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Abstract

We study the arithmetic properties of Weierstrass points on the modular curves X+
0 (p)

for primes p. In particular, we obtain a relationship between the Weierstrass points on
X+
0 (p) and the j-invariants of supersingular elliptic curves in characteristic p.
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1 Introduction
A Weierstrass point on a compact Riemann surface M of genus g is a point Q ∈ M at
which some holomorphic differentialω vanishes to order at least g .Weierstrass points can
be identified by observing their weight. LetH1(M) be the g-dimensional C-vector space
of holomorphic differentials onM. If {ω1,ω2, . . . ,ωg } forms a basis forH1(M) adapted to
Q ∈ M, so that

0 = ordQ(ω1) < ordQ(ω2) < · · · < ordQ(ωg ),

then we define theWeierstrass weight of Q to be

wt(Q) :=
g∑

j=1
(ordQ(ωj) − j + 1).

We see that wt(Q) > 0 if and only ifQ is aWeierstrass point ofM. TheWeierstrass weight
is independent of the choice of basis, and it is known that

∑

Q∈M
wt(Q) = g3 − g.

Hence, each Riemann surface of genus g ≥ 2 must haveWeierstrass points. For these and
other facts, see Section III.5 of [9].
We will consider Weierstrass points on modular curves, a class of Riemann surfaces

which are of wide interest in number theory. Let H denote the complex upper half-
plane. The modular group � := SL2(Z) acts on H by linear fractional transformations( a b
c d

)
z = az+b

cz+d . If N ≥ 1 is an integer, then we define the congruence subgroup

�0(N ) :=
{(

a b
c d

)
∈ � : c ≡ 0 (mod N )

}
.

The quotient of the action of �0(N ) on H is the Riemann surface Y0(N ) := �0(N )\H,
and its compactification is X0(N ). The modular curve X0(N ) can be viewed as the moduli
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space of elliptic curves equipped with a levelN structure. Specifically, the points of X0(N )
parameterize isomorphism classes of pairs (E, C) where E is an elliptic curve over C and
C is a cyclic subgroup of E of order N .
Weierstrass points onX0(N ) have been studied by a number of authors (see, for example,

[3–6,12,13,15,17,20,22,23], and [10]). An interesting open question is to determine those
N for which the cusp ∞ is a Weierstrass point. Lehner and Newman [15] and Atkin [5]
showed that ∞ is a Weierstrass point for most non-squarefree N , while Atkin [6] proved
that ∞ is not a Weierstrass point when N is prime.
Most central to the present paper is the connection between Weierstrass points and

supersingular elliptic curves. Ogg [20] showed that for modular curves X0(pM) where p
is a prime with p � M and with the genus of X0(M) equal to 0, the Weierstrass points of
X0(pM) occur at points whose underlying elliptic curve is supersingular when reduced
modulo p. So in particular, ∞ is not a Weierstrass point in these cases, extending [6].
This has recently been confirmed by Ahlgren, Masri and Rouse [2] using a non-geometric
proof. Ahlgren andOno [3] showed for theM = 1 case that in fact all supersingular elliptic
curves modulo p correspond to Weierstrass points of X0(p), and they demonstrated a
precise correspondence between the two sets. In order to state their result, we make the
following definitions.
For p andM as above, let

FpM(x) :=
∏

Q∈Y0(pM)
(x − j(Q))wt(Q),

where j(z) = q−1 + 744+ 196884q+ · · · is the usual elliptic modular function defined on
�, and j(Q) = j(τ ) for any τ ∈ H with Q = �0(pM)τ . This is the divisor polynomial for
the Weierstrass points of Y0(pM). Next, for a prime p we define

Sp(x) :=
∏

E/Fp
supersingular

(x − j(E)) ∈ Fp[x],

where the product is over all Fp-isomorphism classes of supersingular elliptic curves. It is
well known that Sp(x) has degree gp + 1, where gp is the genus of X0(p). Ahlgren and Ono
[3] proved the following, whenM = 1.

Theorem 1.1 If p is prime, then Fp(x) has p-integral rational coefficients and

Fp(x) ≡ Sp(x)gp(gp−1) (mod p).

El-Guindy [8] generalizedTheorem1.1by consideringFpM whereM is squarefree, show-
ing that FpM(x) has p-integral rational coefficients and is divisible by S̃p(x)μ(M)gpM (gpM−1),
where μ(M) := [� : �0(M)] and gpM is the genus of X0(pM), and where

S̃p(x) :=
∏

E/Fp supersingular
j(E) �=0,1728

(x − j(E)). (1.1)

He also gave an explicit factorization of FpM(x) inmost cases whereM is prime. Generaliz-
ing Theorem 1.1 in a different direction, Ahlgren and Papanikolas [4] gave a similar result
for higher-orderWeierstrass points onX0(p), which are defined in relation to higher-order
differentials.
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In this paper we consider the modular curve X+
0 (p), the quotient space of X0(p) under

the action of the Atkin–Lehner involution wp, which maps τ �→ −1/pτ for τ ∈ H. There
is a natural projection map π : X0(p) → X+

0 (p) which sends a point Q ∈ X0(p) to its
equivalence class π (Q) = Q in X+

0 (p). This is a 2-to-1 mapping, ramified at those points
Q ∈ X0(p) that remain fixed by wp. Therefore, we set

v(Q) :=
⎧
⎨

⎩
2 if wp(Q) = Q,

1 otherwise,
(1.2)

so that v(Q) is equal to the multiplicity of the map π at Q. We now define a divisor
polynomial for the Weierstrass points of X+

0 (p). We will set our product to be over Y0(p)
to preserve the desired p-integrality of the coefficients. Let

Fp(x) :=
∏

Q∈Y0(p)
(x − j(Q))v(Q)wt(Q),

where wt(Q) is the Weierstrass weight of the image Q of Q in X+
0 (p). The zeros of this

polynomial capture those non-cuspidal points of X0(p) which map to Weierstrass points
in X+

0 (p). The two cusps of X0(p) at 0 and ∞ are interchanged by wp, so that X+
0 (p) has a

single cusp at ∞, which may or may not be a Weierstrass point. Atkin checked all primes
p ≤ 883 and conjectured that∞ is aWeierstrass point for all p > 389. Stein has confirmed
this for all p < 3000, and his table of results can be found in [26]. Therefore, Fp(x) is a
polynomial of degree 2((g+

p )3 − g+
p − wt(∞)), where g+

p is the genus of X+
0 (p).

We recall that a supersingular elliptic curve E/Fp must have j(E) ∈ Fp2 . Since those
j(E) ∈ Fp2\Fp occur in conjugate pairs, we define

S(l)p (x) :=
∏

E/Fp supersingular
j(E)∈Fp

(x − j(E)) and S(q)p (x) :=
∏

E/Fp supersingular
j(E)∈Fp2\Fp

(x − j(E)),

so that Sp(x) = S(l)p (x) · S(q)p (x) and both factors lie in Fp[x]. Our main theorem gives
an analogue of Theorem 1.1 for Fp(x). We require an assumption that H1(X+

0 (p)) has a
good basis, a condition about p-integrality which we define later in Sect. 4. Computations
suggest that most, if not all, such spaces satisfy this condition. Indeed, each H1(X+

0 (p))
with p < 3200 has a good basis.

Theorem 1.2 Let p be prime and suppose that H(X+
0 (p)) has a good basis. Then Fp(x)

has p-integral rational coefficients, and there exists a polynomial H (x) ∈ Fp[x] such that

Fp(x) ≡ S(q)p (x)g
+
p (g+

p −1) · H (x)2 (mod p).

Note From computational evidence, it appears that H (x) is always coprime to Sp(x), so
that contrary to the situation on X0(p), only those supersingular points with quadratic
irrational j-invariants correspond to Weierstrass points of X+

0 (p). We give a heuristic
argument for this phenomenon in Sect. 3.

In Sect. 2 we start by reviewing some preliminary facts about divisors of polynomials of
modular forms. We then consider the reduction of X0(p) modulo p in Sect. 3 in order to
obtain a key result about thewp-fixed points ofX0(p). In Sect. 4 we describe our good basis
condition for H1(X+

0 (p)). Next, in Sect. 5 we derive a special cusp form on �0(p) which
encodes the Weierstrass weights of points on X+

0 (p). In Sect. 6, we prove Theorem 1.2,
and in Sect. 7, we demonstrate Theorem 1.2 for the curve X+

0 (67).
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2 Divisor polynomials of modular forms
Let Mk (resp. Mk (p)) denote the space of modular forms of weight k on � (resp. �0(p)),
and let Sk (resp. Sk (p)) be the subspace of cusp forms. For even k ≥ 4, the Eisenstein series
Ek ∈ Mk is defined as

Ek (z) := 1 − 2k
Bk

∞∑

n=1
σk−1(n)qn,

where Bk is the kth Bernoulli number, and σk−1(n) = ∑
d|n dk−1. Then the function

�(z) := E4(z)3 − E6(z)2

1728
= q − 24q2 + 252q3 − 1472q4 + · · ·

is the unique normalized cusp form in S12.
We briefly recall how to build a divisor polynomial whose zeros are exactly the j-values

at which a given modular form f ∈ Mk vanishes, excluding those trivial zeros that are
forced to occur at the elliptic points i and ρ := e2π i/3 by the valence formula (for details,
see [3] or Section 2.6 of [21]). We define

Ẽk (z) :=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 if k ≡ 0 (mod 12),

E4(z)2E6(z) if k ≡ 2 (mod 12),

E4(z) if k ≡ 4 (mod 12),

E6(z) if k ≡ 6 (mod 12),

E4(z)2 if k ≡ 8 (mod 12),

E4(z)E6(z) if k ≡ 10 (mod 12),

(2.1)

and

m(k) :=
⎧
⎨

⎩

k/12� if k �≡ 2 (mod 12),


k/12� − 1 if k ≡ 2 (mod 12).
(2.2)

Now let f ∈ Mk have leading coefficient 1. We note that (2.1) and (2.2) are defined such
that the quotient

F̃ (f, j(z)) := f (z)
�(z)m(k)Ẽk (z)

(2.3)

has weight zero. Then the order of f at the elliptic points, together with the non-vanishing
of �(z) on H, guarantees that F̃ (f, j(z)) is a polynomial in j(z). Therefore, we define F̃ (f, x)
to be the unique polynomial in x satisfying (2.3). Furthermore, if f has p-integral rational
coefficients, then so does F̃ (f, x).
Finally, we record a result about the divisor polynomial of the square of a modular form.

Lemma 2.1 Let f ∈ Mk. Then

F̃ (f 2, x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

F̃ (f, x)2 if k ≡ 0 (mod 12),

x(x − 1728)̃F (f, x)2 if k ≡ 2 (mod 12),

F̃ (f, x)2 if k ≡ 4 (mod 12),

(x − 1728)̃F (f, x)2 if k ≡ 6 (mod 12),

xF̃ (f, x)2 if k ≡ 8 (mod 12),

(x − 1728)̃F (f, x)2 if k ≡ 10 (mod 12).
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Proof Using (2.3) for both f and f 2 yields

f (z)2 = �(z)2m(k)Ẽk (z)2F̃ (f, j(z))2,

and

f (z)2 = �(z)m(2k)Ẽ2k (z)̃F (f 2, j(z)).

Thus

F̃ (f 2, j(z)) = �(z)2m(k)−m(2k) · Ẽk (z)
2

Ẽ2k (z)
· F̃ (f, j(z))2.

Then by (2.1) and (2.2) we have

F̃ (f 2, j(z)) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

F̃ (f, j(z))2 if k ≡ 0 (mod 12),

�(z)−2E4(z)3E6(z)2F̃ (f, j(z))2 if k ≡ 2 (mod 12),

F̃ (f, j(z))2 if k ≡ 4 (mod 12),

�(z)−1E6(z)2F̃ (f, j(z))2 if k ≡ 6 (mod 12),

�(z)−1E4(z)3F̃ (f, j(z))2 if k ≡ 8 (mod 12),

�(z)−1E6(z)2F̃ (f, j(z))2 if k ≡ 10 (mod 12),

Since j(z) = E4(z)3
�(z) and j(z) − 1728 = E6(z)2

�(z) , the result follows. �

3 Modular curves modulo p
Here we recall the undesingularized reduction of X0(p) modulo p, due to Deligne and
Rapoport [7]. The description below closely follows one given by Ogg [19]. The model of
X0(p) modulo p consists of two copies of X0(1) which meet transversally in the supersin-
gular points (Fig. 1). (Here we call a point supersingular if its underlying elliptic curve is
supersingular.)
The Atkin–Lehner operator wp is compatible with this reduction. It gives an isomor-

phism between the two copies of X0(1) which preserves the supersingular locus, by fixing
thosepointswith j-invariant inFp, and interchanging thepairs of pointswhose j-invariants
in Fp2\Fp are conjugate. Therefore, dividing out by the action ofwp glues together the two
copies ofX0(1). The singularities at the linear supersingular points are thus resolved, while
the conjugate pairs of quadratic supersingular points are glued together. This results in a
model for the reduction modulo p of X+

0 (p) consisting of one copy of X0(1) which self-
intersects at each point representing a pair of conjugate quadratic supersingular points
(Fig. 2). This resolution at the linear supersingular pointsmay explain their absence among
the Weierstrass points of X+

0 (p).

X0(1)

X0(1)

Fig. 1 Reduction of X0(p)
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X0(1)

Fig. 2 Reduction of X+
0 (p)

Tomake the correspondence between fixed points and linear supersingular j-invariants
more precise, for D ≡ 0, 3 (mod 4), let OD = Z[ 12 (D + √−D)] be the order of the imag-
inary quadratic field Q[

√−D] with discriminant −D < 0. The Hilbert class polynomial
HD(x) ∈ Z[x] is the monic polynomial whose zeros are exactly the j-invariants of the
distinct isomorphism classes of elliptic curves with complex multiplication byOD, and its
degree is h(−D), the class number ofOD.
The points Q ∈ Y0(p) that are fixed by wp correspond to pairs (E, C) such that E

admits complex multiplication by
√−p, or in other words, Z[

√−p] embeds in End(E),
the endomorphism ring of E over the complex numbers (see, e.g., [17]). Since End(E) must
be an order in an imaginary quadratic field, we have

End(E) ∼=
⎧
⎨

⎩
O4p if p ≡ 1 (mod 4),

Op orO4p if p ≡ 3 (mod 4).

Now define

Hp(x) :=
∏

τ∈�0(p)\H
v(Qτ )=2

(x − j(τ )), (3.1)

the monic polynomial whose zeros are precisely the j-invariants of the wp-fixed points of
Y0(p). Then we have

Hp(x) =
⎧
⎨

⎩
H4p(x) if p ≡ 1 (mod 4),

Hp(x) · H4p(x) if p ≡ 3 (mod 4).
(3.2)

The following result is due independently to Kaneko and Zagier.

Proposition 3.1 For p prime, there exists a monic polynomial T (x) ∈ Zp[x] with distinct
roots such that Hp(x) ≡ T (x)2 (mod p).

Proof The result follows from Kronecker’s relations on the modular equation 	p(X, Y )
and may be found in appendix of [11]. �

We can now prove the following.

Theorem 3.2 Let p be prime. Then we have

Hp(x) ≡ S(l)p (x)2 (mod p).
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Proof The prime p is ramified in both Q(
√−p) and Q(

√−4p), so a result of Deuring (see,
e.g., Theorem 12 in §13.4 of [14]) together with (3.2) implies that the reduction modulo
p of each root of Hp(x) must be a supersingular j-invariant. Since the roots of Hp(x) also
correspond to fixed points of wp, these supersingular j-invariants must lie in Fp, so by
Proposition 3.1, we have T (x) | S(l)p (x). We will show that T (x) and S(l)p (x) have the same
degree, proving that T (x) = S(l)p (x). The result then follows again by Proposition 3.1.
By the Riemann–Hurwitz formula (see, for example, Section I.2 of [9]), we have

2g+
p = gp + 1 − σ

2
, (3.3)

where σ is the number of points of X0(p) at which the projection π : X0(p) → X+
0 (p) is

ramified, or in otherwords, the number ofwp-fixed points ofX0(p).We note that the cusps
are not ramified since wp exchanges 0 and ∞, so σ = deg(Hp(x)). On the other hand,
Ogg explains in [18] that g+

p is equal to the number of conjugate pairs of supersingular
j-invariants in Fp2\Fp. Since there are gp + 1 total supersingular j-invariants, we have

2g+
p = gp + 1 − deg(S(l)p (x)). (3.4)

Then Proposition 3.1, (3.3), and (3.4) imply that

deg(T (x)) = deg(Hp(x))
2

= deg(S(l)p (x)).

�

4 A good basis forH1(X+
0 (p))

For ease of notation, we will let g := g+
p for the rest of the paper, and assume that g ≥ 2.

Recall that g is the dimension ofH1(X+
0 (p)), the space of holomorphic 1-forms on X+

0 (p).
Let {ω1,ω2, . . . ,ωg } be a basis ofH1(X+

0 (p)), whereωi = hi(u)du for some local variable u.
In order to take advantageof the correspondence that exists betweenholomorphic 1-forms
onX0(p) and weight 2 cusp forms of level p, we pull back eachωi to a holomorphic 1-form
π∗ωi on X0(p) via the projection map π : X0(p) → X+

0 (p) (see, for example, Chapter 2 of
[16]). We can choose a local coordinate z at Q ∈ X0(p) so that near Q, u = zn, where n
is the multiplicity of π at Q, hence n = v(Q) (1.2). Then we have π∗ωi = Hi(z)dz with
Hi(z) = hi(zn)nzn−1 ∈ S2(p). Since each Hi(z) has been pulled back from X+

0 (p), it must
be invariant underwp, so it is a member of S+

2 (p), the subspace ofwp-invariant cusp forms
of weight 2. In fact, it is straightforward to show that {H1(z), H2(z), . . . , Hg (z)} forms a
basis for S+

2 (p).
It will be helpful later on to specify a basis for S+

2 (p) of a particularly nice form. First,
we can guarantee a basis with rational Fourier coefficients by the following argument.
The space S2(p) has a basis consisting of newforms. Let f (z) = ∑

n a(n)qn be a newform
for S2(p), and let σ ∈ Gal(C/Q). Then f σ (z) = ∑

n σ (a(n))qn is also a newform for
S2(p), so the action of Gal(C/Q) partitions the newforms into Galois conjugacy classes. If
two newforms are Galois conjugates, then they share the same eigenvalue for wp. Let Vf
be the C-vector space spanned by the Galois conjugates of f . Standard Galois-theoretic
arguments show that Vf has a basis consisting of cusp forms with rational coefficients.
These are no longer newforms, but as they are linear combinations of theGalois conjugates
of f , they are still eigenforms for wp. Therefore, collecting such a basis for each Galois
conjugacy class with eigenvalue 1 for wp yields a basis for S+

2 (p) with rational Fourier
coefficients.
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We can determine such a basis {f1, f2, . . . , fg } uniquely by requiring that

f1(z) = qc1 + O(qcg+1) (4.1)

f2(z) = qc2 + O(qcg+1)
...

fg (z) = qcg + O(qcg+1)

where

c1 < c2 < · · · < cg . (4.2)

Definition Wesay thatH1(X+
0 (p)) has a good basis if the cusp forms f1, f2, . . . , fg satisfying

(4.1) and (4.2) have p-integral Fourier coefficients.

5 Wronskians and p-integrality
Given any basis {ω1,ω2, . . . ,ωg } for H1(X+

0 (p)) with ωi = hi(u)du, we define the Wron-
skian

W (h1, h2, . . . , hg )(u) :=

∣∣∣∣∣∣∣∣∣∣

h1 h2 · · · hg
h′
1 h′

2 · · · h′
g

...
...

...
...

h(g−1)
1 h(g−1)

2 · · · h(g−1)
g

∣∣∣∣∣∣∣∣∣∣

. (5.1)

Let W+(u) be the scalar multiple of W (h1, h2, . . . , hg )(u) with leading coefficient 1, so
that W+(u) is independent of the choice of basis. It is well known that the Wronskian
encodes the Weierstrass weights of points in X+

0 (p) (see [9], page 82). Specifically,

wt(Q) = ordQ(W+(u)(du)g(g+1)/2).

Since it is advantageous to work on X0(p) instead of X+
0 (p), we consider the pullback of

W+ := W+(u)(du)g(g+1)/2 to X0(p) via π , which is π∗W+ = W+(zn)(nzn−1dz)g(g+1)/2.
Recalling that n = v(Q) when z is near Q, we have

ordQ(π∗W+) = v(Q)wt(Q) + g(g + 1)
2

(v(Q) − 1). (5.2)

Alternatively, we could pull back each ωi individually to π∗ωi = Hi(z)dz as in Sect. 4.
Then we can form the Wronskian W (H1, H2, . . . , Hg )(z) (defined analogously to (5.1)).
Since the Hi are cusp forms of weight 2 for �0(p), then W (H1, H2, . . . , Hg )(z) is a cusp
form of weight g(g + 1) for �0(p). It can be shown using basic facts about determinants
that

W (H1, H2, . . . , Hg )(z)(dz)g(g+1)/2 = W (h1, h2, . . . , hg )(zn)(nzn−1dz)g(g+1)/2.

Now let Wp(z) be the multiple of W (H1, H2, . . . , Hg )(z) with leading coefficient 1. Then
Wp(z) is independent of the choice of basis for S+

2 (p), and we have Wp(z)(dz)g(g+1)/2 =
π∗W+, hence by (5.2),

ordQ(Wp(z)(dz)g(g+1)/2) = v(Q)wt(Q) + g(g + 1)
2

(v(Q) − 1). (5.3)

We next see the advantage of having a good basis forH1(X+
0 (p)).
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Theorem 5.1 Let p be a prime such that H1(X+
0 (p)) has a good basis. Then Wp(z) ∈

Sg(g+1)(p) has p-integral rational coefficients.

Proof Here we closely follow the proof of Lemma 3.1 in [4]. Let {f1, f2, . . . , fg } be a basis for
S+
2 (p) satisfying (4.1) and (4.2). Let θ := q d

dq be the usual differential operator for modular
forms, so that d

dz = 2π iθ . Then by properties of determinants, we have

W (f1, f2, . . . , fg ) = (2π i)g(g−1)/2

∣∣∣∣∣∣∣∣∣∣

f1 f2 · · · fg
θ f1 θ f2 · · · θ fg
...

...
...

...
θ f (g−1)

1 θ f (g−1)
2 · · · θ f (g−1)

g

∣∣∣∣∣∣∣∣∣∣

.

We see that the Fourier expansion of
( 1
2π i

)g(g−1)/2W (f1, f2, . . . , fg ) has rational p-integral
coefficients, with leading coefficient given by the Vandermonde determinant

V :=

∣∣∣∣∣∣∣∣∣∣

1 1 · · · 1
c1 c2 · · · cg
...

...
...

...
c(g−1)
1 c(g−1)

2 · · · c(g−1)
g

∣∣∣∣∣∣∣∣∣∣

=
∏

1≤j<k≤g
(ck − cj). (5.4)

It now suffices to show that p does not divide the leading coefficient. By Sturm’s bound
[27] for the order of vanishing modulo p for modular forms of weight 2 on �0(p), we have
1 ≤ ci ≤ p+1

6 < p for each 1 ≤ i ≤ g , so 1 ≤ ck − cj ≤ p − 1 for all j < k . Therefore, the
lemma is proved. �

6 Proof of themain theorem
Let p be a prime for which H1(X+

0 (p)) has a good basis. We note that when g < 2, there
are noWeierstrass points onX+

0 (p). ThenFp(x) = 1 and g2−g = 0, so the theorem holds
trivially by taking H (x) = 1. Thus from here on, we will assume that g ≥ 2, in which case
we have p ≥ 67.
We first adapt two lemmas from [3]. For any meromorphic function f (z) defined on H

and any integer k , we define the slash operator |k by
f (z)|kγ := (det γ )k/2(cz + d)−k f (γ z),

where γ := ( a b
c d

)
is a realmatrix with positive determinant, and γ z := az+b

cz+d . In particular,
the Atkin–Lehner involution wp is given by f �→ f |k

(
0 −1
p 0

)
when f is a modular form of

weight k .

Lemma 6.1 We have

Wp(z)|g(g+1)
(
0 −1
p 0

)
= Wp(z).

Proof The proof is identical to Lemma 3.2 of [3] except that f |2
(
0 −1
p 0

)
= f for every

newform f in S+
2 (p). �

Lemma 6.2 If p is a prime such that X+
0 (p) has genus at least 2, define

W̃p(z) :=
∏

A∈�0(p)\�
Wp(z)|g(g+1)A,
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normalized to have leading coefficient 1. Then W̃p(z) is a cusp form of weight g(g+1)(p+1)
on � with p-integral rational coefficients, and

W̃p(z) ≡ Wp(z)2 (mod p).

Proof This follows from our Lemma 6.1 exactly as Lemma 3.3 follows from Lemma 3.2 in
[3]. �

We again consider a basis {f1, f2, . . . , fg } for S+
2 (p) satisfying (4.1) and (4.2). For

each fi, there is a cusp form bi ∈ Sp+1 with p-integral rational coefficients for
which fi ≡ bi (mod p) ([4], Theorem 4.1(c)). Define W (z) to be the multiple of
W (b1, b2, . . . , bg ) with leading coefficient 1. By the same reasoning as in Theorem 5.1,
( 1
2π i

)g(g−1)/2W (b1, b2, . . . , bg ) has p-integral rational coefficients and leading coefficient
V (5.4). Since the differential operator θ preserves congruences, we have

(
1

2π i

)g(g−1)/2
W (f1, f2, . . . , fg ) ≡

(
1

2π i

)g(g−1)/2
W (b1, b2, . . . , bg ) (mod p),

and hence

V · Wp(z) ≡ V · W (z) (mod p).

Since V is coprime to p, then by Lemma 6.2 we have

W̃p(z) ≡ Wp(z)2 ≡ W (z)2 (mod p).

We now have two cusp forms W̃p(z) andW (z)2 on the full modular group, but W̃p(z) has
weight k̃(p) := g(g + 1)(p + 1) whileW (z)2 has weight 2g(g + p). Using the fact that the
Eisenstein series Ep−1(z) ≡ 1 (mod p), we have

W̃p(z) ≡ W (z)2 · Ep−1(z)g
2−g (mod p), (6.1)

where the cusp forms on each side of the congruence in (6.1) have the same weight k̃(p).
By (2.3) there exist polynomials F̃ (W̃p(x), x) and F̃ (W 2Eg2−g

p−1 , x) with p-integral rational
coefficients such that

W̃p(z) = �(z)m(k̃(p))Ẽk̃(p)(z)̃F (W̃p, j(z)),

and

W (z)2Ep−1(z)g
2−g = �(z)m(k̃(p))Ẽk̃(p)(z)̃F (W

2Eg2−g
p−1 , j(z)).

Then by (6.1), we conclude that

F̃ (W̃p, x) ≡ F̃ (W 2Eg2−g
p−1 , x) (mod p). (6.2)

We next compute each side of (6.2). To compute the right-hand side, we begin with the
following.

Lemma 6.3 (Theorem 2.3 in [3]) For a prime p ≥ 5 and f ∈ Mk with p-integral coeffi-
cients, we have

F̃ (fEp−1, x) ≡ F̃ (Ep−1, x) · F̃ (f, x) · Cp(k ; x) (mod p)
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where

Cp(k ; x) :=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

x if (k, p) ≡ (2, 5), (8, 5), (8, 11) (mod 12),

x − 1728 if (k, p) ≡ (2, 7), (6, 7), (10, 7), (6, 11), (10, 11) (mod 12),

x(x − 1728) if (k, p) ≡ (2, 11) (mod 12),

1 otherwise .

Then using Lemma 6.3 inductively, we have

F̃ (W 2 · Eg2−g
p−1 , x) ≡ F̃ (Ep−1, x)g

2−g · F̃ (W 2, x) · Gp(x) (mod p),

where

Gp(x) :=
g2−g∏

s=1
Cp(2g(g + p) + (g2 − g − s)(p − 1); x).

A case-by-case computation reveals that

Gp(x) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

1 if p ≡ 1 (mod 12),

x� g2−g
3 � if p ≡ 5 (mod 12),

(x − 1728)(g2−g)/2 if p ≡ 7 (mod 12),

x� g2−g
3 �(x − 1728)(g2−g)/2 if p ≡ 11 (mod 12).

By a result of Deligne (see [24]), and recalling (1.1), we have

F̃ (Ep−1, x) ≡ S̃p(x) (mod p),

and therefore

F̃ (W 2Eg2−g
p−1 , x) ≡ S̃p(x)g

2−g · F̃ (W 2, x) · Gp(x) (mod p). (6.3)

Next, in the following theorem, we evaluate the left-hand side of (6.2). We recall here
the definitions

Fp(x) :=
∏

Q∈Y0(p)
(x − j(Q))v(Q)wt(Q),

and

Hp(x) :=
∏

τ∈�0(p)\H
v(Qτ )=2

(x − j(τ )).

Theorem 6.4 Let p be a prime such that the genus of X+
0 (p) is at least 2. Define εp(i) and

εp(ρ) by

εp(i) =
(g2 + g)

(
1 +

(−1
p

))

4
,

and

εp(ρ) =
(g2 + g)

(
1 +

(−3
p

))
− k∗

3
,

where k∗ ∈ {0, 1, 2} with k∗ ≡ k̃(p) (mod 3). Then we have

F̃ (W̃p, x) = xεp(ρ)(x − 1728)εp(i)Fp(x)Hp(x)g(g+1)/2.
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Proof If τ0 ∈ H and A ∈ �, then

ordτ0 (Wp(z) |g(g+1) A) = ordA(τ0)(Wp(z)),

so that

ordτ0 (W̃p(z)) =
∑

A∈�0(p)\�
ordA(τ0)(Wp(z)). (6.4)

Now recall by (5.3) that for Q ∈ Y0(p), we have

ordQ(Wp(z)(dz)g(g+1)/2) = v(Q)wt(Q) + g(g + 1)
2

(v(Q) − 1).

Let τ ∈ {1, 2, 3} be the order of the isotropy subgroup of τ in �0(p)/{±I}, where τ is an
elliptic fixed point if and only if (τ ) �= 1. If Qτ ∈ Y0(p) is associated with τ ∈ H in the
usual way, then we have

ordτ (Wp(z)) = τordQτ (Wp(z)(dz)g(g+1)/2) + g(g + 1)
2

(τ − 1)

= τ v(Qτ )wt(Qτ ) + g(g + 1)
2

(τ v(Qτ ) − 1). (6.5)

If τ0 is not equivalent to i or ρ under �, then {A(τ0)}A∈�0(p)\� consists of p + 1 points
which are �0(p)-inequivalent, so by (6.4) and (6.5),

ordτ0 (W̃p(z)) =
∑

τ∈�0(p)\H
τ

�∼τ0

ordτ (Wp(z))

=
∑

τ∈�0(p)\H
τ

�∼τ0

(
v(Qτ )wt(Qτ ) + g(g + 1)

2
(v(Qτ ) − 1)

)
.

When τ0
�∼ ρ, then ordτ0 (W̃p(z)) = ordρ(W̃p(z)), and {A(ρ)}A∈�0(p)\� contains 1+ (−3

p )
elliptic fixed points of order 3 which are�0(p)-inequivalent, and p−(−3

p ) additional points
which are partitioned into �0(p)-orbits of size 3. Then by (6.5) we have

ordρ(W̃p(z)) = 3
∑

τ∈�0(p)\H
τ

�∼ρ, (τ )=1

ordτ (Wp(z)) +
∑

τ∈�0(p)\H
τ

�∼ρ, (τ )=3

ordτ (Wp(z))

= 3
∑

τ∈�0(p)\H
τ

�∼ρ, (τ )=1

(
v(Qτ )wt(Qτ ) + g(g + 1)

2
(v(Qτ ) − 1)

)

+
∑

τ∈�0(p)\H
τ

�∼ρ, (τ )=3

(
3v(Qτ )wt(Qτ ) + g(g + 1)

2
(3v(Qτ ) − 1)

)

= 3

⎛

⎜⎜⎜⎜⎝

∑

τ∈�0(p)\H
τ

�∼ρ

v(Qτ )wt(Qτ ) + g(g + 1)
2

(v(Qτ ) − 1)

⎞

⎟⎟⎟⎟⎠

+ (g2 + g)
(
1 +

(−3
p

))
. (6.6)
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When τ0
�∼ i, then ordτ0 (W̃p(z)) = ordi(W̃p(z)), and {A(i)}A∈�0(p)\� contains 1 + (−1

p )
elliptic fixed points of order 2 which are�0(p)-inequivalent, and p−(−1

p ) additional points
which are partitioned into �0(p)-orbits of size 2. We then have

ordi(W̃p(z)) = 2
∑

τ∈�0(p)\H
τ

�∼i, (τ )=1

ordτ (Wp(z)) +
∑

τ∈�0(p)\H
τ

�∼i, (τ )=2

ordτ (Wp(z))

= 2
∑

τ∈�0(p)\H
τ

�∼i, (τ )=1

(
v(Qτ )wt(Qτ ) + g(g + 1)

2
(v(Qτ ) − 1)

)

+
∑

τ∈�0(p)\H
τ

�∼i, (τ )=2

(
2v(Qτ )wt(Qτ ) + g(g + 1)

2
(2v(Qτ ) − 1)

)

= 2

⎛

⎜⎜⎜⎜⎝

∑

τ∈�0(p)\H
τ

�∼i

v(Qτ )wt(Qτ ) + g(g + 1)
2

(v(Qτ ) − 1)

⎞

⎟⎟⎟⎟⎠

+g2 + g
2

(
1 +

(−1
p

))
. (6.7)

Finally, we recall that j(z) vanishes to order 3 at z = ρ, that j(z) − 1728 vanishes to order
2 at z = i, and that j(z)− j(τ0) vanishes to order 1 at all other points τ0 ∈ �\H. Therefore
the exponent of x − j(τ0) in F̃ (W̃p, x) is equal to

⎧
⎪⎪⎨

⎪⎪⎩

ordτ0W̃p if τ0 �= i, ρ,
1
2ordiW̃p if τ0 = i,
1
3 (ordρW̃p − k∗) if τ0 = ρ.

(6.8)

Therefore, by (3.1), (6.5), (6.6), (6.7), and (6.8), we have

F̃ (W̃p, x) = xεp(ρ)(x − 1728)εp(i)Fp(x)
∏

τ∈�0(p)\H
v(Qτ )=2

(x − j(τ ))g(g+1)/2

= xεp(ρ)(x − 1728)εp(i)Fp(x)Hp(x)g(g+1)/2.

�

Combining (6.2), (6.3), Theorem 3.2 and Theorem 6.4 now yields

xεp(ρ)(x − 1728)εp(i)Fp(x)S(l)p (x)g
2+g ≡ S̃p(x)g

2−g · F̃ (W 2, x) · Gp(x) (mod p). (6.9)

We next define

S̃(l)p (x) :=
∏

E/Fp supersingular
j(E)∈Fp\{0,1728}

(x − j(E)).

InTable 1 below,we compare certain factors appearing in (6.9) for each choice ofpmodulo
12.
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Since both � g2−g
3 � and g2−g

2 are less than g2 + g , we see from Table 1 that Gp(x) always
divides S(l)p (x)g2+g . Then since x and (x − 1728) are coprime to S̃p(x), we have

Fp(x)
S(l)p (x)g2+g

Gp(x)
≡ S̃p(x)g

2−g F̃ (W 2, x)
xεp(ρ)(x − 1728)εp(i)

(mod p), (6.10)

where the two quotients reduce to polynomials.
Nowon the left of (6.10), wewrite S(l)p (x) = xαp(ρ)(x−1728)αp(i)̃S(l)p (x) withαp(ρ),αp(i) ∈

{0, 1} according to pmodulo 12, as in Table 1. On the right, we write S̃p(x) = S̃(l)p (x)S(q)(x).
Then (6.10) becomes

Fp(x)̃S(l)p (x)g
2+g (xαp(ρ)(x − 1728)αp(i))g2+g

Gp(x)

≡ S̃(l)p (x)g
2−gS(q)p (x)g

2−g F̃ (W 2, x)
xεp(ρ)(x − 1728)εp(i)

(mod p). (6.11)

Now the quotient on the left of (6.11) must divide F̃ (W 2, x). Then canceling S̃(l)p (x)g2−g

on each side leaves S̃(l)p (x)2g on the left, which must then divide F̃ (W 2, x) as well. So (6.11)
becomes

Fp(x) ≡ S(q)p (x)g
2−gH1(x) (mod p),

where H1(x) is the polynomial given in non-reduced form by the quotient

H1(x) := Gp(x)̃F (W 2, x)
xεp(ρ)(x − 1728)εp(i)(xαp(ρ)(x − 1728)αp(i))g2+g S̃(l)p (x)2g

.

It remains to show that H1(x) is a perfect square. By Lemma 2.1, we write F̃ (W 2, x) =
xδp(ρ)(x − 1728)δp(i)F̃ (W, x)2, where δp(ρ), δp(i) ∈ {0, 1} according to g(g + p) modulo 12.
We then decompose H1(x) into a product of two quotients,

H1(x) = Gp(x)xδp(ρ)(x − 1728)δp(i)

xεp(ρ)(x − 1728)εp(i)
· F̃ (W, x)2

(xαp(ρ)(x − 1728)αp(i))g2+g S̃(l)p (x)2g
.

Note that the exponents in the right-hand quotient are all even. The quotient on the left
is of the form xa(x − 1728)b, where a and b are integers, possibly negative. It is sufficient
to show that a and b are both even. An examination of the exponents reveals that the
parity of a and b depend only on p and g modulo 12. A check of all possible combinations
of these values using Table 1 and Lemma 2.1 confirms that a and b are indeed even in all
cases, and therefore we can write H1(x) = H (x)2 for some polynomial H (x) ∈ Fp. This
concludes the proof of Theorem 1.2. �

Table 1 Factors arising from elliptic points

p (mod 12) xεp(ρ) (x − 1728)εp(i) Gp(x) S(l)p (x)
1 x
 2(g2+g)

3 � (x − 1728)(g
2+g)/2 1 S̃(l)p (x)

5 1 (x − 1728)(g
2+g)/2 x� g2−g

3 � x · S̃(l)p (x)
7 x
 2(g2+g)

3 � 1 (x − 1728)(g
2−g)/2 (x − 1728) · S̃(l)p (x)

11 1 1 x� g2−g
3 �(x − 1728)(g

2−g)/2 x(x − 1728) · S̃(l)p (x)
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7 The example for X+
0 (67)

Here we compute F67(x), the divisor polynomial corresponding to the modular curve
X+
0 (67), which has genus 2. A basis for S+

2 (67) is given by {f1, f2}, with
f1 = q − 3q3 − 3q4 − 3q5 + q6 + 4q7 + 3q8 + · · · ,

and

f2 = q2 − q3 − 3q4 + 3q7 + 4q8 + · · · .
The associated Wronskian is

W67(z) = q3 − 2q4 − 6q5 + 6q6 + 15q7 + 8q8 + · · · ∈ S6(67).

Then by Lemma 6.2 and (2.3), we have

F̃ (W̃67, x) ≡ x4(x + 1)6(x + 14)6(x2 + 8x + 45)2(x2 + 44x + 24)2

× (x2 + 10x + 62)2 (mod 67).

But ε67(i) = 0, ε67(ρ) = 4, and

S67(x) = (x + 1)(x + 14)(x2 + 8x + 45)(x2 + 44x + 24).

Therefore, by Theorem 6.4, we have

F67(x) ≡ (x2 + 8x + 45)2(x2 + 44x + 24)2(x2 + 10x + 62)2 (mod 67)

≡ S(q)67 (x)
2(x2 + 10x + 62)2 (mod 67).

Note In general, H (x) may not be irreducible.
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