
Western Washington University Western Washington University

Western CEDAR Western CEDAR

WWU Honors Program Senior Projects WWU Graduate and Undergraduate Scholarship

Fall 2018

Deblurring Images Deblurring Images

Jamie McMullen
Western Washington University

Follow this and additional works at: https://cedar.wwu.edu/wwu_honors

 Part of the Algebra Commons, and the Higher Education Commons

Recommended Citation Recommended Citation
McMullen, Jamie, "Deblurring Images" (2018). WWU Honors Program Senior Projects. 100.
https://cedar.wwu.edu/wwu_honors/100

This Project is brought to you for free and open access by the WWU Graduate and Undergraduate Scholarship at
Western CEDAR. It has been accepted for inclusion in WWU Honors Program Senior Projects by an authorized
administrator of Western CEDAR. For more information, please contact westerncedar@wwu.edu.

https://cedar.wwu.edu/
https://cedar.wwu.edu/wwu_honors
https://cedar.wwu.edu/grad_ugrad_schol
https://cedar.wwu.edu/wwu_honors?utm_source=cedar.wwu.edu%2Fwwu_honors%2F100&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/175?utm_source=cedar.wwu.edu%2Fwwu_honors%2F100&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1245?utm_source=cedar.wwu.edu%2Fwwu_honors%2F100&utm_medium=PDF&utm_campaign=PDFCoverPages
https://cedar.wwu.edu/wwu_honors/100?utm_source=cedar.wwu.edu%2Fwwu_honors%2F100&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:westerncedar@wwu.edu

Deblurring Images
Senior Project

Jamie McMullen
Advisor: Tjalling Ypma

Abstract

Let the matrix B be a blurred version of a sharp image represented by the matrix X. Given
B, we would like to recover X.

To accomplish this, we construct linear models of the blurring process that produced B
from X. The idea is that we could then reverse the blurring to reproduce the original image.

For example, if the blurred image satisfies

B = CXRT

for some invertible matrices C and R, then we could recover X as

X = C−1B(RT)−1.

However, the blurring model usually fails to account for all the blurring that actually oc-
curred. Likely, the blurred image actually satisfies a relation like

B = CXRT + E

where E is a matrix representing random errors and other blurring effects not accounted for
by the model.

If we were to proceed as above, we would produce

C−1B(RT)−1 = X + C−1E(RT)−1.

The term C−1E(RT)−1 often severely compromises the accuracy of the clear image X. We
will explore ways to modify the reconstruction process to produce an image close to X that
minimizes contamination by the error term E.

This report is comprised of three parts. In the first, we examine the construction of blurring
models, in the second we discuss methods of deblurring images using these models, and in
the third we will work with an example photograph to illustrate the deblurring process.

The mathematical techniques we use include the singular value decomposition, matrix norms,
certain matrix structures such as Kronecker products, and related theorems. The relevant
details of these topics are provided in the appendix.

1

1. Constructing a Model of Blurring

A digital image is represented by matrices, with entries corresponding to the hues of each
pixel in the image. Grayscale images need only one matrix, with numerical entries ranging
on a predetermined scale from black to white. Color images require three matrices, one for
each of the red, green, and blue (RGB) components of each pixel.

Say we have a grayscale digital image that is unclear, or blurred, and we want to sharpen
this image. We call the matrix representing the given blurry image B, and we define the
matrix X to be the sharp, clear version of B. We vectorize the matrix X by concatenating
its columns, in order, to create one long column vector. This creates ~x = vec(X). We create

the vector ~b = vec(B) similarly. Then, a linear system representing the blurring process is
given by

A~x = ~b

Our first goal is to construct the blurring matrix A. We will begin by examining the concept
of a point spread function and its utilization in the creation of our blurring matrix.

Point Spread Functions

A point spread function (PSF) establishes how a single pixel, the point source, is spread
through the image when blurring occurs. The point spread function dictates what portion
of the point source ends up in each of the pixels around it. Here is one simple example of a
point spread function:

Clear

0 0 0
0 1 0
0 0 0

 −→ Blurred

0 1
8

0
1
8

1
2

1
8

0 1
8

0


This visual representation of the PSF is called a point spread array. Note that the entries
in the blurred version add up to 1.

When the PSF is identical for all pixels in an image, the blurring is said to be spatially
invariant. In this report, we assume spatial invariance.

The PSF is usually expressed as a mapping from the point source to each pixel of its array.
For example, circular blurring from an out-of-focus lens is represented as

pij =

{
1
πr2

if (i− k)2 + (j − l)2 ≤ r2

0 elsewhere

Here, the center of the array is at (k, l) and the radius of the blur is r.

2

Another example is Gaussian blur, given by

pij = e

− 1
2


i− k
j − l

Ts2
1 ρ2

ρ2 s2
2

−1i− k
j − l




with s1, s2, and ρ determining the width and orientation of the PSF, and center (k, l). When
s1 = s2 and ρ = 0, row and column blurring become independent of one another. This is
an example of separable blurring, where the term “separable” reflects that since row and
column blurring are independent, the PSF can be expressed as

P = ~c ~rT =

 c1
...
cm

 [r1 · · · rn
]
.

As the point source is represented by an m× n matrix of all zeros other than a single pixel
of value 1, its vectorized version is simply the ith unit vector in Rmn. We denote this ith
unit vector as ~ei, not to be confused with a column of the error matrix E discussed later.

We observe that since A~x = ~b, the blur of a single pixel is given by A~ei, which is equivalent
to the ith column of A. Hence, once we have established the point spread function, we
construct the matrix A columnwise by vectorizing the point spread array. Because of spatial
invariance, we can construct A by placing the appropriate shift of this vector in each column
of A. For example, with the first 3× 3 example of a point spread function, we obtain:

A =



.

. . . 1
2

1
8

0 1
8

0 0 1
8

0 1
8

1
8

1
2

1
8

0 1
8

0 0 1
8

0
0 1

8
1
2

1
8

0 1
8

0 0 1
8

1
8

0 1
8

1
2

1
8

0 1
8

0 0
0 1

8
0 1

8
1
2

1
8

0 1
8

0
0 0 1

8
0 1

8
1
2

1
8

0 1
8

1
8

0 0 1
8

0 1
8

1
2

1
8

0
0 1

8
0 0 1

8
0 1

8
1
2

1
8

1
8

0 1
8

0 0 1
8

0 1
8

1
2

. . .
.


To compute the blurry image B pixel by pixel, we work with its vectorized version. The
entry bi of ~b is given by bi = ~ei

T~b = ~ei
TA~x = (ith row of A)~x. Note that here we are working

with the rows, not the columns, of A. Each blurred pixel is then a weighted average of its
surrounding pixels, whose weights are given by the rows of A. This is called convolution.

3

Boundary Conditions

What about the pixels on or near the edge of a blurred image? In principle, the pixels
near the edge of a blurred image are affected by the pixels beyond the boundary of the exact
image. This is because each pixel of the blurred image is a weighted average of a pixel with
its neighboring pixels, called convolution. To cope with this, assumptions have to be made
about the pixels surrounding the outer boundary of the exact image. These assumptions are
called boundary conditions. When boundary conditions are assumed, our representation of
the exact image is extended beyond its original borders. The idea is that the blurred image
arises from blurring applied to this extended image.

The simplest boundary condition is called the zero boundary condition, in which we as-
sume that all pixels beyond the dimensions of the exact image have entries 0. Visually, this
represents an assumption that everything outside of the field of view of the exact image is
black. If X is our exact image, then we impose zero boundary conditions by padding the
matrix with zeros, creating

Xext =

0 0 0
0 X 0
0 0 0


Zero boundary conditions are very easy to work with, but they tend to cause black rings
around the inner borders of pictures upon deblurring, much like a vignette effect.

One alternative method that avoids black vignetting is the periodic boundary condition,
in which the clear image is assumed to repeat outside of itself in all directions. In this case,

Xext =

X X X
X X X
X X X


A third option is to impose reflexive boundary conditions, in which the clear image is reflected
outside of itself in all directions. Here, a vertical flip of X is represented by XV , a horizontal
flip by XH , and a flip in both directions by XV H = XHV . Then

Xext =

XV H XV XV H

XH X XH

XV H XV XV H


Here is one simple 2× 2 example of the reflexive boundary condition:

X =

[
1 2
3 4

]
, Xext =


4 3 3 4 4 3
2 1 1 2 2 1
2 1 1 2 2 1
4 3 3 4 4 3
4 3 3 4 4 3
2 1 2 1 2 1



4

Constructing a Blurring Matrix

Now, we establish a more detailed description of the structure of the blurring matrix A.

Convolution, weighted sums of pixels and their neighbors, is discrete in image blurring
and is dictated by the point spread function. We explore an example of one-dimensional
convolution, given a 5× 1 true image ~x, and a point spread function:

Vectorized image ~x =


x1

x2

x3

x4

x5

, vectorized point spread function ~p =


p1

p2

p3

p4

p5


The blurred image vector ~b will be the convolution of ~x with ~p. Since the blurring is assumed
to be spatially invariant, we have

A =



.

. . . p3 p2 p1 0 0
p4 p3 p2 p1 0
p5 p4 p3 p2 p1

0 p5 p4 p3 p2

0 0 p5 p4 p3
. . .

.


.

Writing ~b = A~x, we have



...
b1

b2

b3

b4

b5
...


=



.

. . . p3 p2 p1 0 0
p4 p3 p2 p1 0
p5 p4 p3 p2 p1

0 p5 p4 p3 p2

0 0 p5 p4 p3
. . .

.





...
x1

x2

x3

x4

x5
...


We see that, for example, b3 = p5x1 + p4x2 + p3x3 + p2x4 + p5x1.

5

We create an extended exact image ~xext, with the entries w1, w2, y1, y2 representing pixels
that are outside the field of view of the actual image (on the boundary):

~xext =



w1

w2

x1

x2

x3

x4

x5

y1

y2


Then, convolution is represented as


b1

b2

b3

b4

b5

 =


p5 p4 p3 p2 p1 0 0 0 0
0 p5 p4 p3 p2 p1 0 0 0
0 0 p5 p4 p3 p2 p1 0 0
0 0 0 p5 p4 p3 p2 p1 0
0 0 0 0 p5 p4 p3 p2 p1





w1

w2

x1

x2

x3

x4

x5

y1

y2


.

Notice that pixels from outside the true image impact pixels near the edge of the blurred
image. This is why choosing appropriate boundary conditions is so important.

A convolution computation is condensed depending on the selected boundary conditions.
In this example, with zero boundary conditions, w1, w2, y1, y2 = 0 and the A matrix becomes
a 5× 5 Toeplitz matrix:

A =


p3 p2 p1 0 0
p4 p3 p2 p1 0
p5 p4 p3 p2 p1

0 p5 p4 p3 p2

0 0 p5 p4 p3


With periodic boundary conditions, w1 = x4, w2 = x5, y1 = x1, y2 = x2. In this case, the A
matrix becomes a 5× 5 circulant matrix:

A =


p3 p2 p1 p5 p4

p4 p3 p2 p1 p5

p5 p4 p3 p2 p1

p1 p5 p4 p3 p2

p2 p1 p5 p4 p3


6

With reflexive boundary conditions, we have w1 = x2, w2 = x1, y1 = x5, y2 = x4. Then, A
becomes a 5× 5 matrix that is the sum of a Toeplitz and a Hankel matrix, a Toeplitz-plus-
Hankel matrix:

A =


p3 p2 p1 0 0
p4 p3 p2 p1 0
p5 p4 p3 p2 p1

0 p5 p4 p3 p2

0 0 p5 p4 p3

+


p4 p5 0 0 0
p5 0 0 0 0
0 0 0 0 0
0 0 0 0 p1

0 0 0 p1 p2


Two-dimensional convolution is analogous to one-dimensional convolution, except that the
clear and blurred images are represented by matrices rather than vectors. For example, if
we have a clear 3× 3 image and corresponding point spread function,

X =

x11 x12 x13

x21 x22 x23

x31 x32 x33

, P =

p11 p12 p13

p21 p22 p23

p31 p32 p33

, B =

b11 b12 b13

b21 b22 b23

b31 b32 b33


where X and P are known and we want to find B, if we assume zero boundary conditions
we vectorize X and B and obtain

b11

b21

b31

b12

b22

b23

b31

b32

b33


=



p22 p12 0 p21 p11 0 0 0 0
p32 p22 p12 p31 p21 p11 0 0 0
0 p32 p22 0 p31 p21 0 0 0
p23 p13 0 p22 p12 0 p21 p11 0
p33 p23 p13 p32 p22 p12 p31 p21 p11

0 p33 p23 0 p32 p22 0 p31 p21

0 0 0 p23 p13 0 p22 p12 0
0 0 0 p33 p23 p13 p32 p22 p12

0 0 0 0 p33 p23 0 p32 p22





x11

x21

x31

x12

x22

x23

x31

x32

x33


We observe that the structure of the large matrix A is block Toeplitz with 3 × 3 Toeplitz
blocks (BTTB). In the case of periodic boundary conditions, A is block circulant with cir-
culant blocks (BCCB), and with reflexive boundary conditions A is a sum of block Toeplitz
with Toeplitz blocks (BTTB), block Toeplitz with Hankel blocks (BTHB), block Hankel with
Toeplitz blocks (BHTB), and block Hankel with Hankel blocks (BHHB) matrices.

Separable Blurring

In some cases, blurring occurs such that the blurring of the columns of the clear image
is independent of the blurring of the rows. This is called separable blurring. At the matrix
level, when blurring is separable, we can relate the blurry image B and the clear image X
using invertible matrices Ac and Ar. We express the relationship as AcXA

T
r = B, where Ac

transforms the columns of X and ATr transforms the rows.

To understand why Ac affects the columns and ATr affects the rows, we observe that if
X = [~x1 · · · ~xn], then AcX = Ac [~x1 · · · ~xn] = [Ac ~x1 · · ·Ac ~xn]. The structure behind XATr is
analogous. Of course, since matrix multiplication is associative, it does not matter which

7

blurring operation is applied to X first; the blurred image B will be the same.

It is easy to see that in the vectorized form, B = AcXA
T
r corresponds to ~b = A~x, where the

blurring matrix A is given by the Kronecker product A = Ar ⊗ Ac.

In the case of a separable blur, we decompose the m × n point spread array P into two
vectors, such that P = ~c(~rT), where ~c is m× 1 and represents blur across the columns of an
image, and ~r is n × 1 and represents blur across the rows. In this case, P has rank 1, with
pij = cirj. Assuming spatial invariance, if we replace each pij in the mn×mn matrix A by its
corresponding cirj, we observe that A takes the form of a Kronecker product A = Ar ⊗ Ac,
where Ar is n × n, with entries a pattern of the ri, while Ac is m × m and has entries a
pattern of the ci. For example:

A =



r2

c2 c1

c3 c2 c1

c3 c2

 r1

c2 c1

c3 c2 c1

c3 c2

 0

r3

c2 c1

c3 c2 c1

c3 c2

 r2

c2 c1

c3 c2 c1

c3 c2

 r1

c2 c1

c3 c2 c1

c3 c2


0 r3

c2 c1

c3 c2 c1

c3 c2

 r2

c2 c1

c3 c2 c1

c3 c2




The ability to express Ar and Ac based on single vectors ~r and ~c is a direct consequence
of our assumption of spatial invariance. If we have our matrix Ac acting on X such that
every pixel in X is smeared out by Ac the exact same way, then the columns of Ac are
shifted versions of each other. Then, Ac is characterized by just one of its columns, namely
~c. Similarly, Ar is characterized by one vector ~r.

Ar and Ac take on particular structures based on the chosen boundary conditions. With
zero boundary conditions, Ar and Ac are both Toeplitz matrices as in the example above.
With periodic boundary conditions, Ar and Ac are circulant matrices, and with reflexive
boundary conditions Ar and Ac are Toeplitz-plus-Hankel matrices.

If the point spread function is separable, then it is easy to find a ~c and ~r such that P = ~c ~rT .
To do so, we take the singular value decomposition P = UΣV T and use the largest (and only
nonzero) singular value, σ1, of P . Then ~c =

√
σ1 ~u1 and ~r =

√
σ1 ~v1. From here, we represent

P in terms of the ci and ri, and construct A based on the assumed boundary conditions,
with A = Ar ⊗ Ac.

8

2. Deblurring an Image
Error

If we have A~x = ~b and wish to recover the clear image ~x, we write ~x = A−1~b, and if we
know the matrix A then we are done. However, this simple approach is flawed and may lead
to even worse blurring than before.

The reason that this “näıve” solution does not work is that the model A~x = ~b is usually not
quite correct. This model does not account for noise or other errors not captured by this
model. Often the neglect of noise in the näıve solution leads to an even worse quality image
than before, because the noise may get significantly blown up during the ná’ive deblurring.
This may be seen as follows.

Using the singular value decomposition,

A = UΣV T =
mn∑
i=1

σi~ui~vi
T ,

so

A−1 = V Σ−1UT =
mn∑
i=1

1

σi
~vi~ui

T .

Then

~xnäıve = A−1~b = V Σ−1UT~b =
mn∑
i=1

~ui
T~b

σi
~vi.

As i increases, more sign changes tend to occur in the entries of the vectors ~ui and ~vi. In other
words, the information frequency of the vectors increases as i increases. Low frequency in-
formation corresponds to more significant, major features of the image, while high frequency
information corresponds to fine detail, and often noise. We want low frequency information
to dominate the solution in order to capture the overall features of the image. To accomplish
this, |~uiT~b| must decay faster than the σi. This is called the Discrete Picard Condition, and
is always satisfied by the blurring matrices constructed in image deblurring problems.

A more accurate representation for the image blurring process is ~b = A~x + ~e, where ~e is
the vector accounting for the inevitable error. Then when the näıve solution is applied, we
really obtain ~xnäıve = A−1~b = A−1(A~x + ~e) = ~x + A−1~e. If the second term, the inverted
noise term, has large values, then the noise may dominate the solution and the reconstructed
image will potentially have very low quality. Using SVD, this is represented by

~xnäıve = ~x+ A−1~e

= ~x+ V Σ−1UT~e

= ~x+
mn∑
i=1

~ui
T~e

σi
~vi.

9

The inverted noise term of the näıve solution typically displays a few significant properties.
The |~uiT~e| stay fairly consistent for all i. As i increases, σi decreases, causing 1

σi
to increase.

Thus, as i increases, the terms ~ui
T~e
σi

become very large in magnitude and thus the error
component ~e becomes overrepresented. These effects combined allow for the error term to
dominate the näıve solution.

Spectral Filtering

In order to control the error term, it is necessary to limit the impact of the terms ~ui
T~e
σi

for small σi. One way to do this is through spectral filtering.

Spectral filtering, or regularization, is when the computed solution ~x has the form

~xfilt =
∑mn

i=1 φi
~ui
T~b
σi
~vi, with filter factors φi ≈ 1 for large σi and φi ≈ 0 for small σi.

Truncated SVD

One example of spectral filtering is the truncated singular value decomposition. This method
simply discards all components of the singular value decomposition of A that are dominated

by noise. That is, take ~xk =
∑k<mn

i=1
~ui
T~b
σi
~vi. In this case, φi = 1 for i ≤ k and φi = 0 for

i > k. Equivalently, we could replace σi by 0 if |σi| ≤ ε, where ε is some selected threshold
value.

Equivalently, to combat the dominance by high-frequency information, we are truncating
the matrices U and V to include only the singular vectors ~ui and ~vi with low enough in-
dices. When a suitable end-index position k has been chosen, the rank-k approximation
Ak =

∑k
i=1 σi~ui~vi

T given by the Eckart-Young-Mirsky Theorem is substituted for our blurring
matrix A. This replacement is effective in eliminating the greatly magnified high-frequency
singular vectors, and thus serves to curb the inflation of error in our solution.

Of course, there is a balance in selecting the appropriate k value. If k is too high, noise
will still dominate the solution; but if k is too low, too much basic information will be
lost. The scalar quantities |~uiT~b| of A tend to lessen as i increases, but plateau off even-
tually due to noise. We demonstrate this in an example at the end of this report. The
wider the blur, the higher the level of this noise plateau occurs, and the faster the singular
values of A decline to zero. The value of k chosen for a truncated singular value decomposi-
tion should be the last index at which the singular value is greater than the coefficient |~uiT~b|.

Tikhonov Regularization

Another form of regularization is Tikhonov filtering. Here, φi =
σ2
i

σ2
i+α2 where α > 0 acts as

the regularization parameter.

10

Our filtered solution then satisfies

~xα =
n∑
i=1

σ2
i

σ2
i + α2

~ui
T~b

σi
~vi

= V (Σ2 + α2I)−1ΣUT~b

= V (Σ2 + α2I)−1V TV ΣUT~b

= (V Σ2V T + α2V V T)−1V ΣUT~b

= (ATA+ α2I)−1AT~b.

This is true if and only if (ATA+ α2I)~x = AT~b, and thus

[
A
αI

]T [
A
αI

]
~x =

[
A
αI

]T [~b
~0

]
.

Thus ~xα solves the least-squares problem min~x

∥∥∥∥[AαI
]
~x−

[
~b
~0

]∥∥∥∥
2

.

We use the fact that for any vectors ~p and ~q,∥∥∥∥[~p~q
]∥∥∥∥2

2

=

[
~p
~q

]T [
~p
~q

]
= ~pT~p+ ~qT~q = ||~p||22 + ||~q||22

to rewrite our solution as

~xα = min~x

∥∥∥∥[AαI
]
~x−

[
~b
~0

]∥∥∥∥
2

= min~x{||A~x−~b||22 + α2||~x||22}

So, the Tikhonov method provides the solution to the minimization problem min~x{||A~x −
~b||22 + α2||~x||22}. The reason that this specific minimization problem presents itself is that

of course we want a small ||A~x −~b||22, but if it were minimized all the way to zero then we

would have A~x = ~b, running into the näıve solution ~x = A−1~b with lots of noise blowup
present and large ||~x||22. If we keep ||~x||22 small as well, then noise is kept under control.
The regularization parameter α determines how heavily important one norm component is
in comparison to the other.

Choosing an appropriate value for α depends on the singular values σi of the blurring matrix.
A series expansion shows that

φi =
σ2
i

σ2
i + α2

=

{
1− (α

σi
)2 +O

(
(α
σi

)4
)

σi >> α

(σi
α

)2 +O
(
(σi
α

)4
)

σi << α

We can infer that a reasonable α satisfies σmn << α << σ1. For early indices, we have

σi >> α, so φi ≈ 1. For late indices when σi << α, we have φi ≈ σ2
i

α2 ≈ 0. Of course, the
turning point occurs when σi ≈ α.

11

Error in Spectral Filtering

Recall that the näıve solution is described by ~xnäıve = A−1~b = V Σ−1UT~b. In general, a
solution obtained by spectral filtering can be written as ~xfilt = V ΦΣ−1UT~b, where Φ is a
diagonal matrix with entries φi. Now,

~xfilt = V ΦΣ−1UT~b

= V ΦΣ−1UT (~bexact + ~e)

= V ΦΣ−1UT~bexact + V ΦΣ−1UT~e

= V ΦΣ−1UTA~xexact + V ΦΣ−1UT~e

= V ΦV T~xexact + V ΦΣ−1UT~e.

Consequently, the error in spectral filtering solutions is ~xexact − ~xfilt = (I − V ΦV T)~xexact −
V ΦΣ−1UT~e. The two terms respectively represent different types of error, regularization
error and perturbation error.

Regularization error, represented by (I − V ΦV T)~xexact, is caused by using the regularized
inverse matrix V ΦΣ−1UT instead of the original inverse matrix A−1 = V Σ−1UT . V ΦV T

describes the mapping between ~xexact and ~xfilt. Thus if the diagonal entries of Φ are quite
small, causing Φ to approach the zero matrix, regularization error becomes huge. On the
contrary, as Φ approaches Imn, V ΦV T −→ V V T = Imn, causing the regularization error to
shrink to zero.

Perturbation error, represented by V ΦΣ−1UT~e, consists of inverted and filtered noise. As Φ
approaches zero, the perturbation error shrinks to zero. This manifests as an undersmoothed
solution image. But as Φ approaches Imn, we have V ΦΣ−1UT~e −→ V Σ−1UT~e = A−1~e, cre-
ating large perturbation error. This is the case when the solution image is oversmoothed.

The reason that it is possible to compute reasonable approximations to exactly sharp im-
ages by filtering is due to deblurring problems satisfying the Discrete Picard Condition. To
understand this, we consider the norm of the regularization error:

||(I − V ΦV T)~xexact||22
=||(I − Φ)V T~xexact||22
=||(I − Φ)Σ−1UT~bexact||22

=
mn∑
i=1

(
(1− φi)

~ui
T~bexact

σi

)2

.

Since the Discrete Picard Condition is satisfied, the coefficients | ~ui
T~bexact
σi
| rapidly decay on

average. For small i, the filter factors φi are close to one, so (1−φi) dampen the larger early
coefficients. For large i, filter factors are quite small, causing (1 − φi) to approach one, so
the smaller coefficients are not as damped. This provides balance in the regularization error,
preserving a reasonable error norm.

12

We see now that one type of error shrinks as the other grows. The two kinds of error
are most balanced when the appropriate regularization parameter value is chosen.

One way to decide on the most suitable regularization parameter is using the L-Curve Cri-
terion. Often shaped like an L, the L-curve is a log-log plot of the norm ||A~xfilt −~b||2 of the
regularized solution versus the corresponding residual norm ||~xfilt||2 for different parameter
values. In TSVD, an excessively low choice of k causes the residual norm to grow too large,
and an excessively high k causes the solution norm to be too large. In Tikhonov regulariza-
tion, too low a choice of α causes the solution norm to be too large but too high a choice
of α causes too great an increase in the residual norm. Since we wish to avoid either norm
being too large, the optimum parameter value is at the corner of the L-curve.

Separable Deblurring

When blurring is separable, it is helpful to exploit the singular value decompositions Ar =
UrΣrV

T
r and Ac = UcΣcV

T
c , where the properties of Kronecker products gives us that

A = Ar ⊗ Ac = (Ur ⊗ Uc)(Σr ⊗ Σc)(Vr ⊗ Vc)T .

This itself resembles a singular value decomposition, with the exception that the diagonal
entries of Σr ⊗ Σc are not necessarily in nonincreasing order. However, we do not need to
construct these Kronecker products.

In matrix form, Xnäıve = A−1
c BA−Tr . Substituting the SVD, we obtain

Xnäıve = VcΣ
−1
c UT

c BUrΣ
−1
r V T

r .

To compute Xfilt, we define ~σc to consist of the entries on the main diagonal of Σc, and define
~σr similarly in terms of Σr.
Note that the products of these entries are the singular values of A. An m × n matrix
containing these mn values can be computed as S = ~σc ~σ

T
r . We collect the corresponding

filter factors in an m× n matrix Φ.
Let Sfilt = Φ./S where ./ denotes elementwise division.
Then Xfilt = Vc((U

T
c BUr).

∗Sfilt))V
T
r , where .∗ denotes elementwise multiplication.

This construction of Xfilt is especially useful when deblurring using numerical computing
software such as MATLAB, which have built-in operations for elementwise multiplication
and division. This lets us avoid working with the huge matrix A.

13

3. Example: Lunar Photograph

We examine the deblurring process using a crop of the following image:

Figure 1: A photograph of the surface of the moon.

Figure 2: A clear 31× 31 pixel crop of the moon photograph.

We create three different versions of Gaussian blur PSFs and their corresponding blurring
matrices. The figures below show three sizes of symmetric Gaussian PSFs, a plot of the
singular values of their corresponding A matrices, and blurred versions of the clear pictures
corresponding to each PSF. Note that this PSF is separable, thus we use the techniques
relevant to separable cases.

14

Figure 3: Gaussian PSFs with ρ = 0, s1 = s2 = 1, 1.7, 2.4 respectively, and the singular
values σi of the corresponding blurring matrices A, assuming zero boundary conditions.

Figure 4: Blurred versions B of the clear lunar crop using the three Gaussian PSFs above.

15

Figure 5: Singular values σi (colored lines) and coefficients |~uiT~b| for the three PSFs from
above, with different levels of noise given by ||E||2 = 0.0003, ||E||2 = 0.03.

16

We see that as the blurring gets more intense, the singular values of A decay faster. Figure
5 compares singular values and coefficients |~uiT~b| for the same three blurring matrices, with
varying levels of noise. We know the coefficients are affected by noise present in the system,
and observe that the coefficients level off at a noise plateau determined by the level of noise
in the images. Thus, only the coefficients smaller in magnitude than their corresponding
singular value carry clear information about the data. This gives us insight into the range
of k value that is appropriate for a TSVD filter.

Figure 6 displays the singular values σi and coefficients |~uiT~b| before and after TSVD for the
medium PSF from Figure 3, with the higher level of noise from Figure 5. We see that the
trend in the magnitude of TSVD coefficients crosses paths with the trend in singular values
around k = 200. This indicates that k = 200 is a reasonable choice of truncation parameter,
since k = 300 has too much noise present in the system but k = 100 has an overloss of
information. Figure 7 also suggests a choice of k = 200 since this is where the magnitudes
of perturbation and regularization error cross.

Figure 6: Singular values σi (green curve), normal coefficients |~uiT~b| (black dots), and TSVD

coefficients | ~ui
T~b|
σi

(blue dots) for the medium PSF from Figure 3 with the higher noise level
in Figure 5.

Figure 7: The 2-norms of the regularization error and perturbation error vs. the truncation
parameter k for the TSVD method. (Hansen, 2006)

17

Figure 8: Tikhonov filter factors φi vs. i for α = 10−3 (blue), α = 10−2 (green), and α = 10−1

(red).

Figure 8 shows how Tikhonov filter factors change with regard to parameter α. The filter
factors level off more quickly for low values of α, illustrating that the point at which filter
factors change behavior is at around σi = α. The bend in the L-curve in Figure 9 also
corresponds to this α We see that this α satisfies σmn << α << σ1.

Figure 9: The L-curve for TSVD with parameter k applied to the same model. The L-curve
for Tikhonov regularization with parameter α would look similar. (Hansen, 2006)

18

Figure 10: A Gaussian blur of the clear image with added noise, and the results of deblur-
ring using the näıve, truncated singular value decomposition, and Tikhonov regularization
methods.

Figure 10 shows the results of deblurring the blurred image given by the medium PSF from
Figure 4 with noise added, using the näıve, TSVD, and Tikhonov regularization methods.
We see that the näıve approach serves only to worsen the blur of the image. The TSVD
and Tikhonov results are imperfect, but have stronger definition of the main features of the
original image.

19

Appendix

Singular Value Decomposition

Let A be any m× n matrix.
Then A has a factorization A = UΣV T , for orthogonal U, V and diagonal Σ.

Proof:

Since ATA is symmetric, we know that it has only real, nonnegative eigenvalues. Let
λ1, λ2, · · ·, λn be the complete list of eigenvalues of ATA, arranged so that λ1 ≥ λ2 ≥
· · · ≥ λn ≥ 0. Let σi =

√
λi. Then σ1 ≥ σ2 ≥ · · · ≥ σn ≥ 0. The set {σ1, σ2, · · ·, σn} is called

the set of singular values of A.

Now, define Σ to be the m × n matrix with the singular values of A along its diagonal
and zeros elsewhere. For example, if m > n, then

Σ =



σ1 0 . . . 0
0 σ2 . . . 0
...

...
. . .

...
0 0 . . . σn
...

...
. . .

...
0 0 . . . 0


.

Let ~v1, ~v2, · · ·, ~vn be the normalized eigenvectors of ATA associated with λ1, λ2, · · ·, λn re-
spectively. Since ATA is symmetric, these eigenvectors are orthogonal.

Define V = [~v1 ~v2 · · · ~vn]. Then V is n× n, and its columns are orthonormal. Thus,

V T =


~v1
T

~v2
T

...

~vn
T

 is an n× n orthogonal matrix.

Let r = rank(A), so that σ1 ≥ · · · ≥ σr > σr+1 = · · · = σn = 0.
Now define U to be an m×m matrix such that

U =
[
A~v1
σ1

A~v2
σ2

. . . A~vr
σr

~n1 . . . ~nk
]

where ~n1, · · ·, ~nk are chosen to be pairwise orthonormal with all other columns of U .

With this construction, it can be computed that A = UΣV T .

20

There is a reduced version of the singular value decomposition that also holds for any matrix:
Let r = rank(A). Let Σr be the r × r diagonal matrix with diagonal entries σ1, · · ·, σr.
Let Ur be the matrix with the first r columns of U , and similarly let Vr be the matrix with
the first r columns of V .
Then A = UrΣrV

T
r .

The singular value decomposition of a given matrix is not necessarily unique.

Both U and V are orthogonal matrices, and Σ is a diagonal matrix that is not necessar-
ily square. A and Σ have the same dimensions: A is m× n if and only if Σ is m× n.

If A is an n × n invertible matrix, then σn 6= 0 and the condition number of A is defined
as σ1

σn
. The condition number is a measure of the stability and error potential in numerical

calculations.

The Moore-Penrose pseudoinverse of a matrix A, denoted A+, can be constructed from the
reduced singular value decomposition of A. The pseudoinverse is defined by A+ = VrΣ

−1
r UT

r .
Since A can be any matrix with real or complex entries, it may not be square or invertible, so
the Moore-Penrose pseudoinverse is extremely useful. When A does happen to be invertible,
A−1 = A+.

If A is n× n square, it is often convenient to write A =
∑n

i=1 σi~ui~vi
T , and thus

A+ =
∑r

i=1
1
σi
~vi~ui

T .

The Moore-Penrose pseudoinverse can be used to solve least-squares problems, as follows.
Given A~x = ~b, we find a least-squares solution x̂ by using the pseudoinverse:

x̂ = A+~b = (VrΣ
−1
r UT

r)~b

Then,

Ax̂ = (UrΣrV
T
r)(VrΣ

−1
r UT

r)~b

= UrΣrΣ
−1
r UT

r
~b

= UrU
T
r
~b.

Since the columns of Ur are orthonormal, this gives the orthogonal projection b̂ of ~b onto the
column space of A. This means that x̂ is a least-squares solution of the equation A~x = ~b.
Moreover, this particular solution has the minimum norm of any least-squares solution.

21

Matrix Norms

The norm of a matrix is a measure of the size of its entries. There are many matrix norms,
but they all satisfy certain properties. Each definition of a matrix norm must be a function
that outputs a nonnegative scalar quantity. The function must have the trivial kernel, pre-
serve scalar multiplication, and retain the triangle inequality.

Some matrix norms are induced by vector norms. For a vector norm || · ||k, the corresponding
matrix norm || · ||K is written as

||A||K = sup
~x∈Rn, ~x6=~0

||A~x||k
||~x||k

The most common induced matrix norm is the Euclidean norm, often referred to as the
2-norm.
Denoted ||A||2 for a matrix A, this norm is the square root of the largest eigenvalue of ATA.
This is the matrix norm that is induced by the Euclidean vector norm.

A commonly-used matrix norm is the Frobenius norm.
Denoted ||A||F for a matrix A, this is the square root of the sum of the squares of the entries
of A.
That is, ||A||F =

√∑n
i

∑n
j a

2
ij.

Although its definition is somewhat analogous to the Euclidean vector norm, the Frobenius
norm is not induced by the Euclidean or any other vector norm.
When A is real-valued, ||A||2F = trace(ATA).

It is always the case that ||A||2 ≤ ||A||F .
Importantly, ||A~x||2 ≤ ||A||2||~x||2.
If O is an orthogonal matrix, then ||O||2 = 1 and ||AO||2 = ||OA||2 = ||A||2.

To prove the Eckart-Young-Mirsky Theorem below, we need the following two lemmas.

Lemma:

If A =

[
B C
D E

]
, then ||B||2 ≤ ||A||2.

Proof:

For any ~x, ||B~x||2 ≤
∥∥∥∥[BD

]
~x

∥∥∥∥
2

=

∥∥∥∥[B C
D E

] [
~x
0

]∥∥∥∥
2

≤ ||A||2||~x||2.

Lemma:

If A is a square, nonsingular matrix, then the minimum ||E||2 such that A + E is sin-
gular is given by ||A−1||−1

2 . This is called the absolute distance to singularity.

22

Proof:

Let A be an n× n nonsingular matrix.
Let E be an n× n matrix such that A+ E is singular.
Since A+ E is singular, then there exists a nontrivial solution ~x to (A+ E)~x = ~0.

(A+ E)~x = ~0

A~x+ E~x = ~0

A~x = −E~x
~x = −A−1E~x

||~x||2 = ||A−1E~x||2
||~x||2 ≤ ||A−1E||2||~x||2

1 ≤ ||A−1E||2
1 ≤ ||A−1||2||E||2

||A−1||−1
2 ≤ ||E||2.

The Eckart-Young-Mirsky Theorem

Let A be an m× n matrix with rank r and singular value decomposition A = UΣV T .
Then the approximation of A of rank k < r that has the least error is given by Ak =
UΣkV

T =
∑k

i=1 σi~ui~vi
T .

That is, for all matrices B with rank(B) = k, min ||A−B|| occurs when B = Ak.

This fact holds for both the Frobenius and Euclidean norms. Here, we will go through
the proof using the Euclidean norm. This proof is based on that found in (Ipsen, 2009).

23

Proof:

||A− Ak||2 = ||UΣV T − UΣkV
T ||2 = ||U(Σ− Σk)V

T ||2 = ||Σ− Σk||2 = σk+1.
So, we need to show that for any other rank-k matrix B, ||A−B||2 ≥ σk+1.

Since rank(A) = r, rank(ATA) = r.
So ATA has r nonzero eigenvalues, and thus A has r nonzero singular values.
Thus we write {σ1, σ2, · · ·, σn} = {σ1, · · ·, σr, 0, · · ·, 0}.
Since k < r, A has at least k + 1 nonzero singular values.

Write Σ =

[
Σk+1 0

0 Σn

]
, where Σk+1 =

σ1

. . .

σk+1

.

Note that since σ1, · · ·, σk+1 6= 0, we have that Σk+1 is nonsingular.

Let B be an m× n matrix with rank k.
Consider the matrix UTBV .

We partition UTBV =

[
B11 B12

B21 B22

]
, where B11 has dimension k + 1× k + 1.

Since rank(B) = k, rank(B11) ≤ k.
Since B11 is k + 1× k + 1, but rank(B11) ≤ k, we have that B11 is singular.

Since Σk+1 is a diagonal matrix, Σ−1
k+1 =


1
σ1

. . .
1

σk+1

. Thus ||Σ−1
k+1||2 = 1

σk+1
.

Recalling that B11 is singular and Σk+1 is nonsingular, we consider the distance from Σk+1

to singularity and write B11 = Σk+1 − (Σk+1 −B11).
Then ||Σk+1 −B11||2 ≥ 1

||Σ−1
k+1||2

= 1
1

σk+1

= σk+1.

Now, we have that

||A−B||2 = ||UΣV T −B||2
= ||(UT)(UΣV T −B)(V)||2 since UT , V orthogonal

= ||Σ− UTBV ||2

=

∥∥∥∥[Σk+1 0
0 Σn

]
−
[
B11 B12

B21 B22

]∥∥∥∥
2

=

∥∥∥∥[Σk+1 −B11 −B12

−B21 Σn −B22

]∥∥∥∥
2

≥ ||Σk+1 −B11||2
≥ σk+1.

24

Kronecker Products

The Kronecker product of two matrices is defined in the following way:

If A is m× n, then A⊗B =

a11B . . . a1nB
...

. . .
...

am1B . . . amnB

.

The Kronecker product is not commutative.

In this report we use the following properties:
In general, we can vectorize the matrix X by concatenating its columns, in order, to create
one long column vector. This creates ~x = vec(X). Then
(A⊗B)vec(X) = vec(BXAT)
(A⊗B)T = AT ⊗BT

(A⊗B)−1 = A−1 ⊗B−1

AB ⊗ CD = (A⊗ C)(B ⊗D).

In particular, for singular value decompositions A = UAΣAV
T
A , B = UBΣBV

T
B we have

A⊗B = (UAΣAV
T
A)⊗ (UBΣBV

T
B) = (UA ⊗ UB)(ΣA ⊗ ΣB)(VA ⊗ VB)T .

Toeplitz, Circulant, and Hankel Matrices

A matrix whose entries are constant on each diagonal is called a Toeplitz matrix. For
example: c d e

b c d
a b c


A Toeplitz matrix with each row and column a periodic shift of the previous is called a
circulant matrix. For example: a c b

b a c
c b a


A matrix whose entries are constant on each antidiagonal is called a Hankel matrix. For
example: a b c

b c d
c d e



25

Sources

Hansen, P. C., Nagy, J. G., O’Leary, D. P. (2006). Deblurring Images: Matrices, Spectra,
and Filtering. New York, NY: Society for Industrial Applied Mathematics.

Hansen, P. C. (2010). Discrete Inverse Problems: Insight and Algorithms. Philadelphia,
PA: Society for Industrial and Applied Mathematics.

Ipsen, I. C. (2009). Numerical Matrix Analysis: Linear Systems and Least Squares. Philadel-
phia, PA: Society for Industrial and Applied Mathematics.

Lay, D. C., Lay, S. R., McDonald, J. J. (2002). Linear Algebra and its Applications (3rd
ed.). Harlow: Pearson Education Limited.

Leon, S. J., Bica, I., Hohn, T. (2017). Linear Algebra With Applications (5th ed.). New
York, NY: Pearson Learning Solutions.

26

	Deblurring Images
	Recommended Citation

	tmp.1545260936.pdf.bURLK

