 3-colored K4s,
shows that ex∗(n, P3) > 3n

2
. For the other direction, suppose that G = (V,E) is a graph

with more than 3n
2

edges and no rainbow P3, and select v ∈ V with d(v) > 3 (there must
be at least one such v). Then the neighbors v1, . . . , vr of v can only be adjacent to each
other, since if viw ∈ E with vw 6∈ E then wvivvj is a rainbow P3 for some j (chosen so
that the colors of viw and vvj are different). Moreover, if d(v) > 4, then G[v ∪ Γ(v)] is a
star, since if vivj ∈ E then vjvivvk is a rainbow P3, where this time k has been chosen so
that vivj and vvk receive different colors. Consequently, if d(v) > 3, then Gv = G[v∪Γ(v)]
is a component of G whose average degree is at most 3, so we may remove it and apply
induction.

1

1

2 2

1

1

22

4

4

3 3

3 3

4

4

Figure 1: A proper edge-coloring of K4,4 with no rainbow P4

For P4, we have the following theorem.
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Theorem 11. If n is divisible by 8, then ex∗(n, P4) = 2n. In general, ex∗(n, P4) =
2n+O(1).

Proof. The lower bound comes from the proper edge-coloring of K4,4 illustrated in Figure
1, which contains no rainbow P4. (To see this, note that in the given coloring, any 4-cycle
containing two identically-colored edges must in fact be 2-colored, so that every 4-cycle
contains either 2 or 4 colors. Now suppose (to the contrary) that xyzst is a rainbow P4.
Then the cycle xyzsx must contain all 4 colors, so that edges st and sx must receive
the same color, which is impossible since they are adjacent.) Next, if n = 8k, then the
disjoint union of k such edge-colored K4,4s has 2n edges and no rainbow P4. Consequently,
ex∗(n, P4) > 2n if 8|n, and ex∗(n, P4) > 2n+O(1) in general.

For the upper bound, we show that every proper edge-coloring of an n-vertex graph
G with m > 2n edges contains a rainbow P4.

As noted before, G contains a subgraph G′ of minimum degree at least 3, since oth-
erwise we can repeatedly remove vertices of degrees 1 and 2 so that the average degree
increases. Furthermore, G′ has average degree greater than 4. Therefore, G′ has a vertex
v of degree at least 5. We will show that G′ contains a rainbow P4. The proof now splits
into two cases.

z
y

x

v

s

t

1 2 3

4

5

2

3

Figure 2: A rainbow P3 ending at a vertex v of degree at least 5

Case 1: G′ contains a rainbow P3 ending at v. This case is illustrated in Figure
2; let the rainbow P3 be P = vxyz, where edges vx, xy and yz are colored 1, 2 and 3
respectively. Since v has degree at least 5, it must be adjacent to at least 2 vertices not
on P ; suppose these vertices are s and t. If either of the edges vs and vt receives a color
other than 2 or 3, then we have a rainbow P4. Now suppose that c(vs) = 2 and c(vt) = 3,
where c denotes the color of the edge. If v is adjacent to any other vertex u not on P ,
then since c(uv) would have to be different from 1, 2 and 3, the edge uv with P forms
a rainbow P4. Otherwise, the vertex v has degree 5 and is adjacent to both y and z.
Without loss of generality, suppose c(vy) = 4 and c(vz) = 5.

Suppose that the vertex z is adjacent to x. Note that c(xz) cannot be 1, 2 or 3, and
so svxzy is a rainbow P4. If z is not adjacent to x, then z is adjacent to a vertex w not
on P (possibly w = s or w = t) as the minimum degree of G′ is at least 3. We know that
c(wz) cannot be 3 or 5; if c(wz) = 1 then wzvyx is a rainbow P4, while if c(wz) = 2 then
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wzyvx is a rainbow P4. However, if c(wz) is not 1, 2 or 3, then vxyzw is a rainbow P4.
Accordingly, this completes the proof in Case 1.
Case 2: G′ contains no rainbow P3 ending at v. Since δ(G′) > 3, G′ contains
a rainbow P2 ending at v; let this path be vxy, where c(vx) = 1 and c(xy) = 2. The
vertex y has degree at least 3; if y were adjacent to two vertices s and t other than v and
x, then one of edges ys and yt would receive color 3, creating a rainbow P3 ending at v.
Consequently, the degree of y is 3 and y is adjacent to v and a new vertex z. Furthermore,
c(yz) = 1, and, without loss of generality, c(yv) = 3. Let P be the path vxyz.

The vertex z is adjacent to at most one vertex w not on P and the edge zw must
receive color 3 to avoid the rainbow P3 vyzw ending at v. Consequently, z is adjacent to
at least one of v or x. The proof now splits into three sub-cases.
Case 2A: z is adjacent to x and a new vertex w. This case is illustrated on the
left of Figure 3. Edge xz cannot receive any of colors 1, 2 or 3, and so vxzw is a rainbow
P3 ending at v.

v

x

y

z

w
v

x

y

z

w u v

x

y

z

1 2 1 3

4

3

1 2 1 3

3

4

4 1 2 1

3

2

3

Figure 3: No rainbow P3 ends at a vertex v of degree at least 5

Case 2B: z is adjacent to v and a new vertex w. This case is illustrated in the
center of Figure 3. Edge vz must receive color 2 to avoid the rainbow P3 vzyx ending at
v. Now, if w were adjacent to two vertices s and t other than v, x, y and z, then one of
edges ws and wt would receive color other than 2 and 3, creating a rainbow P3 ending at
v. Therefore, there is at least one edge from w to v, x, or y. Such an edge cannot receive
colors 1, 2, or 3. If wv is an edge, then vwzy is a rainbow P3; if wx is an edge, then vxwz
is a rainbow P3; if wy is an edge, then vxyw is a rainbow P3. In all cases we have found
a rainbow P3 ending at v.
Case 2C: z is adjacent to both v and x. This case is illustrated on the right of Figure
3. In this case, the vertices v, x, y, z induce a properly 3-edge-colored K4 as otherwise we
can easily find a rainbow P3 ending at v. We will exploit the resulting symmetry in the
three colors 1, 2 and 3. The vertex v must be adjacent to a new vertex u, and, without
loss of generality, c(uv) = 4. If the vertex u is adjacent to a new vertex w, then we may
assume that c(uw) = 1, and then wuvzx would be a rainbow P4. Otherwise, u is adjacent
to at least two of x, y and z; suppose it is adjacent to x. Then c(ux) cannot be 1, 2, 3 or
4, and then xuvzy is a rainbow P4.

Thus, in all three sub-cases we obtain either a rainbow P3 ending at v (leading us to
Case 1), or a rainbow P4 in G′.

Keevash, Mubayi, Sudakov and Verstraëte conjectured that the extremal example for
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rainbow Pls is a disjoint union of cliques of size c(l), where c(l) is chosen as large as
possible so that Kc(l) can be properly edge-colored with no rainbow Pl. It is not hard
to show that a properly edge-colored K5 must contain a rainbow P4, so that c(4) = 4.
Consequently, the conjecture implies that ex∗(n, P4) = 3n

2
+ O(1), which is false, as our

theorem shows. However, we note that the conjecture may still hold for longer paths.
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