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Integrable Smooth Planar Billiards and Evolutes

Edoh Y. Amiran

Abstract. Any elliptic region is an example of an integrable domain: the set of
tangents to a confocal ellipse or hyperbola remains invariant under reflection across
the normal to the boundary. The main result states that when Ω is a strictly convex
bounded planar domain with a smooth boundary and is integrable near the boundary,
its boundary is necessarily an ellipse. The proof is based on the fact that ellipses
satisfy a certain “transitivity property”, and that this characterizes ellipses among
smooth strictly convex closed planar curves. To establish the transitivity property,
KAM theory is used with a perturbation of the integrable billiard map.
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Introduction

By a smooth strictly convex planar domain we shall mean a bounded open region
in the plane whose boundary is a C∞ simple curve with strictly positive curvature.
A reflected geodesic in such a domain is a continuous curve consisting of straight
line segments in the interior with ends on the boundary at which Snell’s law of equal
angles with the normal is satisfied. A caustic C for a smooth convex domain is a
smooth strictly convex curve homotopic to the boundary with the property that
when a (reflected) geodesic is tangent to C each segment of the geodesic is tangent
to C. The domain is called integrable near the boundary if some neighborhood of

Received January 7, 1997.
Mathematics Subject Classification. Primary 58F17, secondary 53C22.
Key words and phrases. Billiard ball map, integrable, KAM, caustics, ellipse.

c©1997 State University of New York
ISSN 1076-9803/97

32

http://nyjm.albany.edu:8000/nyjm.html
http://nyjm.albany.edu:8000/j/v3/Vol3.html
http://nyjm.albany.edu:8000/j/v3/Amiran.html


Integrable Smooth Planar Billiards and Evolutes 33

the boundary is fibered by such caustics. A domain is called integrable if there is
a differentiable function on the phase space whose level sets are preserved by the
billiard map.

Any elliptic region is an example of an integrable domain: the set of tangents to
a confocal ellipse or hyperbola remains invariant under reflection at the boundary.
G. D. Birkhoff conjectured that the only integrable convex planar domains are
ellipses. An integrable domain with a smooth boundary is also integrable near the
boundary, and this article shows that the following theorem applies.

Theorem 1. When Ω is a strictly convex bounded planar domain with a smooth
boundary and is integrable near the boundary, its boundary is necessarily an ellipse.

The proof is based on the fact that ellipses satisfy a certain “transitivity prop-
erty”, and that this characterizes ellipses among smooth strictly convex closed
planar curves [1]. Here we show that a slightly weaker form of this transitivity
property is valid when the domain is integrable near the boundary, and that this
weaker form suffices for the same conclusion — that the domain is elliptical.

The weaker form of the transitivity property is established by showing that
between each caustic, say C, and the boundary there is another caustic, D, so that
C is also a caustic for the billiard ball map on D. This uses KAM theory and
calculations based on a function used by Lazutkin. (This function is known as H
in Mather’s variational approach to twist maps.)

In the proof, KAM theory is applied to an auxiliary map which, does not preserve
the same symplectic form as the billiard ball map (the map that carries segments
of a geodesic to successive segments). Thus we require the stronger form of KAM
theory of Moser [15], which uses only the self-intersection condition. Also note
that, as a consequence of the theorem, integrability near the boundary translates
to integrability in the more traditional sense of the existence of a nontrivial smooth
invariant for the billiard ball map.

Anatole Katok suggested that, since certain quantities are conserved (see equa-
tion (6.4)) this result might be obtained without KAM theory. Since the perturba-
tion is via a differential equation, the results of Il’yashenko and Yakovenko [7], if
extended to the elliptic case, might apply.

The author thanks Richard Melrose for pointing him in the direction leading to
this paper and pointing out errors in previous versions. The quality of the content
and of the exposition also improved after conversations with John Sylvester, Y.
Katznelson, and Eugene Gutkin. The latter patiently asked many useful questions.

1. Invariant Curves and Caustics

Let Ω ⊂ R2 be a bounded region with a C∞ boundary whose curvature is
strictly positive. Since ∂Ω is strictly convex it can be parameterized by tangent
angle. Choosing the counterclockwise orientation and the (1,0) direction as the
reference for measuring the tangent angle, such regions are determined by their
curvature functions – functions k > 0 with period 2π and

(1.1)

∫ 2π

0

k−1(φ) cosφ dφ =

∫ 2π

0

k−1(φ) sinφ dφ = 0.

Consider the circle bundle over the boundary, that is, S∂ΩR
2 ⊂ T∂ΩR

2. The
billiard ball map, β, takes (x, u) to (y, v), where x and y lie on the line generated by
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u, and v is u translated to y and reflected across the normal to ∂Ω at y. Identifying
the inward pointing portion of S∂ΩR

2, denoted S∂ΩΩ), with B∗∂Ω the billiard ball
map becomes the boundary map on B∗∂Ω. It is well known that the boundary
map preserves the natural 2-form on B∗∂Ω. (See, e.g., [5].)

An invariant curve for the billiard ball map on ∂Ω is a smooth section ξ : ∂Ω→
S∂ΩΩ, which is invariant under the billiard ball map. An invariant curve defines a
collection of lines in the plane; for x ∈ ∂Ω, (x, v) = ξ(x) defines the line through
x along v. When ∂Ω is convex and the invariant curve is near ∂Ω, these lines are
the envelope of a convex planar curve whose tangents remain invariant under optic
reflection at ∂Ω. (See e.g., [1] for the convexity argument.)

A caustic in a domain, Ω, is a planar curve C which is homotopic to the domain’s
boundary, and whose tangents are invariant under reflection at the boundary. When
C is a smooth strictly convex curve inside Ω its tangents define a smooth section
of S∂ΩΩ. Thus, in a smooth strictly convex planar domain, and in a neighborhood
of the boundary, there is a one to one correspondence between invariant curves for
the billiard ball map and convex smooth caustics.

Definition 2. The billiard ball map on ∂Ω is integrable near the boundary
if there is a neighborhood of ∂Ω in Ω whose every point belongs to a caustic.

2. The Lazutkin Parameter and the Curvature Relating Op-
erator

For C ⊂ Ω a simple and strictly convex curve and a point p ∈ ∂Ω, there are
exactly two points a, b ∈ C so that the tangent lines to C at a and b go through p.
We assume that b follows a according to a fixed orientation of C. We denote the
lengths of the line segments between a and p and between b and p by r and l, and
the arclength along C between a and b by t (as a consequence of the orientation
t < L(C)/2 with L(C) the length of C). The Lazutkin parameter, Q, of C and
∂Ω at p (or alternatively at a) is

Q(p, ∂Ω, C) = l + r − t.

Lemma 3. [11] A strictly convex simple closed planar curve C ⊂ Ω is a caustic
if and only if the Lazutkin parameter of C and ∂Ω at p ∈ ∂Ω is independent of the
point p. In fact, with s denoting the arclength along ∂Ω,

(2.1)
d

ds
Q(p, ∂Ω, C) = cos θ+ − cos θ−

where θ± are the angles made by the tangent to ∂Ω at p with the forward and
backward rays from C to p (in the notation above, the forward ray is the one from
a to p).

The proof uses an appropriate form of Stokes’ theorem (see [1]).

Definition 4. For Q > 0, and C ⊂ Ω a caustic for the billiard ball map on ∂Ω,
we say that ∂Ω is the Q-evolute of C if Q(p, ∂Ω, C) = Q for p ∈ C. We call Q
the Lazutkin parameter for C. When p is simply a point in Ω and outside C, the
Lazutkin parameter still makes sense and will be denoted Q(p, C).
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Let k denote the curvature of C, and v the curvature of ∂Ω, both given in terms
of tangent angle (with respect to a fixed direction, say (1,0)). Assume that C is a
caustic for the billiard ball map on ∂Ω with ∂Ω the Q-evolute of C. Then v can be
obtained from k and Q (see §9).

Definition 5. In the setting above the curvature relating operator , L(Q, k),
is defined by

v(φ) = L(Q, k)(φ), 0 ≤ φ < 2π.

3. The Weaker Transitivity Property

Assume that C is a smooth strictly convex caustic for the billiard ball map on
∂Ω with ∂Ω ⊂ R2 smooth and strictly convex, and that Ω is integrable near ∂Ω
with a neighborhood of integrability that includes C. Let A denote the annulus
between C and ∂Ω. We assume that the caustics that fiber A are strictly convex.
The conclusion of the following theorem describes the transitivity property as it
will be used here. Its proof occupies sections four through eight.

Theorem 6. In the setting of the annulus between C and ∂Ω as above, let k
denote the curvature of C (in terms of tangent angle) and let R > 0 be the Lazutkin
parameter of C from ∂Ω, that is L(R, k) is the curvature of ∂Ω.

Then there are sequences Pn, Qn ≥ 0 (for n ≥ 0) with Pn → 0 as n → ∞ and
Q0 = 0 (P0 = R), such that

(3.1) L(Qn, L(Pn, k)) = L(R, k).

This theorem says that there are closed curves in A which are both evolutes
of C and caustics. The proof uses KAM theory. In outline, and in our case,
the theory gives certain invariant curves for a sufficiently small perturbation of an
integrable billiard ball map when the perturbed map, fε, is a twist map and has
the intersection property, that is, for a curve K sufficiently near an invariant curve
for the billiard ball map , fε(K) ∩K 6= ∅.

We will define the perturbed map, fε, by composing a perturbation map, gε, with
the billiard ball map. This perturbation will be chosen so that invariant curves for
fε are both evolutes and caustics.

4. The Perturbed Map

We define the perturbation map with the intersection property in mind, and thus
begin by looking at the annulus from the point of view of a fixed caustic C.

In general, a line l in the annulus A between C and ∂Ω corresponds to (φ, θ) ∈
S∂ΩΩ (with θ < π/2 – which also determines our choice of φ). There is a unique
point q ∈ l where the Lazutkin parameter Q(·, C) has a minimum value. We set
Q(l) = Q(q, C) (see Figure 1, below).

In turn, to a point p we associate a line l(p), which is the tangent to the unique
caustic (for the billiard ball map on ∂Ω) going through p. Fix a line segment l in
A and consider p on l. We wish to see what values Q(l(p)) can assume.
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l

a
b

d

e

C

q

 Ω

Figure 1. Q(l) = Q(q, C) and the caustics D(·)

Since ∂Ω is a caustic, for p ∈ ∂Ω, l(p) is the tangent to ∂Ω at p and since C is a
caustic, Q(l(p)) = Q(p, C) which is the largest possible value of Q on the annulus.

We return to the fixed line l, and let q be the point where an evolute, denoted
e(q), is tangent to l. Let p ∈ l be the point where a caustic, denoted D(p), is
tangent to l. If p 6= q, pick a point y ∈ l between q and p, and recall that l(y)
is tangent to the caustic through y. This line, l(y), crosses the evolute through
q. To see this, note that D(p) and e(q) both contain the curve C in their interior
and lie on the same side of l, that the tangent to the caustic through y lies outside
D(p), and that q lies outside D(y). It follows that if p 6= q, and y is as above,
Q(l(y)) < Q(l(q)) = Q(l). This is summarized in Proposition 7.

Proposition 7. In the setting above, when the caustic tangent to l and the evolute
tangent to l intersect l at different points, Q(l(p)) assumes values both above and
below Q(l) as p varies in l.

Remarks. 1. The converse to Proposition 7 does not, in general, hold.
2. Proposition 7 shows that the difference between Q(l) and Q(l(p)) is a measure

of non-agreement between the family of evolutes and the family of caustics. In this
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respect, Q is based in the family of evolutes, while l(p) is based in the family
of caustics. What is perhaps non-intuitive is that their combination cannot be
somehow balanced to hide a difference between these families.

For a given line l and p ∈ l the point at which a caustic is tangent to l, if the
derivative with respect to arclength, s, along l satisfies dQ

ds
(p) 6= 0, the evolute

tangent to l does not intersect l at p (this uses Lemma 3). Hence for some ε > 0
we can find a point y ∈ l with

(4.1) Q(l(y)) − Q(l) = ε
dQ

dl
(p).

In fact, in this case p divides l into two portions, one containing q. The discussion
preceding Proposition 7 shows that we can choose y in the portion containing q

when dQ
ds

(p) < 0 and in the portion not containing q when dQ
ds

(p) > 0.
Let ε(l) be the largest ε for which we can solve (4.1) and choose y on the side

of p as above. Then for any 0 ≤ ε ≤ ε(l) we can find a solution of (4.1) (i.e., a
y ∈ l) which, with the choice above, depends smoothly on ε (see the discussion of

smoothness in §9). Of course, if dQ
ds

(p) = 0 then y = p satisfies (4.1) for any ε.

Proposition 8. Assume that Ω is integrable and ∂Ω ∈ C∞ and is strictly convex.
Then there is an r > 0 such that for 0 ≤ ε ≤ r there is a C∞ solution, y, of (4.1).

Proof. Let r be the infimum of the value of ε(l) as l varies over line segments in
S∂ΩΩ lying over A. Because S∂ΩΩ is compact, r > 0, and for 0 ≤ ε ≤ r as we
vary l (i.e., we vary (φ, θ) ∈ S∂ΩΩ corresponding to l), we can choose solutions of
(4.1) which also vary smoothly (in φ and θ). More precisely, it follows from the
calculations in §8 that when ∂Ω is C∞, Q(p) is C∞ as a function of p ∈ A, provided
Q > 0. Moreover, y = p is a solution of (4.1) for p ∈ C (and for p ∈ ∂Ω), and by
Proposition 7 and its proof, a solution to (4.1) exists in A and approaches y = p as
p approaches C. �

For 0 ≤ ε ≤ r, we define a map gε from S∂ΩΩ to itself by choosing for each line
l a solution y of (4.1) and setting gε(l) = l(y). Our perturbed map is fε = gε ◦ β.

5. Another View of the Perturbation Map

To better understand the setting for the perturbation of the billiard ball map we
examine what occurs in a domain which is not integrable. Let C be a convex caustic
for the billiard ball map on ∂Ω. Such caustics exist if ∂Ω is sufficiently smooth [11],
and in fact, one could start with C and generate ∂Ω as its evolute. Orient C, say
counter clockwise. The evolutes of C foliate the annulus A between C and ∂Ω, and
we can define a map, T , on A by Tx = y when y belongs to the same evolute as
x and the forward tangent to that evolute at x and the backward tangent to the
evolute at y meet ∂Ω at the same point. The map T is clearly integrable and can
be associated with the flow along the tangents to the evolutes.
T can also be defined on S∂ΩΩ by assigning the point x to the line l when the

unique evolute tangent to l intersects it at x. The map T is not, in general, in
involution with the billiard ball map. If these maps are in involution, then the
billiard ball map is integrable and the caustics and evolutes coincide.
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The perturbation map of the previous section (where the billiard ball map is
integrable, so the family of caustics also foliates the annulus A) moves points in
the annulus in the direction of the flow associated to T , and the “strength” of the
perturbation is dependent of the difference between the evolute and the caustic at
the point considered, with no perturbation when the tangents to the two families
of curves coincide.

The calibration of the perturbation according to the difference between the tan-
gents to the caustics and the tangents to the evolutes is not available in a non-
integrable domain. Moreover, were a perturbation map obtainable from T , and
had there been an invariant curve for the perturbed map, and were we to show that
this invariant curve is an evolute (of C), its relation to ∂Ω would remain unknown,
and so a transitivity property would still not result. In other words, the integra-
bility of the domain is used in defining the perturbation, but also in relating an
invariant curve for the perturbed map to the evolutes and caustics.

The “strength” of the perturbation also appears in showing that the image of
a curve near a caustic under the perturbed map intersects the curve. A simple
argument in the next section shows that the image of a caustic under the perturbed
map intersects the caustic. Since the perturbation is “weaker” on a curve in the
annulus which is not a caustic, it seems reasonable that the image of such a curve
under the perturbed map will also intersect the original curve. Checking this is the
main point of the next section.

6. The Intersection Property

For a fixed curve K (a section of S∂ΩΩ) which is sufficiently near an invariant
curve for the billiard ball map and near ∂Ω, we need to show that fε(K) ∩ K 6=
∅. The billiard ball map is area preserving and, in fact, for a curve K differing
from an invariant curve, β(K) crosses K. This section shows that gε used for the
perturbation cannot disengage this crossing. To do this one needs estimates on
the behavior of β near ∂Ω and on the behavior of gε. The common currency for
these investigations is the parameter Q. The “weakness” of gε follows from the
relationship between Q and the angle of incidence (§9), and between the angle of
incidence and the rotation angle (Lemma 10).

Proposition 9. When I is a caustic, there are at least two points of I invariant
under fε.

Proof. We say that an evolute E is larger than an evolute F if E contains F in
its interior. There are, then, a largest evolute intersecting I and a smallest evolute
intersecting I. These intersections are tangential with tangents, say, l and m. Now
l and m are fixed by gε, and since I is a caustic, their preimages under β are in
I. �

The rest of this section shows that for a curve K which is not a caustic there is
an intersection of fε(K) and K and it is, in fact, transversal. We begin with the
perturbation map. Let p ∈ l denote the point where a caustic is tangent to l, and
let α denote the signed angle from l to the (tangent to) the evolute through p (see
Figure 2.). Then

(6.1) Q(gε(l))−Q(l) = ε|∇Q(p)| sin(α)
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Ω

y

l

l(y)

C

e(q)

q

p
D(y)

D(p)

Figure 2. Behavior near p

with the gradient taken for Q as a function on R2.
Suppose that R is the length of the line segment tangent to C at a, L is the

length of the line segment tangent to C at b, the radii of curvature of C at a and b
are A and B, and the arclength along C between a and b is s. Let ∆ be the angle
of R (and L) with the evolute through p, and let t parameterize the perpendicular
to that evolute which points away from C. Then

|∇Q(p)| = dQ

dt
=
dR

dt
+
dL

dt
− ds

dt
= sin(∆) + sin(∆)− (A

R
+
B

L

)
cos(∆).

When, for two lines at φ ∈ ∂Ω, Q(l) > Q(m), the ∆ corresponding to l is larger
than that corresponding to m, and thus we have

(6.2)
Q(gε(l))−Q(l)

sin(α(l))
>
Q(gε(m))−Q(m)

sin(α(m))
.

The distance (in the plane) between p(l) ∈ l and gε(l) is ε sin(α) + O(ε2), and
the change in the φ coordinate between l and gε(l) is

(6.3) ∆φ ≤ εν · k(φ) sin(α) +O(ε2) .

In the above, k is the curvature of ∂Ω, and ν is a positive upper bound for |∇Q|
in a neighborhood of ∂Ω with the neighborhood excluding C (to be chosen later).
That such a bound exists follows from the differentiability of Q away from C. (See
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§9 for a calculation of Q and its properties. The distance along a ray transversal to
an evolute varies differentiably with Q at any point away from the fixed curve C.)

The behavior of the billiard ball map can be described in terms of Q by equation
(6.5) below.

Let K be a curve in SAΩ, and also its representation as a curve in Ω, the latter
being convex when K is sufficiently near a caustic, since the caustics correspond to
convex curves. Let q(l) be the point of l where an evolute is tangent to l and set
K = {q(l)|l ∈ K}.

Consider the submanifold F of S∂ΩΩ generated by the forward flowout from K
along the lines l ∈ K, and the submanifold B generated by the backward flowout
from β(K) along the lines l1 ∈ β(K). Fix two points on ∂Ω, say a < b in terms of
arclength, and consider the manifold M formed by the portions of F and B which
intersect ∂Ω between these two points. Since Q is a function on A, dQ is a function
on M .

Integrating dQ over the portion of F corresponding to l ∈ K we get Q(∂Ω)−Q(l)
and integrating dQ over the portion of B corresponding to l1 ∈ β(K) we get
Q(l1)−Q(∂Ω). And on the portions of F and B over K and β(K), dQ is zero.

Let v(s) (resp. v1(s)) be the element of F (resp. B) at s ∈ ∂Ω. If we denote the
angle which v makes with the tangent to ∂Ω by θ, then the corresponding angle for
v1 is −θ.

Integrating dQ over M , Stokes’ theorem yields
(6.4)

Q(l(b))−Q(l(a)) +

∫ b

a

dQ(v(s))
dθ

ds
ds = Q(l1(b))−Q(l1(a))−

∫ b

a

dQ(v(s))
dθ

ds
ds,

where we have used ddQ = 0 and, in the second integral, that v1 is the reflection
of v. Differentiating (6.4) we obtain

(6.5)
d(Q|K)

ds
+ dQ(v(s))

dθ

ds
=
d(Q|β(K))

ds
− dQ(v(s))

dθ

ds
.

Here (Q|K) denotes the function Q restricted to K.

In terms of the φ coordinate, for a caustic I, β|I is a monotone rotation, with the
average rotation being 2πρ, where ρ is its rotation number. The following lemma
establishes estimates, which are generally known, for the relation of the angle of
incidence and the rotation number.

Lemma 10. Assume that a planar domain Ω has boundary ∂Ω which is C3 and
has strictly positive curvature. Let θ be the incident angle of a geodesic in Ω whose
rotation number ρ exists. Then ρ = θ/π +O(θ2).

Proof. To find the image (s1, θ1) of (s, θ) under the billiard ball map we must
solve

(6.6)

∫ s1

s

cos(φ(t))dt = l cos(φ+ θ) and

∫ s1

s

sin(φ(t))dt = l sin(φ+ θ)

for s1 and l. Then φ1 = φ(s1) and θ1 = φ1 − φ− θ.
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Denote the radius of curvature of ∂Ω by χ(s). Equation (6.6) gives φ1 ∼ φ+O(θ)
so φ1 = φ+bθ+O(θ2), with b a constant. Replacing φ(t) in the integral in equation
(6.6) by its Taylor series at s and eliminating l we get

tan(φ+ θ) =

[
bχ sinφ · θ + 1

2b
2
(
χ̇ sinφ+ χ cosφ− χ̇ sinφ+ χ sin2 φ

cosφ

)
θ2 +O(θ3)

]
bχ cosφ · θ

= tanφ+
1

cos2 φ
θ +O(θ2).

This yields b = 2 (independently of s). In addition, φ1 − φ − 2θ = u(φ)θ2, with
u(φ) depending differentiably on φ. Consequently (since ∂Ω is compact), ρ =
θ/π +O(θ2). �

The rotation number is well defined for geodesics tangent to an invariant curve
so it follows from lemma 10 that when a caustic I is sufficiently near ∂Ω, specifically
when θ < max(1, (ρ/4) ·maxu(φ)),

(6.7) 0 <
3

4
ρφ(β(v))− φ(v) <

5

4
ρ ∀v ∈ I .

Lemma 10 also yields ρ = θ/π+ ū(φ) · θ2 (where ū(φ) is the average taken over the
orbit starting at φ). Differentiating this with respect to arclength s, we find that

dθ

ds
= −du

ds

θ2

1 + 2ūθ
.

It follows that |dθ/ds| can be bounded arbitrarily near 0 by choosing a caustic I
with a sufficiently small rotation number (i.e., sufficiently near ∂Ω).

Also, when the caustic is near ∂Ω, dQ(v(s)) is bounded by 2d(Q|I)/ds. Here Q
is the Lazutkin parameter from the curve C and v(s) is the direction of the tangent
to the caustic, so the directional derivative is evaluated at the corresponding point,
s, in ∂Ω. This holds since v(s) approaches the unit tangent direction at ∂Ω as
shown in §9. (See Lemma 16 there, and note that the first term in the curvature
relating operator is the identity.)

We return to a general curve K which will be in a neighborhood of a caustic.
Choose a caustic I0 sufficiently near ∂Ω so that (6.7) is satisfied and |dQ(v(s))| <

2|d(Q|I)/ds|, and so that |dθ/ds| < 1/10. There is a C1 neighborhood, N, of I0 so
that for v ∈ K ⊂ N

(6.8)
1

2
ρ <

φ(β(v))− φ(v)

2π
<

3

2
ρ .

Finally, let c be the maximum of the curvature of ∂Ω (which is positive by assump-
tion), and take any ε < ρ/(2νc). (Here ν is an upper bound for |∇Q| as in (6.3).
This choice of ε prevents gε from disengaging K and β(K) below by changing φ
alone.)

Let (φ,Q(φ)) describe K ⊂ N and (φ,Q1(φ)) describe β(K). Assume that K is
not a caustic (though it must be near I0).
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Since β is area preserving, K1 = β(K) crosses K at least twice. Thus there are
tangent angles a, b ∈ ∂Ω with Q1(a) = Q(a), Q1(b) = Q(b), and Q1(φ) ≤ Q(φ) for
a ≤ φ ≤ b.

Let I1 be the caustic through the endpoint (a or b) where Q is largest. Note
that I1 ⊂ N (in fact, the distance between I1 and I0 is smaller than the distance
between K and I0 in terms of the family of caustics).

If we further assume that fε(K) ∩ K = ∅, then gε increases the Q coordinate
between a and b for curves near K1. This follows from (6.3), (6.8) and our choice
of ε. Note that we may assume α in (6.2) and (6.3) to be non-zero for otherwise
I1 would be tangent to an evolute, and there would be a point in fε(K) ∩K as in
Proposition 9. In view of equation (6.5) and our estimates on dθ/ds and dQ(v(s)),
gε increases the Q coordinate for K1 in a neighborhood of [a, b].

Since on [a, b] the Q coordinate of I1 exceeds the Q coordinate of K1 (I1 lies
“above” K1), (6.2) applies, and gε(I1) and I1 do not intersect in a neighborhood of
[a, b] and so fε(I1) and I1 do not intersect in a neighborhood of [a, b]. But as ε→ 0,
gε approaches the identity, and fε(K) ∩ K contains points on K in [a, b] because
β(K) and K cross there. So now we see that, since I1 is near (I0 which is near)
K, fε(I1) and I1 do intersect in a neighborhood of [a, b]. The points of fε(I1) ∩ I1
described by Proposition 9, do not, however, change with ε. Thus we have arrived
at a contradiction, which proves the following lemma.

Lemma 11. Let fε be the perturbed map of §4. If I is a caustic sufficiently near
∂Ω, K is a curve sufficiently close to I, and ε is sufficiently small, then

fε(K) ∩K 6= ∅.

7. Invariant Curves

Claim 12. Assume that Ω is a bounded planar domain, integrable near ∂Ω, with
∂Ω C∞ and strictly convex. Assume that C is a caustic and the caustics between
C and ∂Ω are C∞ and strictly convex. Let D denote a caustic which is also an
evolute of C. For sufficiently small ε, fε has an invariant curve, K, strictly inside
SD(intD) ↪→ S∂ΩΩ so that fε restricted to K has an irrational rotation number.

We will use KAM theory to find the required invariant curve for fε. Since fε
is a smooth perturbation of the billiard ball map, the theorem needed here – a
simplified version of a theorem of Moser [15] – can be stated as follows:

LetB be an annulus in R2 with boundary components the closed oriented curves
C and D, and let h:B → B be a twist map: h is smooth, h(D)=D, h(C)=C, and
the rotation numbers of h on C and D, b and a (respectively), satisfy a < b.

Assume that an invariant curve for h passes through every point of B, that is,
there are coordinates 0 ≤ x ≤ 1, 0 ≤ y ≤ 1 on B with h(x, y) = (x+ y, y). (We call
y0 the rotation number on the invariant curve {y = y0}.)

Let hε:B → B be a smooth map which is also C∞ in ε ∈ (0, r) with h0 = h,
and assume that for ε sufficiently small hε is a twist map on B. Assume also that
for any closed curve K sufficiently near an invariant curve for h

(7.1) (hε)(K) ∩K 6= ∅.
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Then for ε sufficiently small, hε has an invariant curve in B with rotation number
ω for each ω with a+ ε < ω < b− ε and which is poorly approximated by rationals
in the sense that

(7.2) |ω − 2π
m

n
| > εn−5/2 n,m ∈ Z, n > 0.

Note. that as a consequence of the proof of this theorem – see [15] pp. 14 and 15
— (7.1) need only hold in a neighborhood of the invariant curve for h with rotation
number ω0 (satisfying (7.2)) for the conclusion to hold for an invariant curve with
rotation number ω0.

We show that fε satisfies the hypotheses of the theorem above as a perturbation
of the map β.

Proof of Claim 12. Let D and C be as in the hypothesis of Claim 12 and let
B ⊂ SD(intD) be the annulus with boundary components the inclusions of D and
C in SD(intD) (also called D and C). Since C and D are both evolutes of C and
caustics, for any ε, fε|C = β|C , and fε|D = β|D, so that fε(C) = C and fε(D) = D
with the rotation numbers of β, showing that for sufficiently small ε the map fε is
a twist map of the annulus.

The map p 7→ l′ with l′ the tangent to the caustic D(p) through p is smooth
since the billiard ball map on ∂Ω is integrable and the caustic through p is smooth
and strictly convex. In fact, since the caustics are strictly convex the collection of
lines l′ (associated to caustics) can be parameterized by the caustics to which they
are tangent and the point of the caustic at which they are tangent (see Lazutkin’s
[11] which shows that the caustics can be parameterized smoothly by their rotation
numbers). Each of the two angles made with l by the tangents to C through a point
x ∈ l is continuous and monotone in x (one increases while the other decreases),
showing — by the implicit function theorem — that the map taking l to q ∈ l used
in §4 is smooth. Also, by Proposition 8, we can find a solution of (4.1) which is
smooth (as the line l varies). Thus the billiard ball map is perturbed by a smooth
map in the annulus.

From §6 (Lemma 11) we know that for ε sufficiently small the perturbed map
has the intersection property for curves sufficiently near D and sufficiently near a
fixed caustic in B.

Thus, the KAM theory applies, proving Claim 12 for some curve with a rotation
number ω satisfying (7.2), in particular, the rotation number is irrational. �

8. Properties of the Invariant Curves

We show that invariant curves for fε are both evolutes of C and caustics.

Proposition 13. A caustic, D, in the annulus A whose image in S∂ΩΩ is invari-
ant under fε is an evolute of C.

Proof. Being a caustic, D is invariant under the billiard ball map, so D is invariant
under fε only if it is invariant under gε.

For a point p ∈ D, the tangent line at p to D is taken by gε to the line l′ tangent
to a caustic D(q) through a point q ∈ l. But since the caustics are convex and do
not intersect, either q = p or q lies outside D and D(q) lies outside D. Since D is
invariant under fε it follows that q = p.
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By Lemma 3, q = p only if the angles between l and the two tangents to C which
go through p are equal. Since l is the tangent to D (at p), D is an evolute of C. �

Proposition 14. A closed invariant curve for fε on which fε has an irrational
rotation number is (the image of) both an evolute of C and a caustic.

Proof. Denote by K the image in Ω of the invariant curve for fε (as well as the
invariant curve itself). For two caustics, D and E, we say that E is “larger” than
D if D is contained in the convex hull of E. Consider the “largest” caustic for the
billiard ball map on ∂Ω intersecting the (compact) invariant curve K, say E. Let l
be a tangent to E at p ∈ K ∩ E. As in the previous proposition, fε(l) lies outside
E or tangent to E. Also fε(l) ∈ K, and K lies inside (the convex hull of) E, so
fε(l) ∈ E ∩K. Therefore,

fnε (l) ∈ (E ∩K), ∀n ≥ 0.

But since the rotation number of fε on K is irrational and fε ∈ C2(K), the orbit
of l is dense in K and so, since fε is continuous, E ∩K = K, that is, K is a caustic
for the billiard ball map on ∂Ω.

By Proposition 13, K is also an evolute of C. �

Proof of Theorem 6. The proof proceeds by contradiction. Assume that D6=C
is the caustic nearest C that is also an evolute, that is, there are no caustics in the
annulus, B, between C and D that are evolutes of C (it is possible that D is ∂Ω).
By Claim 12, for some sufficiently small ε > 0, fε has a closed invariant curve K
strictly between C and D with irrational rotation number, and by Proposition 14,
K is an evolute of C and also a caustic, arriving at a contradiction. �

9. Calculation of the Lazutkin Parameter

We wish to find those smooth curves which have the weaker transitivity property
(and thus satisfy equation (3.1)). Let a be a simple closed strictly convex C∞ planar
curve given by its tangent angle (0 ≤ θ ≤ 2π) and its curvature (k(θ) > 0);

a(θ) =
(∫ θ

0

cos(t)
dt

k(t)
, y0
a +

∫ θ

0

sin(t)
dt

k(t)

)
.

Let b be the Q-evolute of a (Q > 0), given by its tangent angle, φ, and curvature,
v, i.e, v = L(Q, k). Then for some θ1, t1, θ2, and t2

b(φ) = a(θ1) + t1(cos θ1, sin θ1) = a(θ2)− t2(cos θ2, sin θ2),

and
Q = t1 + t2 − (s(θ2)− s(θ1)),

where s is the arclength along a, s(θ) =
∫ θ

0
k−1(t)dt.

Since a is assumed to be an invariant curve for the billiard ball map on b,

φ = (θ1 + θ2)/2 .
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A calculation of t1 + t2 [1] shows that

Q =
1

cos ∆

∫ ∆

−∆

cos(u)k−1(φ+ u)du−
∫ ∆

−∆

k−1(φ+ u)du,

where ∆ = θ2 − φ = φ− θ1.
The right side of the equation above is clearly smooth in ∆ near zero, and it

turns out to vanish to third order in ∆. In fact, Q = ∆3f(∆) where f is smooth in
∆ near zero and f(0) = (12k)−1 > 0.

Proposition 15. L(Q, k) is a differential operator in k which is smooth in Q2/3

for sufficiently small Q.

Proof (outline). The implicit function theorem shows that if k ∈ Cn, then Q is
a Cn function of ∆ and ∆ is a Cn function of Q1/3.

It also follows that t1 and t2 are Cn functions of φ and Q1/3. Thus v is a Cn

function of φ and of Q1/3. Now observe that L(Q, k) is even in Q. �

Lemma 16. Assume that Ω is a bounded planar domain with a C∞ and strictly
convex boundary. Assume that Ω is integrable near ∂Ω. Then there is a neighbor-
hood of ∂Ω in Ω in which the caustics are C∞ and strictly convex.

Proof. The zero section of S∂ΩΩ is (s, 0), in terms of arc length s and the incidence
angle at ∂Ω.

The calculations above show that Q is continuous in the incident angle ∆, and
hence the invariant circles approach ∂Ω as Q→ 0.

Let v denote the curvature of ∂Ω. Since as Q→ 0 L(Q, k)→ v and since there
is a τ with v(φ) ≥ τ > 0, it follows that L(Q, k) is formally invertible. Since the
caustics are assumed to exist, Proposition 15 implies that for Q sufficiently small
(and ∂Ω fixed), k ∈ C∞ and k > 0. �

10. An Equation for Transitivity

Let v denote the curvature of ∂Ω. Since Ω is integrable, for each R in some
nonempty interval [0, T ], there is a caustic with curvature k s.t. v = L(R, k). By
Theorem 6, for each R ∈ [0, T ] and n ≥ 0 there are Pn = P (R,n) > 0, Qn =
Q(R,n), and wn = w(R,n) with

L(R, k) = v, L(Pn, k) = wn, and L(Qn, wn) = v,

so that in addition P0 = R, Q0 = 0, and as n→∞ Pn → 0 while Qn → R (wn → k
as n→∞).

Recall from Proposition 15 that

L(R, k) ∼
∞∑
j=0

Lj(k)R2j/3,

with Lj(k) an ordinary differential operator. Also, L(0, k) = k, so L0 is the identity.
Interpreting L(Qn, L(Pn, k)) = L(R, k) in the sense of power series, we get
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(10.1) L0k + (L1k)(P 2/3
n +Q2/3

n ) + (Ltwo1 k)P 2/3
n Q2/3

n + (L2k)(P 4/3
n +Q4/3

n )

= L0k + L1kR
2/3 + L2kR

4/3 +O(R6/3),

where Ltwo1 k is the coefficient of R2/3 in L1(k + L1kR
2/3).

As n approaches infinity,

R2/3 ∼ P 2/3
n +Q2/3

n + P 2/3
n g(k)(AP 2/3

n +BQ2/3
n ) +O(R6/3).

Thus (10.1) with R approaching 0 yields A = 0 and

Ltwo1 (k(R)) = L1(k(R))G(k(R)) + 2L2(k(R)). (G(k) = Bg(k).)

Since as R→ 0, k(R)→ v,

Ltwo1 v = L1(v)G(v) + 2L2v.

After solving for L1 and L2 from the geometric description in §9 this equation
becomes

(3

2

)1/3( 1

60
v4/3v(4) − 1

30
v1/3v′v(3) − 1

45
v1/3(v′′)2 +

7

108
v−2/3(v′)2v′′

(10.2)

+
1

20
v4/3v′′ − 2

81
v−5/3(v′)4 − 1

36
v1/3(v′)2 +

1

10
v7/3

)
= G(v)

(3

2

)2/3(1

6
v2/3v′′ − 2

9
v−1/3(v′)2 − 1

2
v5/3

)
.

Equation (10.2) is the desired transitivity property equation, and is satisfied by
the curvature of any ellipse and its rotations. With the additional requirement that
the curve be a closed convex curve (there are two conditions for closure), ellipses (a
two parameter family of curves with an additional parameter for rotation) are the
only curves whose curvature satisfies this equation (see [1], but it is also possible to
prove this by checking the solutions’ dependence on initial conditions directly by
numerical means as in [2]). We record this.

Proposition 17. The only C∞ closed strictly convex boundaries in the plane
whose curvatures satisfy (10.2) are ellipses.

Proof. Using Lemma 16, Theorem 6, and Proposition 17, Theorem 1 is proved. �

Note. Mather [13] has shown that closed twice differentiable planar curves that
are not strictly convex (a point at which the curvature vanishes exists) are not
integrable. Thus the above completes the solution of Birkhoff’s conjecture for C∞

integrable planar regions (or those regions which are sufficiently differentiable so
that KAM theory applies).
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