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Abstract  

Coastal acidification from rising atmospheric carbon dioxide can be exacerbated by local factors 

such as land inputs of inorganic carbon and nutrients. In Tillamook Bay, OR, the possibility of local 

factors enhancing acidification and impacting oyster aquaculture in the bay is a concern due to extensive 

agriculture in the watershed. The US EPA has been monitoring water conditions in Tillamook Bay 

tributaries since the summer of 2016, and preliminary findings showed increased dissolved inorganic 

carbon (DIC) downstream of agricultural areas. To determine the causes of elevated DIC, changes 

attributed to land-based inputs must be distinguished from natural temporal variability and in-stream 

processing. We initiated a study to assess temporal variability by conducting a day-long time series of 

DIC and partial pressure of CO2 (pCO2) at locations upstream and downstream of agricultural areas along 

the Trask River. To quantify in-stream processing (periphyton photosynthesis and respiration), stream 

rocks were placed in sealed microcosm chambers for 7 hours, and changes in dissolved oxygen and 

carbonate chemistry were measured. Initial and final concentrations of dissolved oxygen (DO), DIC, and 

pCO2 in each container were compared to the conditions in the stream itself. Time series data show that 

DIC was lower upstream and decreased more throughout the day. In chambers, the ΔDIC : ΔDO ratio is 

consistent with stream photosynthesis-respiration stoichiometry at both sites, while in streamwater, the 

ΔDIC : ΔDO ratio is much lower downstream. In-stream processing can account for most of the changes 

in DIC in the chambers, but not in the streamwater, suggesting that elevated DIC levels can be attributed 

to inputs of inorganic carbon from land-based sources. 
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Introduction 

Ocean acidification is occurring on a global scale from increasing levels of carbon dioxide in the 

air. Coastal acidification from rising atmospheric carbon dioxide can be exacerbated by local factors such 

as land-based inputs of nutrients and inorganic carbon, which are also increasing over time. Nutrient 

inputs can increase the production of organic matter, and thus increase the rate of respiration in aquatic 

ecosystems. This can result in accumulation of dissolved carbon (Figure 1) and thus enhanced 

acidification (Van Dam et al., 2018; Sunda and Cai, 2012). This process of increased CO2 from nutrient 

inputs (Figure 1) can account for a third of the measured acidification at the surface in coastal waters 

(the other two thirds being anthropogenic carbon), and up to 5 times the anthropogenic carbon levels at 

depths of 50 – 100 m (Feely et al., 2016). Additionally, atmospheric CO2 inputs and DIC inputs associated 

with respiration can interact to cause even greater amounts of acidification than each factor would 

cause individually (Sunda and Cai, 2012; Pacella et al., 2018), and as climate change increases, so can the 

variability in the streamwater and estuarine processes that cause acidification (Mulholland et al., 

1997b). The greatest respiratory increases in DIC occur at low salinities (Sunda and Cai, 2012), so 

streams and estuaries such as the Trask River and Tillamook Bay could be more susceptible to pH 

changes than other coastal areas or the open ocean. 

 

 

Figure 1. Relationship of increasing atmospheric CO2 and nutrient inputs to pH and DO levels, from 

Sunda and Cai (2012). 
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Tillamook, Oregon supports a large agriculture industry, especially dairy. In 2012, there were  

280 farms in Tillamook County and around 45,000 cows, 55 percent of whom were dairy cows 

(USDA/NASS Census of Agriculture, 2012). Many farms collect the manure and store it to be sprayed on 

fields. Other areas leave the manure or store it less permanently, allowing for runoff to carry some of 

the nutrients and carbon into the watershed. As an indirect result of both of these methods, much of 

the nutrients and carbon from the manure may indirectly end up in the groundwater and rivers in 

Tillamook Valley. Tillamook Bay, which supports many important industries including recreation and 

oyster aquaculture, is directly downstream of this agriculture and is therefore at risk of negative effects 

from ocean acidification. 

Effects of acidification in Netarts Bay, just south of Tillamook, have already been heavily felt by 

the Pacific oyster shellfish industry. Commercial oyster farming in Netarts Bay has existed since the late 

1800s (Waldbusser and Salisbury, 2014). In 2007, large amounts of oyster larval mortality in the Whiskey 

Creek Shellfish Hatchery (Waldbusser and Salisbury, 2014; Gouldman et al., 2011) caused researchers to 

investigate the causes. While they originally attributed the oyster seed die-off to bacterial pathogens, 

they later found a significant relationship between DIC increases and decreased larval survival 

(Waldbusser and Salisbury, 2014; Barton et al., 2015). They subsequently implemented a more 

comprehensive monitoring system with collaboration between the shellfish growers and the US 

Integrated Ocean Observing System (Gouldman et al., 2011). 

The Pacific Coastal Ecology Branch of the US Environmental Protection Agency (EPA) in Newport, 

Oregon monitored water conditions in Tillamook Bay and the five rivers that run into the bay 

approximately monthly between July 2017 and September 2018 as part of its research program. There 

are five main rivers in Tillamook Valley: the Miami, Kilchis, Wilson, Trask, and Tillamook. Preliminary 

findings show increased total dissolved inorganic carbon (DIC) downstream of agricultural areas in each 

of the four rivers where upstream and downstream locations were compared. However, during the field 

sampling trips, time constraints restricted sampling to once per day at each location, with different 

locations sampled at different times. To accurately make comparisons of water conditions between 

sites, it is necessary to know the variability in conditions at each site over the course of a day to put the 

differences between sites in the context of temporal variability. 

Determining the causes of elevated downstream DIC in the river also requires understanding 

which changes can be attributed to land-based inputs versus in-stream processing (the photosynthesis 

and respiration of periphyton and suspended organisms). This necessitates isolating the in-stream 

processing from the overall changes taking place. The purpose of this study was to examine the effects 



 

4 
 

of short-term temporal variability and in-stream processing on water conditions, specifically carbonate 

chemistry, at locations upstream and downstream of agricultural inputs along the Trask River to better 

understand causes of acidification in Tillamook Bay. 

 

Methods 

Study locations 

Measurements were taken in the Trask River, which is one of five tributaries to Tillamook Bay. 

This river was chosen because it is the only one of the tributaries that has a portion upstream of all 

agricultural inputs before any major forks occur. Two locations along the Trask River were chosen for 

comparison (Figure 2). Nips’ Landing, the upstream location, is in a primarily forested area and is 

upstream of all agricultural activities. Steiner Boat Launch is near the center of Tillamook Valley, and has 

around 5000 cows in Concentrated Animal Feeding Operation (CAFO) farms upstream of it (USDA data 

provided to EPA), plus an unknown number of cows outside of the CAFOs. Nips’ Landing was more 

highly shaded from the forest foliage as compared to Steiner Boat Launch, but both locations were 

similar in width, depth, sediment structure, and turbulence. 

 

 

Figure 2. Map of Tillamook Bay and tributaries, with Nips’ Landing and Steiner Boat Launch marked. 
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Time series 

Time series measurements were conducted on three days: June 29, July 26, and August 8, 2018. 

On two of these days, June 19 and August 8, a pre-programmed YSI multi-parameter data sonde was left 

at both Nips’ Landing and Steiner Boat Launch to automatically take measurements of pH, temperature, 

conductivity, depth, in situ florescence (a proxy for chlorophyll a), and dissolved oxygen every 15 

minutes for 50-56 hours.  

On all three of these dates, water samples were collected for laboratory analysis of carbonate 

chemistry parameters (DIC and partial pressure of CO2) and nutrient concentrations. For these nutrient 

and carbonate samples, each location was sampled several times between 8:00 and 16:30 local time 

(7:00 and 15:30 Pacific Standard Time) depending on the day (5 samples were taken at each location on 

June 29, 3 samples at Nips and 4 at Steiner on July 26, and 7 samples at Nips and 5 at Steiner on August 

8). Additionally, a hand-held YSI 6600 Multiparameter data sonde was used to take the same 

measurements as the pre-programmed data sonde. This was done to have these measurements at the 

exact same time as the manual water samples were collected, and to serve as quality control for the 

measurements from the pre-programmed YSI data sonde.  

Water for nutrient measurements was filtered using a 0.45-µm syringe filter that was rinsed 

with 5 ml of sample, and then 30-35 ml of sample was filtered into a plastic centrifuge tube. Samples 

were placed on ice in the field, then frozen upon return to the laboratory in Newport. These samples 

were later shipped frozen to the University of Washington for analysis. 

For the carbonate chemistry samples, a dark brown glass bottle was rinsed with unfiltered 

sample water and then filled with 300ml of unfiltered sample water using a plastic tube to minimize 

mixture with the air. During filling, the bottle was allowed to overfill to reduce bubbles. The sample was 

poisoned with 30µl of saturated mercuric chloride to preserve the samples, and then the bottles were 

sealed. The pCO2 and DIC concentrations were measured at the EPA laboratory in Newport using a 

carbonate chemistry analyzer (designed and built by Burke Hales, Oregon State University; Figure 3), 

which uses microporous hydrophobic membrane contactors to make high-frequency and high-accuracy 

measurements of partial pressure and total concentration of carbon dioxide (Hales et al., 2004). Post-

processing corrections were made to account for instrument drift using Burke Hales’ method (Hales et 

al., 2004; Bandstra et al., 2006). Concentrations were then corrected for the change in alkalinity due to 

the addition of mercuric chloride to the sample. This correction is not usually made because the effect 

of mercuric chloride is negligible in high-salinity ocean water, which is normally the type of water 

measured. However, with these low-salinity samples, this correction was necessary for maximum 
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accuracy. The corrected pCO2 and DIC concentrations were used to calculate the rest of the carbonate 

chemistry parameters including total pH, alkalinity, carbonate and bicarbonate concentrations, and the 

saturation states of calcite and aragonite using CO2SYS version 2.3, an internationally-used calculations 

spreadsheet written by Ernie Lewis of the Brookhaven International Laboratory. 

 

In-stream processing 

 To assess whether the elevated downstream DIC observed in the time series measurements 

could be attributed to land-based agricultural inputs or to in-stream processing, it was necessary to 

investigate the effects of in-stream processing on the water chemistry. To do this, in-stream processing 

was isolated from the inputs by using clear containers as sealed microcosm chambers (Figure 4) at both 

Nips’ Landing and Steiner Boat Launch. This allowed us to measure changes in DO and carbonate 

chemistry due only to in-stream processing (photosynthesis and respiration of periphyton and 

suspended organisms), and then compare these conditions to those in the open streamwater. 

Shortly after sunrise, a small metal quadrat the area of the container lid was placed on the 

streambed. The top layer of rocks was removed and temporarily placed on the lid to ensure that the 

layer of rocks with the most periphyton stayed on top. Approximately 2 cm of the sediment under the 

top layer was removed and placed in the container. Then, the top layer of rocks was placed in the 

container upright. The chambers were filled with streamwater and closed underwater to avoid bubbles. 

At the same time they were closed, an initial measurement of the DO in the stream was taken right next 

to the container using a YSI sonde, and an initial measurement of DIC in the stream was taken using a 

Van Dorn bottle to capture a water sample and then preserved as described previously. Half of the 

chambers were covered with foil for a dark treatment, and half left uncovered as light treatments. At 

each of the two sample locations, there were 4 light treatments, 2 light controls (only streamwater; no 

rocks), 4 dark treatments, and 2 dark controls. 

The chambers were left in the stream for approximately 7 hours, depending on the container. 

Final DO measurements were taken with an optical DO probe that had been calibrated within 0.2 

µmol/kg of the YSI sonde. Two carbonate chemistry bottles were filled from each enclosed container 

and taken to the lab to measure final DIC and pCO2 concentrations, and an additional two carbonate 

chemistry bottles were filled from the stream for comparison. All chambers had a hole drilled in the lid 

the same diameter as the glass stoppers for BOD (Biological Oxygen Demand) bottles and were plugged 

with these stoppers in the stream so the DO could be easily measured with a BOD probe with minimal 

air exposure. Hourly production and respiration rates were calculated using these measurements. 
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Carbonate chemistry parameters from the microcosm chambers were measured and calculated in the 

laboratory using the same methods as described in the time series portion of the experiment. Sampling 

was first done on July 26, 2018 with light treatments and light controls only; the experiment was 

repeated on August 8, 2018 to include dark treatments and controls in addition to the light treatments 

and controls, so that changes in water conditions due only to respiration and not photosynthesis could 

be observed. The effects of location and treatment on DIC concentrations were tested using a two-way 

omnibus ANOVA test with an alpha value of 0.05, and then simple main effects were used to compare 

the ratio of changes in DIC and DO between the two locations. 

 

             

 

Results 

Time series 

DIC concentrations were consistently lower upstream (Nips’ Landing) than downstream (Steiner 

boat launch) of agricultural areas even with substantial change in concentrations over the course of a 

day (Figure 5), with a difference between locations ranging from approximately 100 to 275 µmol/kg. DIC 

concentrations decreased throughout the day due to drawdown of CO2 via photosynthesis. The amount 

of drawdown was fairly consistent with respect to the time of day for each of the three sample days in 

June, July and August, with slightly more drawdown earlier in the season. However, there was much 

more drawdown at the upstream location (approximately 200 µmol/kg over 7 hours) than the 

downstream location (approximately 50 µmol/kg over 7 hours), causing increasing differences in DIC 

concentrations between locations as each sample day progressed (Figure 5). 

Figure 3. Analysis of carbonate samples on 

the Burke-o-lator, a carbonate chemistry 

analyzer. 

Figure 4. Sealed microcosm chambers (light 

treatment) placed in the Trask River to 

measure in-stream processing 
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Figure 5. Time series of DIC concentrations throughout the course of a day at two locations along the 

Trask River. Times are in Pacific Standard Time, which was one hour earlier than local time during the 

dates sampled. 

 

Time series data show that the pH was consistently higher upstream (Nips’ landing) than 

downstream (Steiner boat launch) even against a background of high temporal variability (Figure 6), 

with the difference between locations ranging from 0.4 to 1.2. The pH was more variable upstream than 

downstream and was more variable in the early summer than later in the season, with Nips’ Landing 

ranging from 7.6 to 9.4 in June and  7.5 to 8.7 in August and Steiner boat launch ranging from 7.1 to 7.3 

in June and 7.1 to 7.5 in August. Downstream pH was less variable, both hourly and seasonally. 
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Figure 6. 48-hour time series of pH at two locations along the Trask river. Times in Pacific Standard Time. 

 

In-stream processing 

 In the sealed chambers, changes in dissolved oxygen in both light and dark treatments were 

matched by approximately equal and opposite changes in DIC at both locations along the Trask River 

(Figure 7), which is consistent with the assumption that the only changes occurring in the chambers 

were due to photosynthesis and respiration. The light and dark control treatments showed very little 

change in DO and DIC, except for the control treatment ΔDIC at Steiner. The minor changes that did 

occur can be attributed to respiration of organic material suspended in the water column, though lack of 

corresponding changes in DO can likely be attributed to error. In the streamwater, there was a greater 

decrease in DIC per hour than the increase in DO, which indicates that factors other than photosynthesis 

and respiration were affecting the concentrations. 

The effects of location and treatment on DIC concentrations were tested using a two-way 

omnibus ANOVA. Since ANOVA is robust to non-normality, the assumption of normality was not a 

concern. A Levene test for homogeneity of variance of location*treatment on DIC showed that the 

assumption of equal variance was not met (p < .05), and even after transforming the data via square 

root, log, and -1/y transforms, the assumption was still not met. This reflected the higher variability in 

the stream treatment compared to the other treatments. To account for the unequal variance, the alpha 

value of 0.05 was reduced to 0.025 to account for any possible inflated F values from the unequal 
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variance (Gamst et al., 2008). A two-way omnibus ANOVA did not show a significant interaction 

between location and treatment (F4,18 =1.1, p = .38) on DIC concentrations, but did show a significant 

effect of both location (F1,18 =7.16, p = .015) and treatment (F4,18 = 14.2, p <.01). Despite a relatively low 

sample size, there is a comparatively high F value for both location and treatment (F = 7.16 and 14.2, 

respectively), whereas the F value for the interaction of location and treatment was small (F = 1.1), 

further indicating no significant interaction of location and treatment. 

For the ratio of changes in DO to changes in DIC, an omnibus ANOVA with an alpha value of .025 

showed no significant effect of location or treatment or an interaction, which makes sense given that 

the ratio should remain relatively constant across treatments in the chambers. However, since the 

omnibus test did not make comparisons between locations for each specific treatment, I chose to 

additionally make these comparisons using simple main effects to compare the ratio of changes in DIC 

and DO between the two locations. A Levene test for homogeneity of variance of the effect of location 

on ratio showed that the assumption of equal variance was met (p >.05), so there was no need to adjust 

the original alpha value of 0.05. For the four treatments in the chambers (light, dark, light control, and 

dark control), there was no significant difference between the two locations (light F1,3 = 1.27, p = .27; 

dark F1,3 = .034, p = .86; light control F1,1 = .0088, p = .93; dark control F1,1 = .0004, p = .98). While the 

small sample size may have limited the ability to find a significant difference between treatments even if 

there was one, the small effect size values (F) indicate that there was very little difference between 

locations, so this further confirms that there is very little effect of location on the DIC to DO ratio in the 

chambers. However, there was a significant difference in the streamwater between the ratio at the 

upstream location (F1,3 = 5.05, p = .037). So, in the chambers, there was no statistically significant 

difference between the upstream and downstream locations in the ratio of changes in DO and DIC, but 

in the streamwater, there was a significant difference between locations, which indicates that these 

changes cannot be accounted for by in-stream processing alone. 
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Figure 7. Production and loss of DO and DIC in chambers (blue and yellow) compared to streamwater 

(green) at the upstream location (left) and downstream location (right). Error bars show standard error. 

 

A graphical comparison of the ratios of DIC and DO concentrations allows more quantitative 

comparisons to be made between the chambers and open streamwater in the upstream and 

downstream locations. Ordinary Least Square Regression lines were used to calculate the ratio of 

changes in DO to DIC and the fit of this line to the data. In enclosed chambers, the ΔDIC : ΔO2 ratio was 

almost exactly the same at upstream (Nips) and downstream (Steiner) sites, and is consistent with 

photosynthesis-respiration stoichiometry (Figure 8, left). Both locations had slope values around the 

expected value of 1.0 due to the 1:1 ratio of changes in DIC and DO in photosynthesis (slope = -0.90 at 

Nips and -0.82 at Steiner), and this relationship was highly linear (R2 = 0.99 at Nips and R2 = 0.95 at 

Steiner) (Figure 8, left). In the open streamwater, the ΔDIC : ΔO2 ratio is much lower at the downstream 

site (slope = -0.41) than at the upstream site (slope = -2.05), and the relationship is much less linear 

downstream (R2 = 0.24) than upstream (R2 = 0.77) (Figure 8, right). This suggests that inputs from land-

based sources are causing increases in respiration, which adds inorganic carbon to the system and 

offsets the uptake of DIC via photosynthesis. 
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Figure 8. Changes in dissolved organic carbon (DIC) and dissolved oxygen (DO) in enclosed microcosm 

chambers (left) and open streamwater (right). Changes were measured at upstream (Nips) and 

downstream (Steiner) locations along the Trask River in August of 2018. Trendlines were calculated 

using Ordinary Least Squared (OLS) Regression. 

 

Another way to look at these results is to model the concentrations of DIC that would be 

observed in the streamwater without inputs, and compare these modeled concentrations to actual 

observed concentrations. Similar to Bott et al. (1978), DIC concentrations that would be seen via in-

stream processing were modeled using the change in DO concentration in the streamwater over each 

15- minute interval. The ratio of changes of DO and DIC measured in the chambers was used to calculate 

the expected change in DIC for the each 15- minute interval. Then, an air-stream exchange coefficient 

was calculated using the method described in Izagirre et al. (2007), and used to correct the modeled DIC 

concentration for air-stream exchange.  

At the upstream location, the modeled and observed DIC concentrations were similar (Figure 9). 

The difference between modeled and observed can most likely be explained by a low estimate of the 

air-stream exchange coefficient, resulting in not all of the air-stream exchange to be accounted for. If all 

of the air-stream exchange were accounted for, the modeled DIC concentration would fall lower 

because greater amounts of DO accounted for correspond with greater decreases in DIC, so the 

modeled and observed concentrations would likely be closer to each other. At the downstream location, 

the actual downstream DIC was higher than the modeled DIC. If more of the air-stream exchange were 

accounted for, this would cause the modeled DIC concentrations, again, to be lower. In this case, the 

modeled and observed concentrations would then be even further apart. Thus, inaccuracy in the air-
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stream exchange coefficient cannot account for the difference between modeled and observed DIC 

concentrations at the downstream location. The large differences between modeled and observed DIC 

levels at the downstream location can only be accounted for by land-based inorganic carbon inputs, 

illustrating the impact of these inputs on streamwater conditions. 

 

 

Figure 9. Modeled (without inputs) and observed (with inputs) DIC concentrations over the course of a 

day at upstream (Nips) and downstream (Steiner) locations on the Trask River. 

 

Discussion 

Data from this study confirmed earlier observations of elevated levels of dissolved inorganic 

carbon in Tillamook tributaries downstream of agricultural areas. By analyzing temporal and spatial 

variability and isolating the in-stream processing from the inputs for comparison, it can further be 

concluded that these elevated levels of DIC cannot be accounted for by temporal variability or in-stream 

processing alone. This indicates that the elevated downstream DIC can be attributed to inputs, likely 

from nearby agriculture, that are contributing inorganic carbon to the system. As the water from the 

Trask River drains into the bay, this can, in turn, play a significant role in ocean acidification in Tillamook 

Bay.  

The time of day had a strong influence on the pH and the DIC concentrations in the 

streamwater. In fact, at Nips landing, there was more variability in pH and DIC over the course of the day 

on June 29 than was observed over the course of a year in preliminary longer-term EPA data. Although 

there are no preliminary longer-term data from Steiner boat launch, a similar downstream location on 
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the Trask river showed variability in pH and DIC over the course of a year similar to variability exhibited 

at Steiner boat launch over the course of a day. This indicates that daily and yearly temporal variability 

may be on similar scales, so the time of day at which sample is taken is critical when comparing the pH 

levels or DIC concentrations between locations over longer time scales.  

Daily variability of pH can be explained by photosynthesis and respiration. During the night, 

respiration is the only process occurring, so there is a buildup if DIC that lowers the pH. During daylight 

hours, photosynthesis occurs alongside respiration, so some of the DIC that is produced via respiration is 

uptaken during the process of photosynthesis and pH becomes higher. The upstream and the 

downstream locations likely had similar rates of uptake of DIC via photosynthesis, considering that the 

closed microcosm chambers showed similar changes in DIC and DO at both locations. In the open 

streamwater at the upstream location, DIC decreased throughout the course of the day as the DIC that 

had built up overnight from respiration was uptaken via photosynthesis. However, at the downstream 

location, higher levels of nutrients and/or organic matter from agricultural runoff likely caused increased 

rates of cellular respiration, concurring with the process described in Van Dam et al. (2018). Thus, the 

uptake of DIC via photosynthesis is exceeded by these higher respiration rates, and the net DIC in the 

water does not decrease as much throughout the day. This, alongside buffering from higher alkalinity, 

explains the consistently higher DIC concentration downstream and increasing differences in DIC 

concentrations between locations observed throughout the day. These differences between the 

upstream and downstream locations observed in the streamwater were not observed in enclosed 

chambers, which further indicates that the elevated DIC observed downstream can be attributed to 

agricultural inputs.  

Water flowing from the Trask River into Tillamook Bay can contribute to the acidification already 

occurring, especially combined with other factors including nutrient and bacteria loading (Sullivan et al., 

2005). The other tributaries to Tillamook Bay may have even greater DIC loading, considering that of the 

five tributaries, the Trask River’s flow-weighted average pH of 7.0 is as high or higher than the other 

tributaries (Sullivan et al., 2005). In terms of the impact of temporal variability, short-term variations in 

water conditions are less likely to be as relevant or noticeable once they reach the bay, but they could 

still affect some processes and are an important part of understanding and contextualizing longer-term 

variability. 

While this study is a good starting point for observing temporal variability, further studies are 

needed to more comprehensively quantify and account for these effects. Lack of night-time carbonate 

data limited the ability of this study to quantify respiration rates in the stream. Considering the high 
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variability in DIC fluxes observed in other studies over many time scales including large day-to-day 

variability (Roberts et al., 2007), seasonal variability (Roberts et al., 2007; Uehlinger and Naegeli, 1998; 

Uehlinger et al., 2000; Uehlinger, 2006) and interannual variability (Van Dam et al., 2018; Roberts et al., 

2007; Uehlinger, 2006), the short-term data collected in this experiment may have limited potential for 

extrapolation. A 24-hour time series of carbonate chemistry at both locations and sample dates during 

multiple seasons and over multiple years would allow for a more comprehensive understanding of the 

temporal variability of carbonate chemistry and thus the potential for extrapolation of smaller datasets.  

 Looking at the in-stream processing, an increased overall sample size and a balanced sample size 

between treatments would allow for a higher level of confidence in the results, which is concurrent with 

the observations of Bott et al., 1978, who suggested that 12 measurements are necessary to 

characterize metabolic parameters. While this study allowed for a comparison of the ratio of the 

changes in the chambers to the changes in the stream, the specific rates of photosynthesis and 

respiration were impossible to quantify because the chambers were left long enough for 

supersaturation of the dissolved oxygen to occur (Bott et al., 1978). Future studies should take this into 

consideration when conducting similar experiments; a shorter time span and a reduced initial DO 

concentration may allow for photosynthesis rates to be more exactly quantified. It would also be useful 

to measure solar radiation at both locations to have a greater understanding of potential confounding 

factors causing differences in photosynthesis and DIC uptake between locations; public data of hourly 

solar radiation are available for the general Tillamook area, but not for specific locations. Finally, it may 

be useful to study microcosm chambers that are open on the top to allow natural air-stream exchange 

to occur, as this would minimize the need to account for air-stream exchange with imperfect 

calculations.  

A map of groundwater and direct agricultural inputs would also help to better understand the 

whole system. This would allow for direct observation of the inputs into the stream rather than the 

indirect measurement of changes in streamwater chemistry due to these inputs. It would also facilitate 

collaboration between multiple parties including scientists and landowners in order to gain access to 

streamwater outside of public areas, though this complication is the reason that no such data have been 

collected so far. Useful areas of future work might include similar short-term studies of temporal 

variability and in-stream processing on the other four tributaries to Tillamook Bay, and looking at 

loading of organic matter (dissolved and/or particulate) from land-based sources. This would add to a 

more holistic understanding of the Tillamook tributary-estuarine system. 
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The issue of acidification in estuaries is a complicated problem to address. It involves the 

livelihoods of many local people, including dairy farmers and those working in the shellfish aquaculture 

industry. Those working in the oyster industry and other industries in nearby bays and Tillamook Bay are 

concerned about economic impacts from acidification, but minimizing these impacts is a nuanced issue. 

The Tillamook Cheese Corporation is a co-op of independent farms in Tillamook County, and though 

there are many CAFOs, most of these are family owned. In many places, the farmers have been 

independently implementing conservation practices. Some farms have been storing the manure so that 

it can be sprayed at a better time to minimize contamination from fecal coliform bacteria (US 

Environmental Protection Agency Office of Water, 2015), and this technique could potentially be used to 

lessen the amount of nitrogen and other nutrients that end up in the groundwater. Thus, there are 

already some conservation practices that exist in Tillamook County, and there are many other ways to 

decrease the amount of agricultural contamination reaching the streams. Even after these conservation 

measures, a certain extent of this watershed contamination is just unavoidable with around 46,000 

cows. In the future, as minimizing acidification and other effects of agricultural runoff becomes more 

and more difficult and necessary, there is a possibility that the discussion of solutions will include, in 

addition to smaller-scale mitigation measures, scaling down the scope of the dairy industry in the area. 

Because of the multi-faceted nature and complexity of this issue, looking at the interactions of 

both local and global factors is important when studying acidification. In a similar manner, the search for 

solutions will likely need to include a combination of small, short-term measures and larger systemic 

changes, and involve communication and collaboration of all stakeholders including scientists and the 

community. 
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