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Abstract

Genotypic variation, environmental variation, and their interaction may produce variation in

the developmental process and cause phenotypic differences among individuals. Develop-

mental noise, which arises during development from stochasticity in cellular and molecular

processes when genotype and environment are fixed, also contributes to phenotypic varia-

tion. While evolutionary biology has long focused on teasing apart the relative contribution

of genes and environment to phenotypic variation, our understanding of the role of develop-

mental noise has lagged due to technical difficulties in directly measuring the contribution of

developmental noise. The influence of developmental noise is likely underestimated in stud-

ies of phenotypic variation due to intrinsic mechanisms within organisms that stabilize phe-

notypes and decrease variation. Since we are just beginning to appreciate the extent to

which phenotypic variation due to stochasticity is potentially adaptive, the contribution of

developmental noise to phenotypic variation must be separated and measured to fully

understand its role in evolution. Here, we show that variation in the component of the devel-

opmental process corresponding to environmental and genetic factors (here treated

together as a unit called the LALI-type) versus the contribution of developmental noise, can

be distinguished for leopard gecko (Eublepharis macularius) head color patterns using

mathematical simulations that model the role of random variation (corresponding to devel-

opmental noise) in patterning. Specifically, we modified the parameters of simulations corre-

sponding to variation in the LALI-type to generate the full range of phenotypic variation in

color pattern seen on the heads of eight leopard geckos. We observed that over the range of

these parameters, variation in color pattern due to LALI-type variation exceeds that due to

developmental noise in the studied gecko cohort. However, the effect of developmental

noise on patterning is also substantial. Our approach addresses one of the major goals of

evolutionary biology: to quantify the role of stochasticity in shaping phenotypic variation.
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Author summary

The observable characteristics of an organism make up its phenotype. Variation among

phenotypes is due to genetic differences, environmental factors and developmental noise

(effects due to inherent stochasticity) during development. We used mathematical models

to investigate the contributions of variation of the developmental process due to genetic

and environmental factors (treated in this work as a single unit) versus developmental

noise (unavoidable variation within the developmental program) to the development of

pigment patterns on gecko heads. We found that for our cohort, the proportion of pheno-

typic variation due to variation in the unit composed of genotypic and environmental var-

iation is larger than that due to developmental noise. Furthermore, by allowing the

parameters of the mathematical model to vary, we generated the full extent of potential

phenotypic pattern variation that could occur on the head of geckos. This serves to further

study the influence of the buffering mechanisms (canalization, selection, and developmen-

tal stability) limiting phenotypic variation. This approach can be applied to any regular

morphological trait that results from self-organized processes such as reaction-diffusion

mechanisms, including the frequently found striped and spotted patterns of animal pig-

mentation patterning, patterning of bones in vertebrate limbs, and body segmentation in

segmented animals.

Introduction

A first-order approximation of phenotypic variation is that genotype and environment varia-

tion maps to phenotype variation. Stochastic variation is an important third source of pheno-

type variation included in a more complete description of the genotype-phenotype mapping

[1–4]. Therefore, at the developmental level, genotypic (developmental program) and/or envi-

ronmental changes, or stochastic variation can generate developmental variation. This stochas-

tic variation, called developmental noise, is the difference in phenotypic outcomes that occurs

when genotype and environment are fixed (e.g.,[5–7]), due to stochasticity in cellular and

molecular processes [4, 6]. The interaction of these sources of variation (genotype, environ-

ment, and stochasticity), combined with the sheer magnitude of the number of phenotypic

variables, makes the study of the phenotypic variation of a population extremely complex.

Computational morphometric approaches may identify a small number of key phenotype

features (comparable “units” [8]) or apply clustering analyses over a higher number of pheno-

type variables, to objectively sort complex phenotypic variations and quantify differences

between them. Here we describe a different computational approach for interpreting pheno-

type differences among individuals at the same selected developmental time. We describe phe-

notypic variation in the context of the relative contribution of components of the

developmental process, that in this work are treated together as a unit (genotype and environ-

ment), and developmental noise. In our stochastic simulations, non-stochastic (predeter-

mined) parameters correspond to genetic and environmental factors considered together as a

unit called the LALI-type (see below and Table 1) while stochastic variation within simulations

corresponds to development noise. By applying a computational model of a developmental

mechanism to generate phenotypes, such as the reaction diffusion model we use here, the sim-

ulated phenotype variation will reflect the intrinsic freedoms and constraints of the develop-

mental mechanism itself [9, 10]. While various methods are commonly used to discern the

relative contribution of genotype versus environment in shaping phenotypic variation (e.g.,

Role of developmental noise in generating phenotypic variation
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controlled captive breeding approaches, QTL, and quantitative genetics), being able to iso-

late and quantify the importance of developmental noise on such a phenotypic variation is

currently still very challenging. The potential influence of developmental noise is likely

underestimated in studies of phenotypic variation due to intrinsic mechanisms within

organisms that stabilize phenotypes and decrease variation (for example, in estimates of

developmental noise based on fluctuating asymmetries [11]). In this work, we therefore do

not analyze each component (genotype, environment, developmental noise) of the develop-

mental process alone, but we use different fixed combinations of genotype and environment

taken together (each one of them called LALI-type, see below and Table 1) versus develop-

mental noise to estimate the influence of variation in LALI-type and developmental noise

on phenotypic variation.

Patterns that are self-organized are characterized by significant pattern variation that is

due to random factors even when genetic and environmental patterning parameters are

held fixed. The methodology described here can be used to measure the extent of random

variation that is due to the random component of such a mechanism, providing a lower

bound for variation inherent to the mechanism that is useful for interpreting the total vari-

ation that is observed. Further, a sensitivity analysis of the effect of varying genetic and

environmental pattern parameters provides a framework for the topology of this variation,

as it can be understood which ranges of parameters map to different ranges of phenotypes.

The method can be applied to individual phenotypes, one at a time, without requiring a

population distribution of the variation, as we have done here, to predict the variation of

clones under identical environmental and genetic conditions or determine the probability

that two phenotypes could result under identical environmental and genetic conditions.

While our methodology to measure the role of noise on the variation is applicable to any

Table 1. Definitions of the terms used in this manuscript relating to the L!P map.

LALI mechanism A LALI mechanism is a mechanism for periodic patterning based on local activation and

long range inhibition (LALI; [23–25]).

LALI-type The LALI-type is the set of parameters needed to specify a LALI mechanism, for either a

computational or a natural biological process. As parameters are varied systematically in

the computational model, these result in predictable pattern differences such as smaller

or larger spots, smaller or larger spot separations, or spot to stripe transitions. (This is

analogous to the combined effects of genotype and environment taken together, but

excludes developmental noise.)

LALI-space The set of all possible LALI-types.

Phenotype A set of measured observables (e.g. morphometric quantities or “comparable units” [8]),

selected from a larger set of all the possible observables that could be measured from a

complex pattern or organism.

Phenotype Space The set of all possible phenotypes, for the selected set of phenotypes (measured

observables).

L!PMap The LALI-type to phenotype map is the observed mapping, either computational or

biological, from a set of LALI-types to a set of phenotypes. Due to random variation, one

LALI-type can map to a set of phenotypes (see ‘phenotype cloud’), and many LALI-types

can map to one phenotype (see ‘neutral region’).

Phenotype Cloud

of a LALI-type

Due to stochastic factors in simulations (corresponding to developmental noise), a fixed

set of LALI parameters can result in many different phenotypes. This set of phenotypes is

the ‘phenotype cloud’ of that LALI-type. (This is roughly analogous to the concept of

reaction norm in ecology and evolution.)

Neutral Region of a

Phenotype

A phenotype can be produced by many LALI-types. The neutral region of a phenotype is

the set of LALI-types that are likely to yield that phenotype. (This is analogous to the

genomic neutral region of a phenotype.) We define the r% neutral region of a phenotype

P as the set of all LALI-types L such that the r% phenotype cloud of the LALI-type

includes the phenotype P.

https://doi.org/10.1371/journal.pcbi.1006943.t001

Role of developmental noise in generating phenotypic variation
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model of pattern formation, the quantitative results are model dependent (i.e. the numeri-

cal values depend on the specific chosen LALI model of pattern formation). To highlight

this point, we include results for two different models based on reaction-diffusion equa-

tions, a linear one and a nonlinear one (see Methods). Comparison of the results for these

two models allows for an illustration of the quantitative differences, but qualitative simi-

larities, of the two models.

Periodic color patterning in vertebrates: A likely developmental

mechanism

Vertebrates show a wide variety of integumentary colors and patterns both within and among

species. Variation in vertebrate coloration represents a model to understand the link between

genetic basis, developmental patterns, and phenotype (e.g., [12–15]). Furthermore, variation in

coloration is often under strong selection and linked to ecological or behavioral differences

within and among species (e.g., [9, 16–19]). Although the genetic and developmental basis of

vertebrate coloration have been identified for a few species (e.g., [12, 15, 20]), the mechanisms

involved in color pattern formation in vertebrates are largely unknown (but see for example

[21] and references therein; [22]), especially for vertebrates other than mammals or fish. While

molecular approaches can uncover the genes involved in determining a certain color pattern

(e.g., [20]), most of the time, especially for non-model species, the relationship between the

candidate genes involved in color pattern formation, organization and variation and the

observed phenotype are unidentified [15].

Strikingly, body color patterns with periodicity such as spots and stripes are found ubiqui-

tously throughout vertebrates (studied most extensively among cats, fish, and some reptiles,

see below) suggesting that mechanisms for periodic patterning may be very common, even

universal, among vertebrates and thus their development conserved among organisms. The

mechanism of ‘local activation long range inhibition’ (LALI; [23–25]) represents a general the-

oretical model predicting patterns that are spotted, striped or of an intermediate mixed form.

The most important such mechanism is the Turing mechanism in reaction-diffusion system,

where the local activation and lateral inhibition are due to reaction kinetics mediated by diffu-

sion [26]. Murray was the first to propose an activator-inhibitor LALI mechanism for mamma-

lian coat pattern formation [27–29], with the idea that a chemical pre-pattern established by a

Turing-type mechanism dictates cell differentiation. Murray showed that many mammalian

patterns observed in nature can be produced by such a mechanism. Turing-type mechanisms

have since become a frequently studied and widely hypothesized mechanism for periodic pat-

terning of integument in vertebrates (a wide array of mammals, including cats [16], several

species of fish [22, 30–32] and reptiles, especially squamates such as snakes [9, 16, 33, 34] and

recently a convincing ‘living’ (experimental) reaction diffusion model for skin color patterns

in the ocellated lizard [35]).

Two key characteristics of patterns generated by LALI mechanisms are: 1) non-random

regularity in the spacing of clustered elements (periodicity) and 2) potential for mixed tran-

sitions between spotted and striped patterns. Thus, the LALI model is suited to analyze peri-

odic patterns and can provide a mathematical framework for analyzing pattern transitions

between spotted and striped phenotypes. Many species of lizard and snake (squamate rep-

tiles) demonstrate all of these pattern variations during ontogeny, within the same individ-

ual among the different parts (e.g., tail, trunk and head), and among individuals of the same

or different species (YC pers. obs.). Among reptiles, the leopard gecko (Eublepharis macu-
larius) shows particularly dramatic changes in pattern during maturation (Fig 1), transi-

tioning from a hatchling pattern with alternating dark and light bands with a dark head to

Role of developmental noise in generating phenotypic variation
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an adult pattern consisting of a light colored body and head with scattered dark spots [36,

37]. Leopard geckos have been bred in captivity for decades and during that time numerous

color and pattern mutations have been developed by private hobbyists [38, 39], providing a

unique opportunity to understand how pattern variation can be created at the intraspecific

level.

Since the leopard gecko demonstrates such a broad range of stage and body-plan-specific

patterning, in this work, we focus on understanding the mechanisms generating the color pat-

tern variation of a precise region on the leopard gecko head (the parietal, post-orbital region)

during a specific stage of their development (at nine weeks). Among all the individuals ana-

lyzed in this study, this region of the head at nine weeks is invariably a simple spot pattern of

discrete melanistic blotches on a pale background. At nine weeks of age the pattern spatial

organization is determined and although the shape of the simple spots may continue to

develop during the animal growth, the position of the spots and their relative organization is

fixed. By analyzing images of the gecko head for the different individuals, we extracted key

morphological features of the spotted pattern. These extracted features allowed us to compare

the gecko’s patterns with patterns obtained through LALI simulations: a simulation pattern

and a gecko pattern were defined to be "matching" if they had the same values for these mor-

phological features (see below). In this work, each LALI-type (see Table 1) corresponds to a

Fig 1. Ontogenetic pattern change in the leopard gecko (Eublepharis macularius). Each photographed individual represents the typical color and pattern of

a (A) hatchling (one month old), (B) juvenile (three months old), and (C) adult (>12 months old) gecko. Relative sizes are approximate, and the hatchling

image has been enlarged to allow an easier comparison of pattern detail among individuals. Pictures by T. Gamble.

https://doi.org/10.1371/journal.pcbi.1006943.g001

Role of developmental noise in generating phenotypic variation
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fixed combination of the contribution of genotype and environment to the developmental pro-

cess and distinct LALI-types therefore represent different fixed combinations of genotypic and

environmental values. We were able to find matches by varying LALI parameters (correspond-

ing to changing genetic and environmental factors to another fixed state) for the eight experi-

mentally observed gecko patterns within a low-dimensional LALI space (see definition in

Table 1). By varying parameters within this region of LALI space, we were able to generate

very likely, “normal” pattern variations. Furthermore, by expanding parameters just outside

this region, we were able to generate “preternatural” pattern variations predicted by the devel-

opmental model just beyond the region of natural variation. These preternatural patterns are

patterns that are not observed on the studied geckos, but are patterns that could potentially

exist by varying the genotype and environment. These preternatural patterns in fact look like

typical periodic patterns that are seen on animals, but they have morphological features with

values that are slightly lower or higher than those we observed on the eight studied geckos.

LALI-type to phenotype map L!P. Many mechanisms with the same core LALI logic

(molecular, cell-based and/or mechanical) yield similar patterning despite different underlying

biological processes [40]. While variations of reaction diffusion process are often used to

explain Turing patterns, other candidate mechanisms include cell-based and mechanical pro-

cesses [40]. In vivo, it has recently been established that Turing patterns on zebrafish skin are

the result of a mechanism that satisfies the core LALI logic but that is qualitatively different

from reaction diffusion [41]. With this perspective in mind, especially given that the molecular

details of leopard gecko skin patterning remain unknown, our aim was to investigate mathe-

matical features of LALI mechanisms in general rather than commit to a specific one. We

therefore compared and contrasted results for two computational models–a model based on

linear reaction dynamics (as in Turing’s classic paper [26]), and one based on FitzHugh-

Nagumo reaction kinetics [42–44].

In biological systems, a LALI mechanism depends on physical quantities such as molecular

diffusion rates, protein reaction rates, cell response rates, material resistance to bending and

compression, etc. Computational LALI models aim to simulate the net effect of these physical

quantities with a relatively small number of parameters. (For example, the Swift-Hohenberg

equation can be seen as an approximation of a class of LALI models involving the net outcome

of non-local effects [39].) By simulating the net effect of these physical quantities, pattern vari-

ation can be investigated without needing to fit a large number of unknown physical quanti-

ties. We stress that we do not claim that the equations in this paper model the specific

biochemical processes occurring during gecko skin pigmentation, e.g. we do not assign specific

identities to the chemicals in the reaction-diffusion equations. Rather, we use two different sets

reaction-diffusion equations to generate prototypical LALI patterns. We note that a detailed

model of the specifics of gecko skin pigmentation would need to address points such as the

exact mechanism by which cells sense the external concentration and what effect this has on

their genetic programs. These points are beyond the scope of our current investigation.

Given either a computational model of a LALI mechanism or a real world LALI mechanism

(e.g., color patterning), the LALI-type (Table 1 for definition) to phenotype map L!P is the

map from parameters (see below) of the LALI model (‘L’) to a final phenotype (‘P’). It repre-

sents a developmental step that occurs after genotype and environment have determined the

parameters relevant to the LALI mechanism (see Fig 2), for example after the environment

and genotype determines which gene(s) should be activated, how much, and for how long in a

certain body region. Varying the parameters of the LALI-type in simulations is analogous to

varying the underlying genetic and environmental factors that specify the LALI mechanism

(e.g., molecular, cell-based, mechanical) producing a certain phenotype in biological systems.

Role of developmental noise in generating phenotypic variation
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Furthermore, given either a computational model or an actual biological LALI mechanism,

the spatiotemporal evolution of the pattern is influenced by developmental noise. Indeed, the

diffusion-driven instability in both the linear model and the FitzHugh-Nagumo model relies

on small, stochastic fluctuations of the micro-environment, just like any Turing-like instability

in pattern formation mechanisms with a core LALI logic [40]. The diffusion-driven instability

occurs through the amplification of these fluctuations and ultimately creates the Turing pat-

tern of regions (e.g., spots or stripes) of high and low concentrations of some chemical (“peaks

and troughs” [26]; or Turing “bifurcation” [41]). Such stochastic fluctuations enter the model

through randomly perturbed initial conditions. The effect of stochastic variation in the

computational LALI model is that the relationship between LALI-type and phenotype is not

one-to-one, that is, even if genetic and environmental factors are fixed, a single LALI-type can

generate different phenotypes and conversely different LALI-types may generate the same phe-

notype. Thus, this framework and a computational model of a LALI mechanism permit us to

either vary genetic and environmental factors together as a unit or hold them fixed (by varying

or fixing the parameters of the computational LALI model), and to investigate the outcome of

the L!Pmap. The outcome of the L!Pmap for a fixed LALI-type would measure the varia-

tion due to noise within the developmental program, while the outcome for different LALI-

types would measure the variation due to variation in genotype and/or environment without

discerning between them. Specifically, the approach used in this work allows isolating the

effect of the two different factors contributing to the total variation.

Methods

Pattern analysis and morphometrics of live geckos

Ethics statement. All experiments were carried out in accordance with University of Min-

nesota animal use protocols 0810A50001 and 1108A03545.

Data collection. Individual live leopard geckos were photographed within two weeks of

hatching and subsequently photographed every two weeks thereafter to document pattern

changes over time. Pattern change over time was however only considered in this work to

select the developmental stage at which the spatial organization of the pattern was stable, and

we could collect the data for this work. Each gecko was photographed on a smooth surface that

featured a grid pattern with evenly spaced lines 12.7 mm apart. Photos were taken with a Sony

DSC F828 8 megapixel camera mounted on a tripod approximately 45 cm above the gecko.

One single photo per gecko was used in this study.

Pattern selection. For pattern analysis, we selected a disk-shaped region of the parietal,

post-orbital head region of eight geckos at nine weeks (see Introduction regarding selection of

chosen developmental time). A disk-shaped region was identified from images of the gecko

head by an algorithm run in Matlab (Matlab R2015b, Mathworks, Inc.) that identified the larg-

est disk that could be inscribed within the boundary of the head, for a disk centered at the cen-

troid of the head. The size of the pattern disk varied for each gecko, but was invariably a

Fig 2. Conceptual model of the LALI-type to phenotype map. The LALI-type summarizes the genetic and

environmental factors of a LALI pattern. The phenotype is a product of the LALI-type and stochastic effects (random

variation called developmental noise).

https://doi.org/10.1371/journal.pcbi.1006943.g002
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pattern of isolated melanistic spots on a lighter background. Images of the eight gecko heads

and the corresponding selected disk-shaped regions are shown in the first and second columns

of Fig 3. Focusing on this region restricted the image to one pattern type (discrete dark spots

on a lighter background) in order to study a homologous region among individuals without

including areas of the head where the pattern transitioned from one type of pattern to another.

Head boundaries of the gecko were determined by hand, while identifying the centroid of the

head and the largest inscribed disk was automated for the eight gecko images using Matlab.

Image processing

Image processing of the live gecko images was required to correct for uneven lighting within

and between photos, as well as different background levels of pigment from one gecko to

another. Each disk-shaped image was contrast-enhanced (using Matlab’s internal adapthisteq
function) to correct for shadows and inconsistent lighting. A threshold was then applied to

binarize the image into a set of black pixels on a white background. Since pigment levels varied

for each gecko, a different threshold value of pigment was required to discriminate spots from

non-spots. For each gecko, the threshold value was calculated from the average pixel intensity

μ and standard deviation σ of the pixel intensity. With experimentation, it was determined that

a threshold of T = μ−σ was high enough to detect spots yet also low enough to identify their

separations (i.e. pixels were required to be a standard deviation darker than average in order to

be identified as a spot pixel). Thus, while each image had a different threshold for discriminat-

ing spots from non-spots, a single, objectively set definition was used to define this threshold.

It was observed that small changes in the threshold could result in the joining or separation of

nearby spots. To describe the variation generated by small variations in the choice of threshold,

the mean and standard deviation of pattern statistics were computed by varying the threshold

by 25% of the standard deviation of the pixel intensity. Before computing final pattern statis-

tics, pattern noise due to arbitrary threshold cut-offs was eliminated by 1) filling holes within

spots and 2) deleting stray pixels outside of spots. Holes within spots were identified as pixels

with intensity below the threshold that were nevertheless completely contained within a region

of pixels identified as a spot. Stray pixels outside of spots for removal were identified by a total

area that was too small to be identified as a spot (the cut-off was 10 photo pixels). For the calcu-

lation of the peak length (Table 2), we found that the image skeletonization generated by the

native Matlab operation could be sensitive to the contour of spots. Since the peak length should

only depend on the spacing of spots and not their contour, we first found the convex hull of

the spots and then skeletonized the image (skeletonizations are shown in Fig 3, Column 3).

Morphometrics: Selected phenotype specified by fractional area and eccentricity. For

the pattern selected from the chosen region of the gecko’s head, we defined the selected pheno-
type of that pattern as the pair of numbers given by the fractional area and the eccentricity of

the melanistic spots. The fractional area is a measure of the relative density of spots (pigmented

regions) and the eccentricity of a spot is a measure of the pattern location on a spot to stripe

continuum that is valid up until pigmented regions begin to overlap (see Table 2 for all defini-

tions of technical terms used in this section). These two measures were chosen from an unlim-

ited number of possible morphometric measurements to focus our analysis since these are

measures that are readily interpreted in the context of periodic patterns (as measures of the rel-

ative spot or stripe size and position of the pattern along the spot to stripe transition), straight-

forward to vary with LALI parameters and are scale free, and thus not depending on the size of

the individual gecko. For both live and simulated pattern images, statistics were measured

using automated Matlab scripts (these scripts accept as input any disk-shaped region with a

binary pattern of black and white pixels, and did not distinguish between simulated and live
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gecko patterns). For the live gecko images, we also measured the average spot size, a scale-

dependent statistic which was used for fixing the spatial scale of simulated pattern images (see

discussion below of the selection for the pixel spatial scale). We also calculated the average dis-

tance between spots (i.e., the peak length or Fourier wavelength of the pattern).

Simulation-based generation of LALI patterns using two reaction diffusion

models

We modeled the core LALI logic of an activator-inhibitor system using two model implemen-

tations. Comparing results for two implementations helps identify which aspects of the LALI-

space to phenotype space map may be most implementation specific. We used a linear Turing

model implemented on a discrete cellular automaton and the non-linear FitzHugh-Nagumo

model. In both models, D describes the relative diffusion rate of the activator u and inhibitor v.
Linear Turing model. The equations for the linear Turing model are given by:

@u
@t
¼ fuu � fvvþ Dr

2u

@v
@t
¼ guu � gvvþr

2v

The parameters D,fv,fu,gu,gv are fixed parameters that are initialized at the beginning of a

simulation and do not change during the simulation. In an activator-inhibitor morphogen

Fig 3. Automated disk-shaped pattern selection of parietal, post-orbital head region of eight geckos at nine weeks. For each Gecko ID

(numbers on the left): Left: Images of the eight gecko heads at nine weeks; Second column: the disk-shaped parietal, post-orbital (DSPPO)

region that was selected for pattern analysis, preserving their relative sizes; Third column: Final pigment pattern identified by image analysis

with the skeletonization of the image overlaid. Fourth column: Best phenotype match of 100 patterns simulated by the corresponding LALI-

type using the linear model. Right: Best phenotype match of 100 patterns simulated by the corresponding LALI-type using the FitzHugh-

Nagumo model. Horizontal bars indicate 0.5 cm. Geckos are ordered by decreasing fractional spot area of the pattern (see Table 2 for

definitions). Note that in some cases in the nonlinear model, the spots have a ‘ringed’ appearance. This is the result of morphogen profiles

that have a maximum concentration around the border of the spots. We note that the lack of pigment in the interior is contingent upon

finely tuned threshold values, which means that the robustness of these patterns to perturbations of the sensing mechanism of the cells is

likely quite weak. Our search algorithm identifies sets of parameters that yield matches to specified pattern statistics (here, fractional area and

eccentricity). While the algorithm may find that finely tuned thresholds give the best match, in future applications, additional prescriptions

can be applied for a match such as requiring that the pattern matches are robust to small percent perturbations or that spots do not have

interior holes.

https://doi.org/10.1371/journal.pcbi.1006943.g003

Table 2. Morphometric properties and how they were calculated.

Pattern Statistic Definition

Fractional Area

FA

The fractional area is calculated as the total number of dark (melanistic) image pixels divided by the total number of pixels in a disk-shaped region.

Eccentricity

EE

The eccentricity of a spot is a value between 0 (a perfect circle) and 1 (a perfect line) calculated using the regionprops.mMatlab subroutine.

Spot Size The diameter of a spot was calculated using the regionprops.mMatlab subroutine and is the equivalent diameter of a circle with the same area as

the spot.

Peak Length The peak length, a measure of the average distance between pattern elements such as spots or stripes, was computed according to the method of

[45] by finding the skeleton of the positive and negative of each image. Peak length was calculated by applying the following formula:

Peak Length ¼ 2�ðtotal image pixelsÞ
ðvalley pixelsÞþðpeak pixelsÞ

Fourier

Wavelength

Rectangular grayscale images with varying pixel intensities, scaled to have zero mean, were used rather than binarized images. The Fourier

wavelength is the inverse of a radius that can be estimated from the Fourier spectrum (the magnitude of the coefficients of the Discrete Fourier

Transform) that displays a typically ring-like structure. The radius of this ring was determined numerically by maximizing the radially averaged

Fourier spectrum. As a measure of localization, we indicate the interval in which the radially averaged Fourier spectrum is within 90% of its peak

value. (See Supplementary S1 Fig)

https://doi.org/10.1371/journal.pcbi.1006943.t002
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context, the parameters fu,fv,gu,gv are understood, respectively, as the self-upregulation rate of

the activator, the down-regulation rate of activator by inhibitor, the upregulation of inhibitor

by activator and the self-down-regulation of inhibitor, respectively, while D is the ratio of dif-

fusion coefficients of the activator and the inhibitor.

Stochasticity is incorporated by initial conditions of random morphogen concentrations

(initial concentrations of the activator u and inhibitor v), with random values uniformly dis-

tributed between 0 and 1. Simulations were run on a patterning domain consisting of a

200×200 spatial grid with periodic boundary conditions for a fixed number of time steps

(200K). Note that the final morphogen concentrations generated by our simulations are not

steady states, since simulations are stopped at a fixed number of simulation time steps. In sim-

ulations, pigmented regions transitioned from loosely defined and labyrinthine regions, to

well-separated pigmented regions of high eccentricity, to more and more disk-shaped regions

(see S2 Fig). To approximately match the eccentricity of the gecko spots, 200K time steps was

an intermediate time point when the pigmented regions of the pattern were well-defined and

discrete but not yet too disk-like. For all simulations for linear reaction diffusion in this manu-

script, we fix fv,gu,gv and used the production rate of the activator fu as a parameter for pattern

matching (see “Step 2” of the Results). As a second parameter, we also varied the threshold

value of morphogen that would map to whether a region was pigmented (see below).

FitzHugh-Nagumo model. The equations for the FitzHugh-Nagumo model are given by

the following nonlinear reaction-diffusion equations:

@u
@t
¼ � u � Rð Þ u2 � 1ð Þ � r v � uð Þ þ Dr2u

@v
@t
¼ � v � uð Þ þ r2v

Here D, R and ρ are parameters, whereD is the ratio of diffusion coefficients of the activator

and the inhibitor, ρ is related to the relative rates of production of the activator and the inhibi-

tor and R is a reference activator concentration. There are three steady states given by u = v =

+1, u = v = −1, and u = v = R. We note that in order to expand the reaction kinetics close to the

steady state u = v = R, we can introduce new variables U = u − R and V = v − R and obtain the

equivalent system:

@U
@t
¼ � R2 þ 1þ rð ÞU � rV � 2RU2 � U3 þ Dr2U

@V
@t
¼ U � V þr2V

It is known that for certain ranges of parameters, the equations can produce stable spots or

stable stripes in two dimensions. Whether stable stripes or spots exist depends on the quadratic

and cubic terms [46, 47]. For instance, if the quadratic term is zero (i.e. R = 0), it is known that

spots are unstable and stripes are stable [47].

We fixed R = 0.047 and D = 0.0194 and used ρ as a parameter for pattern matching. As a

second parameter, we also varied the threshold value of morphogen that would map to

whether a region was pigmented (see below). Stochasticity is incorporated by initial conditions

of random morphogen concentrations. (The steady state u = v = −1 was perturbed by uni-

formly distributed, spatially uncorrelated perturbations of amplitude 0.25 at each grid point of

the 200×200 spatial grid.) The equations were solved with the method of lines on a square of

side length L = 20 with no-flux boundary conditions, using Matlab’s differential equation
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solver ode45 (grid size of the discretization was 200×200) on a fixed time interval [0,20]. The

final morphogen concentrations generated by our FitzHugh-Nagumo simulations are not nec-

essarily steady states, since simulations are stopped after a fixed time interval.

Total set of varied model parameters. For a complete list of model parameters, besides

the set of parameters needed to initialize and run the simulations, we also needed to specify

the threshold value of morphogen that would map to whether a region was pigmented (see

below). Including this threshold parameter, the LALI-type for our linear model is completely

specified by the six parameters [D,fu,fv,gu,gv,T] and the LALI-type for the FitzHugh-Nagumo

model is completely specified by the four parameters [D,R,ρ,T]. In this project, we reduced the

dimension of our search space by only varying fu and T in the linear model and ρ and T in the

FitzHugh-Nagumo model, as this was sufficient to find pattern matches for all eight gecko

patterns.

Modeling developmental noise. As described above, for both computational models, sto-

chasticity is incorporated by initial conditions of random morphogen concentrations. Other,

more detailed approaches to modeling the sources contributing to developmental noise exist.

For instance, intrinsic cellular noise (the stochasticity of gene expression within single cells),

can be modeled via simulations using the Gillespie stochastic simulation algorithm [57,58, 59].

Extrinsic noise (the stochasticity of gene expression varying across different cells) can be mod-

eled for example by stochastic differential equations [60]. These and other sources of develop-

mental noise are varied and complex. Noise intrinsic to cells such as noisy transcription is an

important contributor to developmental noise, but also other factors at the molecular level, at

the developmental systems level and the organismal level (noisiness in gene interactions within

and between regulatory networks, or noise in cell to cell signaling) are thought to contribute to

developmental noise [11]. Many of these contributing factors and their significance are poorly

understood. It is because of this complexity that we do not seek to model each of these contri-

butions by itself, but rather see the random initial conditions as a high-level approach to

modeling noise.

Final LALI spot patterns, simulation image analysis and Pattern Statistics: For both the lin-

ear and non-linear reaction diffusion models, simulations within an appropriate range of

parameters resulted in a spatial pattern of low and high morphogen concentrations. Note that

the final morphogen concentrations generated by our simulations are not steady state mor-

phogen concentrations, but instead capture the pattern at an intermediate time point. For

more details on the time evolution of the simulated patterns, and a description of the effect of

varying the simulation end point and other parameters on the spot eccentricity, see S2, S3, S4

and S5 Figs.

Morphogen concentrations after a fixed number of simulation steps (200K steps for the lin-

ear model, time interval [0,20] for the FitzHugh-Nagumo model) were binarized into distinct

regions of spots and non-spots using a threshold parameter T to produce a black and white

pattern. In principle, the applied threshold parameter T in the computational models would

correspond to the threshold concentration of morphogen for which biological cells produce

pigment. The fractional area and eccentricity of the spots were calculated, for the entire simu-

lated domain. Since fractional area and eccentricity are spatial-scale invariant, the generated

L!Pmap that maps from model parameters to [FA,EE]-phenotype space is also scale-invari-

ant, and we consider that the absolute spatial scale of the pattern is a free parameter.

Cutting disk-shaped regions of simulated patterns: For generating the simulated phenotype

matches in Fig 3 and determining the intrinsic variability of each of the eight phenotypes in

Fig 10, disks were cut from simulated domains to match the relative domain-to-pattern spatial

scales of each of the eight phenotypes. First, since the spatial scale of a pixel in simulated pat-

terns is a free parameter, the spatial size of a pixel was set so that the average size of spots in the
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simulated pattern would match those of the gecko phenotype. Once the spatial scale was estab-

lished in this way, a disk was cut from the simulated pattern with the same radius as that of the

gecko image. This was an important step to ensure that simulated phenotype matches con-

tained, for example, the same number of spots when other statistics such as the fractional area

and eccentricity matched. For these disk-shaped regions cut from simulated larger domains,

the fractional area and eccentricity of the spots was measured using the same automated scripts

as for the live gecko images.

While the LALI-type determines pattern characteristics such as the average fractional area

and eccentricity, the domain size of the pattern is relevant because this determines the amount

of the pattern that is captured (actual number of spots). A disk-shaped post-orbital head region

with domain size that is relatively small compared to the pattern wavelength will have relatively

few spots and will be a relatively small sample of the pattern.

Generating the LALI-type to phenotype map by identifying the neutral

region of each phenotype and the phenotype cloud of points in LALI-space

To investigate how a produced pattern (the phenotype) depends on the input parameters used

for the simulation (the LALI-type), we consider the concept of the LALI-type to phenotype

Fig 4. Overview of methods (Steps 0–2). The L!P map is modeled by one of two computational reaction diffusion models. Due to developmental noise, one

LALI-type probabilistically maps to many phenotypes (the ‘phenotype cloud’) and many LALI-types map to one phenotype (the ‘neutral region’ of the

phenotype).

https://doi.org/10.1371/journal.pcbi.1006943.g004
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map, or L!Pmap (Table 1). More formally, a computational model for a LALI mechanism

capable of describing a range of patterns of interest can be defined with a set of model parame-

ters λ1,λ2,. . .,λn and a set of rules for evolving the system to generate a pattern. The resulting

pattern can be described with a set of morphometric measurements ρ1,ρ2,. . .,ρm. We consider

that the vector (λ1,λ2,. . .,λn) is a point in LALI-space (referred as the “LALI-type”) and that the

vector (ρ1,ρ2,. . .,ρm) is a point in phenotype-space (the phenotype) so that the computational

model represents a mapping from LALI-space L to phenotype-space P.

Due to the element of random variation in the pattern generation process, a single LALI-

type can generate different phenotypes, the ‘phenotype cloud’ of that LALI-type. Likewise, a

particular phenotype can be produced by different LALI-types–the region of LALI-space con-

taining this set of LALI-types is the ‘neutral’ region of that phenotype. We describe the LALI-

type to phenotype map with the following steps (schematically summarized in Fig 4):

Step 0: We identify the phenotypes of the eight live gecko patterns, for a small set of selected

morphometric measurements, as described above. These phenotypes are points in phenotype

space.

Step 1: Generating phenotype clouds and defining the set of likely phenotypes For a

given LALI-type, its phenotype cloud is the corresponding distribution of measurements in

Fig 5. Spot statistics for each Gecko ID. For each binarized image of spot patterning, A) fractional spot area, B) mean spot eccentricity, C) mean spot size and

D) wavelength calculated by peak length (black) and Fourier (gray) methods were calculated. Geckos are ordered by decreasing fractional area. Error bars show

the minimum and maximum measures of these measures as the threshold for binarization was varied by 0.1σi where σi is the standard deviation of the image

pixel intensity.

https://doi.org/10.1371/journal.pcbi.1006943.g005
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phenotype space generated from the patterns simulated for that LALI-type. The size of the

phenotype cloud describes the role of random variation (developmental noise) for a fixed

LALI-type. We define the ‘center’ of a phenotype cloud as ðr̂1; r̂2; . . . ; r̂mÞ where r̂ i is the

average value of the ith morphometric measure. The center of the cloud and the probabilistic

distribution of phenotypes within the cloud are used to define the set of ‘likely’ phenotypes: a

phenotype is likely if the distance from the phenotype and the center of the phenotype cloud is

closer than a specified fraction of the phenotypes in the phenotype cloud. With a pre-specified

cut-off, this eliminates phenotype outliers that occur with smaller probability. We define the “r
% phenotype cloud” as the subset of the total phenotype cloud that includes the r% of the phe-

notypes which are closest to the center. So, points that lie within the 50% phenotype cloud are

those phenotypes whose distance from the center is less than the median distance.

Step 2: Generating neutral regions of a phenotype We identify neutral regions of each

phenotype in LALI-space. This is describing the way the L!Pmap maps from regions in

LALI-space.

Given a specific pattern phenotype, the neutral region of that phenotype is the set of param-

eters in LALI-space that are “likely” to yield patterns with that given phenotype (using the met-

ric provided from step 1). To systematically find the neutral region of each phenotype, we first

identified a region of LALI-space that is capable of producing all eight phenotypes. Conve-

niently, we achieved this within a relatively low two-dimensional projection for both LALI

models. The r% neutral region of a point P in phenotype space is then defined as the set of

LALI-types L within this region for which P lies within the r% phenotype cloud of L. The larger

the parameter r, the larger the size of the neutral region.

Results

Statistical image analysis of the eight live gecko patterns

Fig 5 shows how the phenotype measures varied for each gecko: the fractional pigmented area

FA of the spots in each pattern (Panel A), the average eccentricity EE of the spots in each pat-

tern (Panel B), the average spot size S in centimeters for each pattern (Panel C) and the pattern

wavelengths (Panel D). The error bars show the dependence of the statistic on the pigment

threshold that was chosen to decide if a gray pixel was either white or black. For our analyses

(except for the Fourier wavelength), the single threshold of T = (μ−σ) was applied, generating

one binary image per gecko photo, so that the value indicated by each filled dot in Fig 5 is the

actual value of morphometric parameters in each of the eight images that were used. The spot

size was especially sensitive to the threshold that was chosen to binarize the image (relatively

large error bars), whereas the measures of the wavelengths of the patterns (average distances

between pigmented regions) were robust to this parameter. That is, the size of spots would be

larger or smaller depending on whether pixels of intermediate intensity located at the edge of a

blotch were classified as pigmented or not. The peak length and Fourier method gave similar

measures of the wavelength; however, we speculate that systematic differences might be due to

the way the methods average over wavelength variation across the image. For example, based

on the way they are calculated, the Fourier wavelength would be biased towards the larger

wavelengths whereas the peak length method would be biased towards the shorter wave-

lengths. The skeletonizations used for calculation of the peak length method are shown in Fig

3, Column 3.

Step 0: Identifying the location of the eight gecko patterns in phenotype space

For the spot patterns selected from eight live geckos, a set of automated scripts calculated

the fractional area (FA) and the eccentricity (EE) of the pigmented spots. The selected pheno-
types of the eight live gecko patterns, defined as the [fractional area, eccentricity]-pair [FA, EE]
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located the eight gecko patterns in a two-dimensional [FA, EE]-phenotype-space (‘Step 0’, see

Fig 4). The locations of the eight gecko patterns in [FA, EE]-phenotype-space is shown in Fig

6. For the eight live gecko patterns, the fractional area varied from 0.23 to 0.34, while the

eccentricity varied from 0.65 to 0.77.

Describing the LALI-type to phenotype map (via the identification of the neutral

regions and phenotype clouds of the L!P map).

Step 1: Generating the phenotype cloud of a LALI-type

To illustrate the variation that would occur for a point in LALI-space due to random varia-

tion alone, we generate the phenotype cloud of a fixed point in LALI-space (single LALI-type)

by simulating 1000 patterns at that location in LALI-space. As an example, Fig 7 shows a phe-

notype cloud of the linear (Turing) LALI map for the LALI-type ½fu; T̂ � ¼ ½0:811; 1:20� (Panel

A) and a phenotype cloud of the non-linear (FitzHugh-Nagumo) LALI map for the LALI-type

[ρ,T] = [2.63,1.56] of (Panel B). The 1000 patterns generated create a cloud in [FA,EE]-pheno-

type space due to stochasticity since the LALI-type, and thus all LALI parameters, were held

fixed. These points in LALI-type mapped to a phenotype cloud approximately centered on the

phenotype of the gecko pattern #682 (the black point labeled 682 on Panels A and B).

In Fig 7, in Panels A and B, the phenotypes of points that are most likely (within the radius

of a disk containing 50% of the point distribution) are outlined in purple. The phenotype for

the gecko pattern #682 is well within this radius. Thus, the two chosen LALI-types are points

that would potentially generate gecko pattern #682 for each model. In Fig 7, Panels C and D,

gecko pattern #682 is shown with three patterns that were randomly selected from within the

phenotype clouds of each LALI-type. Within the context of our modeling framework, the

Fig 6. Location of the eight gecko patterns in FA-EE phenotype space. The distribution of the eight patterns in [FA,

EE] phenotype space where FA is the fractional area of spots and EE is the average eccentricity of the spots.

https://doi.org/10.1371/journal.pcbi.1006943.g006
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variations among these patterns correspond to the random variation of genetic and environ-

mental clones.

Step 2: Identification of the neutral region for each phenotype

For each of the eight phenotypes identified, we recovered a region in LALI-space that was

able to produce all eight phenotypes. This corresponds to a range of genetic and environmental

Fig 7. Random phenotype variation. The phenotype cloud for 1000 simulations showing the random variation of a single LALI-type, for either the A) linear

or B) FitzHugh-Nagumo models. The representative LALI-type was chosen from the 50% neutral region of gecko pattern #682. (The location of this LALI-type

is shown as a labeled white dot in Fig 8). The phenotypes of the 1000 simulations are indicated as gray disks in FA-EE phenotype space, while the 500 within the

50% radius of the phenotype cloud are outlined in purple. Three random phenotypes from the cloud are shown in red (see below). C, D) The pattern isolated

from the image of Gecko #682 and the patterns of three simulated “clones” (patterns generated with the same LALI-type that is likely to yield pattern #682, but

allowing random variation). The result is not necessarily ‘close’ to the pattern #682 (their locations in FA-EE space are indicated in red in the panels ‘A’ and

‘B’.) Horizontal bars indicate 0.5 cm.

https://doi.org/10.1371/journal.pcbi.1006943.g007
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variation that can produce all eight phenotypes. For both models, we found that it was suffi-

cient to only vary two LALI parameters. In principle, we would expect that the addition of

other morphometrics, measuring more subtle patterns features, could require the variation of

a greater number of LALI parameters for fitting more subtle pattern details. For the linear

model, we varied the threshold morphogen value T and the activation rate fu. For the Fitz-

Hugh-Nagumo model, we varied the threshold morphogen value T and the model parameter

ρ. For example, for the linear model, the identified region in LALI-space able to produce all

eight phenotypes was a region in which the activation rate varied from 0.80 to 0.84 and the

threshold morphogen value relative to the mean morphogen value (T̂ ¼ T=m) varied from 1.1

to 1.7. The 50% neutral region of each phenotype was identified by searching systematically

within this region of LALI-space. Here a LALI-type lies in the 50% neutral region of a pheno-

type if the phenotype is closer to the center of the phenotype cloud than 50% of the points in

this cloud. This means that the phenotype is closer to the ‘typical’ pattern than at least half of

the possible patterns. Thus the 50% neutral region of a phenotype can be thought of as those

LALI-types that yield a pattern similar to that of the phenotype with high probability. The 50%

neutral regions of eight live gecko phenotypes are shown in Fig 8. We found that the 50% neu-

tral regions were all non-overlapping with each other. In principle, the neutral regions might

have overlapped if two geckos in the cohort had especially similar patterning. The 50% neutral

regions of the phenotypes corresponding to the geckos labeled #763 and #731 nearly over-

lapped, but shared no grid points in common. The regions of LALI-space shown in Fig 8

(Panel A and B) were extended to show more of the neutral regions of #735 and #682 but these

are still cut off in the panels because the neutral regions of #735 and #682 are so elongated. The

relative elongation of the neutral regions of #735 and #682 indicate that matching the

Fig 8. 50% Neutral regions of each of the eight gecko patterns in LALI-space. For each of the eight gecko patterns, we identified the neutral region A) in

½T̂ ; fu�-LALI-space for the linear Turing implementation or B) in [T,ρ] LALI-space for the non-linear FitzHugh-Nagumo model. The white circle in each

neutral region shows the LALI-type chosen to generate representative phenotype clouds in Fig 7 and Fig 10. The labeled stars A and B are the points in LALI-

space that are used to generate the “preternatural” patterns in Fig 12. (Both models used the 50% phenotype cloud to generate the 50% neutral region, see the

description under “Step 2” in the Methods).

https://doi.org/10.1371/journal.pcbi.1006943.g008
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phenotype is tolerant to varying the parameters fu or ρ over a wide range, whereas in other

regions of LALI-space the pattern is more sensitive to small changes in these parameters.

The LALI-type to phenotype map enhances understanding of intra-group variation.

For both implementations of the LALI-type to phenotype map, the linear Turing model and

the FitzHugh-Nagumo model, we show the mapping of a regular grid in LALI-space to the

corresponding region in phenotype space. Here a point in LALI-space is mapped to the coor-

dinates of the center of its phenotype cloud in FA-EE-space. The regular grid lines in LALI-

Fig 9. Bias of the LALI-space to phenotype space mapping. A regular grid containing points from the neutral regions of the eight gecko patterns is chosen

and the mapping of that grid to phenotype space is shown. A rectangular grid A) in [T,fu]-LALI-space for the linear Turing implementation or C) in T,ρ LALI-

space for the non-linear FitzHugh-Nagumo model and the mapping of that grid in FA-EE-space for the B) linear Turing map and D) the non-linear FitzHugh-

Nagumo model. The gray region indicates 25% of the area in LALI-space, which maps to a smaller fractional area in phenotype space. This corresponds to a

higher likelihood of points (a higher density) in that region of phenotype space.

https://doi.org/10.1371/journal.pcbi.1006943.g009
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space are lines along which one parameter in LALI-space is held constant. For example, the

horizontal grid lines in Panel A of Fig 9 (red lines) are lines along which T̂ is held constant and

these map to non-linear curves in FA-EE-space (red curves in Panel B). Along each of these

red curves in Panel B, the value of T̂ is held constant and each curve shows the effect of varying

the parameter fu. The extent to which these curves deviate from a pattern of parallel evenly

spaced lines shows the extent to which there is T̂ � fu “interaction” (in the sense of statistical

interaction, where interaction is the extent to which the effect of the parameters is not additive

[48]). Regions of the map where these curves deviate from parallel straight lines are regions

where there is more interaction. As an example of one way to interpret these isoclines, if one

LALI parameter was genetically controlled and one parameter was environmentally controlled,

this is the shape that the G×E interaction would take (see [49]). Both computational models

predict that the T-isoclines (red-lines) particularly deviate from straight, parallel lines when

the eccentricity is high, and the fractional area is low (lower right corner of the grid). Pheno-

types in this area of phenotype space (#682 and #735) would be most differentially affected by

small changes in the LALI-parameters (corresponding to genotype and environmental

variation).

Describing the bias introduced by the LALI-type to phenotype mapping

There is a mapping bias for higher eccentricities and lower fractional areas (Fig 9). To aid in

interpreting the bias, we can consider the hypothetical that the parameters randomly vary in

the indicated region of LALI-space so that each grid area has an equal probability of being rep-

resented by a gecko offspring. However, this does not correspond to equal probabilities of

encountering the regions in phenotype space. All the points in the region colored in gray in

LALI-space (25% of the total area) map to a relatively small region in phenotype space. This

translates to a relatively high probability of points clustering in that region in phenotype space

(25% of the points would land in that gray region). In other words, even if the values in LALI-

space were randomly varied around a central position, they would map to a phenotype that is

skewed towards higher eccentricity and lower fractional areas. Without knowing of this under-

lying bias introduced by the LALI map, this clustering would be interpreted as a “designed” or

purposeful clustering in phenotype space rather than a random one.

Fig 10. The Intra-Group Variation of the Eight Leopard Gecko Pattern is Larger than Random Variation Each closed

curve shows the outer contour of the 95% phenotype cloud for eight LALI-types that were selected from within the

neutral region of each leopard gecko pattern for the A) linear Turing and B) FitzHugh-Nagumo models. These LALI-

types are indicated in LALI-space as labeled white dots in Fig 8. Although the phenotype clouds overlap, even the

largest phenotype clouds do not contain all of the phenotype variation of the group, indicating that the random

variation is not large enough on its own to account for all of the variation.

https://doi.org/10.1371/journal.pcbi.1006943.g010
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Another way of perceiving the bias is that gecko patterns that seem relatively well-separated

in phenotype space (e.g., #735 and #682 in Panels C and D) could be found to have a relatively

small separation in LALI-space. The relatively small differences in LALI-space result in large

differences in phenotype space. Even if one phenotype had a selective advantage over another,

it might be difficult to control which phenotype would arise. Also, differences in patterns may

be more due to chance than would be expected just by looking at their distances in phenotype

space (see also Discussion).

Application of the L!P map: Interpreting the intra-group variation in the

context of the random variation

Simulations for the same LALI-type yield a range of patterns due to random variation. We

investigate and compare the intrinsic variability of each the eight gecko patterns by generating

the distribution of patterns for each phenotype that would be expected due to random varia-

tion. For each phenotype, we generate a distribution of patterns using a LALI-type selected

from their neutral region, and crucially we also restrict the domain size of the generated pat-

terns to match that of the gecko pattern under study (see Methods). While the LALI-type

determines pattern characteristics such as the average fractional area and eccentricity, the

domain size of the pattern is relevant because this determines the amount of the pattern that is

captured (actual number of spots). A disk-shaped post-orbital head region with domain size

that is relatively small compared to the pattern wavelength will have relatively few spots and

will be a relatively small sample of the pattern.

Fig 10 shows the outlines of these phenotype clouds for all eight LALI-types, with clouds

approximately centered at each phenotype. Here the outline of the 95% phenotype cloud is

shown for both the linear and FitzHugh-Nagumo models, see the description under “Step 2”

in Methods. Due to both random variation and the restricted sample size of the number of

spots on the individual gecko heads, there is extensive overlap of phenotype clouds and several

LALI-types are capable of producing more than one of the eight gecko phenotypes. The poten-

tial of one LALI-type to produce more than one of the observed live geckos phenotypes is

shown by the inclusion of more than one phenotype in the outline of a phenotype cloud. For

example, the LALI-type producing the cloud centered at gecko pattern #735 is also capable of

producing a phenotype like that of gecko pattern #773 or even gecko pattern #732 (with a

lower probability) (Fig 10). Although there is extensive overlap among the phenotype clouds,

no single phenotype cloud includes all of the eight gecko patterns. Thus, the variation between

the gecko patterns is larger than that of random variation, even when the domain size of the

pattern is considered. By defining the radius containing a specified percentage of each pheno-

type cloud, one can determine the relative likelihood that a phenotype could be generated by a

single LALI-type due to random variation. We observe that LALI-types mapping to phenotype

clouds in different regions of phenotype space have phenotype clouds with different sizes, cor-

responding to different amount of random variation intrinsic to that set of LALI parameters.

A domain size that is relatively small compared to the pattern wavelength will have rela-

tively few spots; this is a relatively small sample of the pattern and the intrinsic variability of

that phenotype will larger. For example, gecko patterns #735 and #773 are both especially

small and have an especially large distance between spots, so that the patterns contain very few

spots. Due to the effects of relatively small domain size, these phenotype specimens have the

largest intrinsic phenotype variability.

The inclusive relationships of the phenotype clouds in Fig 10 also allow for a description of

the estimated likelihood that two gecko phenotypes correspond to the same LALI-type. The

corresponding relatedness of pairs of phenotypes is given in Fig 11. Here we determined for
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each pair (i,j) of geckos whether i is contained in the 95% phenotype cloud of j or vice versa for

each of the two models. If this was not the case for any combination, we assigned a score of 0.

If this was the case for one model and in one instance, we assigned a score of 1, etc., up to a

maximum possible score of 4. In Fig 11, the maximum score is represented by a black field at

position (i,j), whereas the minimum score 0 corresponds to a white field, with graded gray lev-

els indicating intermediate scores. The two computational models are largely consistent with

respect to their predictions regarding the relatedness of the phenotypes (for example, both

models indicate it is highly unlikely that a LALI-type producing a phenotype for #772 would

also produce a phenotype for #735). The use of graded gray levels in Fig 11 is a way to summa-

rize where the models were not entirely consistent (all pairs that are not white not black) and

present the degree of relatedness by weighting the two models equally.

Application of the L!P map: Generating the likely variation of an

observed phenotype

In Fig 7, Panels C and D, gecko pattern #682 is shown with three patterns that were randomly

selected from within the phenotype clouds of each LALI-type, showing the typical random var-

iation for a LALI-type within the neutral region of gecko pattern #682. Within the context of

our modeling framework, the variations among these patterns correspond to the random vari-

ation of genetic and environmental clones. The patterns shown in Fig 3 (columns 4 and 5) rep-

resent the closest phenotype matches generated within each phenotype cloud among 100

simulations for each gecko pattern.

Application of the L!P map: Generating new patterns outside the likely

variation of the group

Just as the L!Pmap can be used to generate patterns that are within the expected variation of

the group, by choosing points in LALI-space just outside the set of neutral regions generated

Fig 11. Classification of the relatedness of pairs of phenotypes. Pairs of the geckos IDs 681, 682, 732, 763, 731, 773,

735, 772 are classified according to a measure of relatedness based on the linear and FitzHugh-Nagumo models used in

this paper. The main idea of this measure is whether a likely combination of genotype and environmental factors for

the head patterning of one of the geckos in a pair can also produce the pattern of the other gecko with developmental

noise as the only difference. The darker the color, the closer two patterns are related in this sense, with white color

corresponding to the case when neither of the two patterns can be produced by the other’s combination of genetic and

environmental factors for any of the models. (See text for the method used to produce the table).

https://doi.org/10.1371/journal.pcbi.1006943.g011
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by the group of leopard gecko patterns, we can simulate patterns beyond the expected varia-

tion of the group. Fig 12 shows patterns generated from two LALI-types outside the neutral

regions of the other eight leopard geckos (the locations of these LALI-types are shown as A

and B starred in Fig 8). This corresponds to patterns generated by environmental and genetic

parameters outside the range of variability seen within the gecko cohort.

Discussion

Reptile skin patterning has not been as extensively studied as the skin patterning of mammals

(felids, giraffes, zebras) and fish (see Introduction for references). However, reptile integu-

ments also frequently display periodic patterning motifs of stripes, spots and mixed patterns

with extensive individual and species variation, furthering the evidence that LALI patterning

mechanisms may be widespread among vertebrates. Since coloration and color pattern is

achieved very differently in the different groups of vertebrates (e.g., mostly structural, mostly

pigment based coloration, or both), knowledge from one group of vertebrates does not neces-

sarily represent what is occurring in other groups and it is worthwhile to investigate apparent

similarities. This manuscript adds to studies of reptile integument patterns by describing a set

of leopard gecko patterns in the context of LALI patterning.

Key result: Observed pattern variation of the gecko cohort is more

extensive than random variation

In our work, we studied the intra-group variation of patterns selected from a specific region of

the head of eight geckos. Considering the variation of the positions of the live gecko patterns

Fig 12. Preternatural’ Patterns (Patterns extending beyond the variation observed in the gecko cohort) The LALI

framework can be used to generate patterns that are “nearby” in LALI-space, possibly corresponding to the

patterns that could be reached by evolutionary change. ‘ For each of the ‘starred’ locations in LALI-space indicated

in Fig 8, Panel A, we show three random phenotype variations corresponding to that point in LALI-space. These were

generated using the linear Turing model. The fu,T LALI-type for the patterns generated in A and B are [0.805 1.0] and

[0.835 1.0], respectively. Horizontal bars indicate 0.5 cm.

https://doi.org/10.1371/journal.pcbi.1006943.g012
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in [FA, EE]-phenotype space (Fig 6), the phenotypes are distributed roughly uniformly in phe-

notype space, without showing any obvious clusters. A clustering of phenotypes, with a large

cluster separation between clusters, would suggest a different genotype-environment contribu-

tion for each cluster rather than random variation. Instead, the observed uniform distribution

of phenotypes raises the question whether the observed variation of the eight gecko phenotypes

may be due to developmental noise alone. In other words, it would be a reasonable hypothesis

that the eight studied geckos may all have the same genotype and environment background

and that the observed variation is the random variation resulting from self-organized LALI

processes (Fig 2).

The LALI-type to Phenotype (L to P) map can quantitatively resolve this question by mea-

suring and then quantitatively comparing the developmental noise that would be predicted for

each phenotype. For each of the two LALI models we considered, we found that the resulting

phenotype clouds for each of the phenotypes did not all overlap (Fig 10) indicating that devel-

opmental noise alone cannot explain the variations among the phenotypes. That is, even

though there is much overlap among the phenotype clouds, there is no single-LALI-type that

would yield all eight phenotypes by random variation. As shown in Fig 11 where each square

corresponds to a pairwise comparison of gecko patterns, the lighter the color of a square, the

less likely it is that the two phenotypes are generated by developmental noise alone. For exam-

ple, a LALI-type producing phenotype #732 with an intermediate fractional area is more likely

to also result in a phenotype like #731, with a higher fractional area, or #773, with a lower frac-

tional area, but it would be less likely for a LALI-type producing phenotype #773 to also result

in a phenotype like #731 as a result of developmental noise alone.

Matching of observed patterns and selection of morphometric

measurements for matching

For this project, rather than trying to recapitulate the stages of development, for which we do

not have many biological details, we use the LALI framework to generate pattern matches for

the set of patterns of the gecko at a particular stage in their development (at 9 weeks). Using

both of the LALI models we considered in this study, we were able to identify LALI-types that

generate quantitatively accurate matches to all eight of the observed spot patterns on the heads

of eight geckos (Fig 3), where a ‘match’ was defined as producing patterns with the same frac-

tional area and eccentricity. When parameters are varied, periodic LALI patterns vary with

respect to the wavelength of the pattern, the size of peaks relative to the wavelength, and a loca-

tion along a continuum from discrete peaks (spots) to elongated, contiguous peaks (stripes

and spirals). For patterns with spots that are well-separated and discrete, relative peak size to

peak separation and the elongation of peaks may be quantified with fractional area and eccen-

tricity, respectively. In this work, we were not interested in comparing absolute size differences

among the gecko patterns since gecko growth occurs during patterning, resulting in patterns

of different size. Since fractional area and eccentricity are dimensionless numbers, and thus

scale-independent, they were a natural set of morphometrics for our LALI patterns.

The pattern match observed in our work suggests that a LALI mechanism, in this case, is

sufficient to generate the salient aspects of the variation of the color pattern observed on the

head of gecko cohort. It is reasonable to consider that a LALI mechanism would work in tan-

dem with other pattern mechanisms, in which case secondary mechanisms could distort the

initial LALI pattern and create patterns that are outside the range of LALI parameters space.

For example, a LALI mechanism could establish an initial pattern that is then non-randomly

stretched by growth along an oriented direction. However, we were able to match the eight

observed gecko patterns by varying LALI parameters.
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We defined a pattern match as a matching of fractional area and eccentricity. These are nat-

ural morphometric measures for LALI patterns, as described above. Even though we only used

two morphometric measurements in our quantitative analysis to generate our best matches,

the matches are visually very convincing. However, there were aspects of the patterns that we

did not try to match, such as pigment saturation and hue, and the fine-scale texture of the con-

tour of the blotches. These finer details of the pattern would require modeling the development

of the gecko pattern (which we did not aim to do here), with biophysical details such as tissue

spatial organization and stages of cell differentiation, and knowledge of the relative rates of

pattern development versus cell differentiation, which are currently not available to us. On the

other hand, there are secondary morphometric measurements, beyond fractional area and

eccentricity that could be used to fine tune or further validate pattern matches in the future,

such as matching the within-pattern variation of spot sizes, eccentricity etc. While fractional

area and eccentricity are aspects of the pattern that we matched in this study, unexpected addi-

tional variations among patterns that arise as matches in our results instruct us on salient pat-

tern features and motivate the addition of other morphometric variables for fitting. For

example, our objective matching algorithm identified patterns as optimized matches even if

they included annuli (pigmented regions with a large interior hole), for example, see two

annuli in the FitzHugh-Nagumo match for #773 in Fig 3. These annuli occasionally appeared

as a best fit match because the algorithm was optimizing only fractional area and eccentricity.

This instructs us that if annuli patterns are unwanted, the topology of the pattern should be

added as another parameter to match, to exclude regions of parameter space that generate

blotches with empty interiors. Rather than apply that topological constraint now, ad hoc, we

leave those patterns with annuli as an example of how an objective algorithm for pattern

matching avoids subjective bias in pattern selection (if searching by hand, we might have

avoided pattern space with annuli) and thus instructs on the most informative features of pat-

terning. It is also worth considering that some variations of leopard gecko patterns may be

found with such annuli.

The L! P maps provides an important metric for interpreting the

distances between patterns

The difference in two phenotypes can be quantitatively described by the difference in the mor-

phometric properties of the phenotypes (head size, tail length, average spot size, etc.). The con-

cept of using a LALI model to index the difference between phenotypes is a compelling idea

and was recently applied by Ledesma-Duran et al. [50]. Ledesma-Duran and co-workers stud-

ied how the range of phenotypes (skin pattern) of Pseudoplatystoma fishes could be abstractly

quantified (indexed) by the variation of one parameter in their reaction diffusion model. The

compelling advantage of using a LALI model for indexing is that seemingly complex pheno-

typic differences in patterns, such as spots versus stripes versus mixed patterns, can be

described by a small number of parameters (for example, as observed in [51]).

Whether the pattern variation is measured by absolute morphometric differences or

indexed by a mathematical model, the expected random variation of the pattern provides a

necessary context for interpreting the measured difference between two patterns. The geome-

try of the L! Pmap (that is, how a specific change in LALI-space results in a specific change

in phenotype) provides guidance regarding the appropriate way to interpret distance between

patterns. For instance, ‘small’ changes in LALI space (due to a combination of genotype and

environmental changes) may correspond to large changes in pattern appearances (due to

developmental noise). In these cases, the two phenotypes may appear to be very different,

when in actuality, they are closely related. The opposite situation may also occur, where two
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phenotypes may seem similar, but they would originate from different regions in LALI-space.

Our methods help to look beyond morphometric measurements and uncover such ‘hidden’

relatedness.

Further, details of the geometry of the L to Pmapping may provide clues into the ways that

the freedoms and constraints of the developmental mechanism shape the effect of selection

pressures on color patterning. The large neutral regions of #735 and #682 indicate that LALI

parameters could vary within these regions, with little change in the resulting phenotype, so

that parameters could drift in a neutral manner to new regions of LALI-space. Varying sizes of

the phenotype clouds indicate that different regions of the L!Pmap differ in their intrinsic

variability. If there is selection for more or less variation, then this may shift the selection pres-

sure from particular phenotypes to particular regions of LALI-space. A rich literature of theory

can be applied to such phenotypic landscapes, such as the neutral theory of Kimura [52, 53],

survival of the flattest [54] and arrival of the frequent [55].

Generalizability of this framework for other models of developmental noise

The approach we describe here for generating a metric for the variation of patterning that

involves separating the developmental process due to genotype and environmental contribu-

tion together versus stochastic sources of phenotype variation (developmental noise) can be

applied to any developmental mechanism that permits modeling of pattern generation from a

set of fixed initial conditions with stochastic effects.

A local activation long range inhibition (LALI) mechanism is a likely candidate for a pat-

terning mechanism for spot patterning on the heads of a cohort of geckos, especially due to the

familiar combination of periodic spots and stripes throughout their body color plan and devel-

opment, but the molecular details of the mechanism are not known. Rather than commit to a

LALI mechanism and yield results that are potentially narrower, we compare two implementa-

tions of a LALI core logic: one linear and one non-linear, both reaction diffusion mechanisms.

The results of the two LALI implementations are similar overall, especially in the geometry of

the maps. This overall similarity can be seen by comparing the relative position and sizes of the

neutral regions for each gecko pattern phenotype (Fig 8), the similar direction of the bias of

the two maps (Fig 9), and the comparable relative sizes and overlaps of the phenotype clouds

(Figs 7 and 10). The commonalities of the L! Pmaps for these two LALI models will include

common properties of LALI maps in general while the more subtle differences between the

models (relative size and detailed shape of the phenotype clouds, and the extent of overlap) are

differences that can be expected from one LALI mechanism to another. In future work, a

broader range of LALI mechanisms might be compared, or it would be interesting to compare

the topology of maps generated by more diverse non-LALI mechanisms. This would be espe-

cially interesting if differences in the geometry of variation make testable predictions to distin-

guish competing mechanisms, as suggested by [40] in the context of assessing the effect of

parameter perturbations.

Further applications

Here we describe an approach for taking a very small set of patterns (eight individual gecko

patterns were compared in our study) and describing their relative relationship (separation,

closeness, potential for overlap) within the context of the LALI framework. Without the under-

lying LALI framework to describe the random variation, a much larger number of pattern

specimens would be needed to define a metric for their variation. That is, when two patterns

appear to be similar, measuring the differences between very many patterns would be needed

to quantitatively determine whether the difference between these two patterns is relatively

Role of developmental noise in generating phenotypic variation

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006943 April 22, 2019 26 / 31

https://doi.org/10.1371/journal.pcbi.1006943


small or large, compared to the average variation observed among the pattern specimens.

Within the context of the LALI framework, however, each single pattern specimen can be

identified as a region in LALI space (i.e., the set of LALI parameters specific to a given LALI

model that is likely to generate this pattern). Once a location has been identified, the LALI

model can be interrogated to determine the amount of stochastic variation that can be

expected for that location in LALI space (without requiring population statistics).

Here, we select a set of LALI patterns (chosen at a particular simulation time point) that

match patterns in vivo (at a particular time in development), without considering the time

course of those patterns during development. We do in fact mean to put forward a paradigm

of creating a library of LALI patterns that can be compared with patterns that occur in nature.

A key assumption of this is that LALI-generated patterns have certain features that are inher-

ent to the pattern itself (for example, the variability in the pattern that will be due to noise, or

maybe also the topological properties of transitions from one pattern to another) that does not

depend on the particular LALI mechanism and/or the developmental history of those patterns

over time. This is supported by observations that many mechanisms with the same core LALI

logic (molecular, cell-based and/or mechanical) yield similar patterning despite different

underlying biological processes [40]. The contexts for which this assumption is valid can be

further explored by comparing the features of matching LALI patterns, especially for a broader

range of LALI mechanisms.

Within the LALI framework, there is the potential to fruitfully compare the patterns of even

a small number of pattern specimens by determining whether their expected ranges of random

variation would include one another. There is also the potential for comparisons across spe-

cies, regardless of differences in the specific underlying LALI mechanism, since patterns are

mapped by their morphometric characteristics, not their underlying biophysical parameters.

Thus, by mapping species pattern movements in a common LALI space, future investigations

may find patterns of variation (for example, long term speciation trends) that are common

across species, clades, etc. As we have done here, the LALI framework can be used to deter-

mine the fraction of observed diversity that is due to genetic and environment factors, which

determines the extent to which specific patterns are inheritable or reproducible. The contribu-

tion of developmental noise to pattern diversity can be significant (for example, in [1]) and

contribute a selective advantage (‘bet-hedging’ [56]).

Finally, the LALI framework can be used to explore patterns that are just beyond the space

apparently explored by the individual variability, to yield ‘supra-natural patterns’ that may or

may not be represented in the wild. From an evolutionary and ecological point of view, identi-

fying potential color patterns that do not occur in wild animal populations, but that can

instead be generated either mathematically or sometimes by targeted captive-breeding efforts,

provide a ground to investigate the evolutionary constraints (e.g., selective, genetic or develop-

mental) that impede the occurrence of these phenotypes in nature.

Conclusions

With image analysis and the selection of several morphometric features for analysis, a differ-

ence between two phenotypes can be measured. Without a model of stochastic variation like

that of the L!Pmap, however, it is difficult to interpret the significance of a small difference

in phenotypes. The model of variation presented here provides a framework for contextual-

izing the noisy difference between phenotypes within the context of random variation due to

developmental noise. Further, the set of parameters in LALI-space that yields a matching phe-

notype is an efficient summary of the set of real-world parameters that would be needed to

specify that phenotype, for any biological mechanism described with a core LALI logic. This
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points to a method for classification and comparison of patterns across a broad range of con-

texts. This work underscores the need for significant interdisciplinary effort [8] to advance bio-

metric approaches for generating and analyzing phenotype data.

Supporting information

S1 Fig. Determination of characteristic Fourier wavelength. A: a rectangular section of the

pattern for Gecko ID #731. B: the corresponding centered Fourier spectrum. Low-frequency

components are shown in the center of the image, high-frequency components on the edges.

Lighter colors indicate larger values. C: a plot of radially averaged interpolated absolute Fourier

coefficient as a function of radius λ. The vertical lines indicate the location of the wavenumber

corresponding to the maximum interpolated Fourier coefficient, as well as the interval in

which its value is within 90% of the maximum.

(TIFF)

S2 Fig. Evolution of sample patterns for Gecko #682 and Gecko #772 over 600K simulation

time steps for the linear Turing model. The panels (a-f) show the pattern every 100K time

steps for a simulation with parameters corresponding to those of Gecko #682. The LALI-type

for Gecko #682 is matched at 200K time steps.

(TIFF)

S3 Fig. Typical path through phenotype space of patterns over 600K simulation time steps

for the linear Turing model. As the simulation progresses, the morphological properties of

the spotted pattern change and create a path through FA-EE phenotype space. The points

labeled (a-f), when they appear on the frame, correspond to the panels (a-f) described in S2

Fig.

(TIFF)

S4 Fig. Evolution of sample patterns for Gecko #735 and Gecko #773 while the threshold is

varied from 80% to 105% of the value used for Gecko #735 for the linear Turing model.

The panels (a-f) show the pattern every as the threshold varied from 80% to 105% in 5% incre-

ments for a simulation with parameters corresponding to those of Gecko #682. The LALI-type

for Gecko #682 is matched when the threshold is 100%.

(TIFF)

S5 Fig. Typical path through phenotype space of sample patterns for Gecko #735 and

Gecko #773 while the threshold is varied from 80% to 105% of the baseline values used for

Geckos #735 and #773 for the linear Turing model. As the simulation progresses, the mor-

phological properties of the spotted pattern changes and create a path through FA-EE pheno-

type space. The points labeled (a-f), when they appear on the frame, correspond to the panels

(a-f) described in S4 Fig.

(TIFF)
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