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CONGRUENCES FOR THE COEFFICIENTS OF WEAKLY
HOLOMORPHIC MODULAR FORMS

STEPHANIE TRENEER

ABSTRACT. Recent works have used the theory of modular forms to establish linear congru-
ences for the partition function and for traces of singular moduli. We show that this type
of phenomenon is completely general, by finding similar congruences for the coefficients of
any weakly holomorphic modular form on any congruence subgroup I'o(N). In particular,
we give congruences for a wide class of partition functions and for traces of CM values of
arbitrary modular functions on certain congruence subgroups of prime level.

1. INTRODUCTION AND STATEMENT OF RESULTS

Let p(n) be the number of ways to write n as the sum of a nonincreasing sequence of
positive integers. Ramanujan proved the following well-known congruences for the partition
function p(n):

p(bn+4) =0 (mod 5),
p(Tn+5)=0 (mod 7),
p(1ln+6) =0 (mod 11).
Ramanujan’s work inspired a wealth of research into other congruences of the partition
function (see [13] and [3] for references). Recently, Ahlgren and Ono (in [12], [1], and [2])

showed that if M is any positive integer coprime to 6, then there exist infinitely many
congruences of the form

(1.1) p(An+ B)=0 (mod M).

Their method in [2] explains every known linear congruence for p(n). Results for other
partition functions include Lovejoy’s congruences for the number of partitions of n into
distinct parts [10], and Swisher’s congruences for the Andrews-Stanley partition function
[20].

Linear congruences were also found for traces of singular moduli. Let D be a positive
integer, and let Qp be the set of positive definite integral binary quadratic forms

F(z,y) = ax® + bxy + cy?

of discriminant —D = b2 — 4ac. The modular group I' := PSLy(Z) acts on Qp with finitely
many equivalence classes. For each F' € Qp, define ar to be the unique root of F(z,1) in
the complex upper half-plane H. Then the singular modulus j(ar) is an algebraic integer,
where

1
j(2) = = + 744 + 196884q + 21493760¢> + - - - |
q
with ¢ := €*™*, is the usual elliptic modular function on SL, (7).

2000 Mathematics Subject Classification. Primary: 11F37; Secondary: 11F33.
1



2 STEPHANIE TRENEER

Following Zagier [21], we set J(z) := j(z) — 744 and consider the sequence of modular
functions defined as follows. Let Ty(m) be the normalized weight zero Hecke operator of
index m. Set Jy(z) := 1, and for each positive integer m, define

I (2) = J(2)|To(m).
Then the mth Hecke trace of the singular moduli of discriminant — D is

(D)= Y 2mlor)

. Wr
FeQp/T

where wp is the size of the stabilizer of F' under the action of . Ahlgren and Ono [4] showed
that if p is an odd prime with p { m and s is any positive integer, then a positive proportion
of primes ¢ have the property that

(1.2) tm(’n) =0 (mod p°)

for every positive integer n coprime to £ such that p is inert or ramified in Q(v/—nf).

The methods for each of these results rely on the ability to realize both {p(n)} and {t,,(n)}
as the coefficients of certain meromorphic half-integral weight modular forms. It is natural,
then, to ask how common such phenomena are. We answer this question by proving a
general result for weakly holomorphic modular forms. We show that an infinite number of
linear congruences exist for the coefficients of every weakly holomorphic modular form of
any weight, on any congruence subgroup I'¢(/V), and with any character x. This includes
every form which can be written as a quotient of eta-functions. In particular, we can find
linear congruences for a wide class of partition functions.

Suppose N and k are integers with N positive and 4 | N, and let x be a Dirichlet character

modulo N. Let M (T'o(N), x) be the space of weakly holomorphic modular forms of weight

g on the congruence subgroup I'¢(/V) with character x. For a more complete definition, see
Section 2 below. Our main result shows that the phenomena in (1.1) and (1.2) are quite

general.

Theorem 1.1. Suppose that p is an odd prime, and that k and m are integers with k
odd. Let N be a positive integer with 4 | N and (N,p) = 1, and let x be a Dirichlet
character modulo N. Let K be an algebraic number field with ring of integers Ok, and
suppose f(z) = Y. a(n)g™ € Mg(FO(N),X) N Ok((q)). If m is sufficiently large, then for
each positive integer j, a positive proportion of the primes Q = —1 (mod Np’) have the
property that

a(Q’p™n) = 0 (mod p’)
for all n coprime to Qp.

For completeness, we record the analogous result for integer weight modular forms. We

denote the space of weakly holomorphic modular forms of integer weight k& on I'g(N) with
character x by M (T'o(N), x)-

Theorem 1.2. Suppose that p is an odd prime, and that k and m are integers. Let N
be a positive integer with (N,p) = 1, and let x be a Dirichlet character modulo N. Let
K be an algebraic number field with ring of integers Ok, and suppose f(z) = > a(n)g™ €
Mi(To(N), x) N Ok ((q)). If m is sufficiently large, then for each positive integer j,

(1) a(p™n) =0 (mod p?) for almost all n coprime to p, and
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(ii) a positive proportion of the primes Q@ = —1 (mod Np’) have the property that
a(@p™n) = 0 (mod p’)
for all n coprime to Qp.
Remark 1. In Theorem 1.2 (i), we mean “almost all” in the sense of density (i.e. #{n <z :

a(p™n) =0 (mod p?)} ~ x as x — 00). In light of part (i) of Theorem 1.2, the conclusion
of part (ii) is less surprising, so the most interesting result is really Theorem 1.1.

Remark 2. In each theorem, the integer m is determined by the order of vanishing of f at
the cusps ¢ of Io(Np?) with p? | c. If there is a pole at a particular cusp, the corresponding
order of vanishing is negative.

Remark 3. Note that Theorems 1.1 and 1.2 together with the Chinese Remainder Theorem
imply linear congruences for all odd moduli M coprime to N.

Dedekind’s eta-function, 7(z), is the weight one-half modular form defined by the infinite
product

pl"'

(1.3) n(z) = ¢

[Ta-a.
n=1
An eta-quotient is any function f(z) of the form
(1.4) fz) =1 2)
5N

where N > 1 and each r; is an integer. We will require, in addition, that
(1.5) Zmé =0 (mod 24).

s|N

This ensures that f has a Fourier expansion of the form f(z) = )" a(n)¢". Any eta-quotient
can be made to satisfy condition (1.5) by replacing each ¢ with 246. The following corollary
gives linear congruences for the coefficients of any eta-quotient.

Corollary 1.3. Suppose p is an odd prime and N is an integer with (N,p) = 1. Let f(2)
as in (1.4) satisfy (1.5), and suppose that f(z) has Fourier expansion f(z) = > a(n)q™. Set
k.= Z(”N rs, and let m be a sufficiently large integer.

(a) If k is odd, then for each positive integer j, a positive proportion of the primes
= —1 (mod Np’) have
a(@*p™n) =0 (mod p’)
for all n coprime to Qp.
(b) If k is even, then for each positive integer j,
(i) a(p™n) =0 (mod p’) for almost all n coprime to p, and
(#i) a positive proportion of the primes Q@ = —1 (mod Np’) have
a(@p™n) =0 (mod p’)
for all n coprime to Qp.

Corollary 1.3 may be applied to many partition functions. We mention only three examples
here for brevity.
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Ezample 1. Let k be a positive integer, and let pg(n) be the number of k-colored partitions
of n, that is, the number of partitions of n where each part is assigned one of k£ colors. The
generating function for pg(n) is given by

(1.6) Zpk(n)q" = H m

n=1

Using (1.3) and (1.6), we can write

z) = e E:pk<n=rk) n

Since f(z) is an eta-quotient satlsfylng (1.5), Corollary 1.3 may be applied. Let £ > 5 be
prime. If k£ is odd, we get congruences of the form

Q*Mn + k
D 724

) =0 (mod #),

and if £ is even, we get

QU +k\ _ y
Dk (T) =0 (mod #).

Note that when k£ = 1 we recover the function p(n), and get congruences of the form

Q¥*Mn+1Y\ _ i
p( 94 =0 (mod¥#),

which are guaranteed by the work of Ahlgren [1] and Ono [12].

Example 2. An overpartition of n is a partition in which the first occurrence of a number
may be overlined. The number of overpartitions of n is denoted p(n). See Corteel-Lovejoy
[6] for more about overpartitions. We apply Corollary 1.3(a) to the generating function

_rr lt+at _ n2z)
Zp me H —P(2)

=g

to get congruences of the form
p(Q*¢™n) =0 (mod #),

for primes ¢ > 5. When the modulus is 5, we find an explicit infinite family of such congru-
ences. In Section 5 we will prove the following.

Proposition 1.4. Let Q = —1 (mod 5) be prime. Then
p(5@Q°n) =0 (mod 5)

for all n coprime to Q).

Ezample 3. Let D(n) be the number of partitions of n into distinct parts. Then

E:D n)q" —Iﬂl+f%

n=1

§-Eo()s

n=0

SO we can write
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By Corollary 1.3(b)(i), we see that for each prime p > 5 and integer j > 1, we have

D (%) =0 (mod p)

for almost all n coprime to p. Part (ii) of Corollary 1.3(b) yields congruences of the form

Qpmn —1Y _ :

for primes p > 5. These phenomena are guaranteed by the work of Lovejoy [10].

For our final application of Theorem 1.1, we obtain linear congruences for the trace of an
arbitrary weakly holomorphic modular function on I'j(p) = (I'o(p), W,), where p is prime (or

p=1)and W, = ( 2 _01 > is the Fricke involution. Following Bruinier and Funke [5], let D

be a positive integer, and let Qp , be the subset of quadratic forms F(z,y) = az?+bzy + cy?
in Qp with a =0 (mod p). Then I'j(p) acts on Qp , with finitely many equivalence classes.
For any weakly holomorphic modular function f on I'}(p), define the modular trace function

(1.7) D)= Y f(an),

F*
rean Jrsp T0P)F|

where I'§(p)r is the stabilizer of F' in I'j(p). Note that if p = 1 and f = J,,, the trace
function t,,(n) from (1.2) is recovered. Using Theorem 1.1 and recent work of Bruinier and
Funke [5], we have the following corollary.

Corollary 1.5. Suppose that p is prime (or p =1), k is an integer and (, := e5 . Let f be
a weakly holomorphic modular function on T'f(p) with Fourier expansion f(z) =Y a(n)q" €
Q(¢)((q)), and suppose a(0) = 0. Let £ be an odd prime with ¢ # p. Then

(a) There exists an integer M such that Mt;(D) is an algebraic integer for each D > 0.
(b) Let M be as in (a). If m is a sufficiently large integer, then for each positive integer j,
a positive proportion of the primes Q@ = —1 (mod 4p*#’) have the property that

Mt3(Q*™D) =0 (mod #)
for each D coprime to QX.

Remark 4. There is no control over the principal part of the function f(z), so a result as
general as Theorem 1.1 is required in order to get linear congruences for ¢}(D).

In Section 2 we state the remaining facts which we will require. We begin Section 3 with
our key technical result. Starting with the weakly holomorphic form f(z) on o(N), we
construct a cusp form for each positive integer j that preserves coefficients of f(z) modulo
. Results of Shimura and Serre are then applied to this sequence of cusp forms to prove
Theorem 1.1. A slight modification of this proof is then made to prove Theorem 1.2 in
Section 4. In Sections 5 and 6, we prove the corollaries.
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2. PRELIMINARIES

Here we review some basic facts about half-integral weight modular forms. For a more
detailed treatment, see for example [18], [8] or [14].

The usual action of T'g(/N) on the cusps QU {oc} yields a finite set of equivalence classes.
A complete set of representatives for these classes is given in [11] as

(2.1) {% €Q:¢/N,1<a. <N, (a,,N)=1,a.=ar (mod (¢, N/c)) <= a, = ac:}.
The set
G:= {(a,¢(z)) fa= ( Z 2 ) € GL$ (Q) and ¢*(2) =

is a group under the operation

(2.2) (o, 9(2)) (8, ¥(2)) = (B, #(B2)1(2)),

with identity << (1] (1) ) ,1) and inverse (o, ¢(z))~! = (a‘l, m) for each (o, ¢(2)) € G.

Restriction to matrices in I' := SLy(Z) yields the subgroup
G :={(a,¢(z)) e G:a €T}.
For each meromorphic function f on H and each integer k, the slash operator is defined for
£=(a,0(2)) € G as
(2.3) f(2)]€ = d(2) " f(az).
If £ € G', then the Fourier expansion of f(z)] 5§ has the form

Vi |

r

n+% .
(2.4) f(z)\gg = Z ag(n)qh: 4 with r¢ € {0, 1, 2, 3},
n>mng

2miz

where he | N and g, := e "¢ . The integers ng, r¢ and he are determined by the equivalence
class of the cusp aoo (see, e.g., §IV.1 of [§]).

For v = ( Z Z) € I'p(4) and z € H, define

(2.5) Jj(y,2) == (g) e, Vez +d,

) is the extended Jacobi symbol and
{ 1 if d =1 (mod4),
Eq =

where (

ulo

(2:6) i if d =3 (mod4),

and set 7 := (7, (7, 2)). For any congruence subgroup I < T'o(4), let IV := {5 : v € T"}.
Let k£ be an integer. A function f on H is called a weakly holomorphic modular form of

weight g for I if it is holomorphic on H, meromorphic at the cusps and satisfies the property

(2.7) flsg=1  forally eI,

We say f is a holomorphic modular form if it is holomorphic at the cusps, and a cusp form
if it vanishes at the cusps. The spaces of weight % weakly holomorphic, holomorphic and

cusp forms for I" are denoted by M T, M : (I") and St (I"), respectively.
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Let N be a positive integer with 4 | N, and let x be a Dirichlet character modulo N. Then

M (To(N), x) == {f € My(T1(N)) : f17 = x(d)f forall § € To(N) with = ( o« )} .
Each f € M (1?(7\6, x) has a Fourier expansion f(z) = > a(n)q®, where q := 2™,

We have the following correspondence between integral and half-integral weight modular
forms on ['g(N) with character x. Let

ww=(2) oo —aie(0(vE).
Then if £ € Z, we have
(2.8) My (To(N), x) = My (To(N), xx*0).

Suppose v and t are integers with ¢ > 1. Set

(2.9) Ty = (( é ;’ ) ,t1/4> €G.

N N

The linear operator Uy : M (Io(NV), x) = M (Io([N, 1), xxF) is defined by

210 U=t Y S =t Y (F) = Satm

=0 v=0

—~—— —~——

A second operator V; : M (T'o(N), x) = M (I'o(N), XxF) is defined by

e s@v=cEL () ) = e = L

These facts are stated in [18] (see Propositions 1.3 and 1.4) for holomorphic modular forms of
weight g with £ > 1. However, one can verify with the same argument that these properties
are true for weakly holomorphic modular forms of weight g for any integer k. Set

(2.12) Top i= (( (1) “{t ) ,1) .

Putting the two operators together,

t—1
(2.13) F@IUIVe =t f(2)]sm0 = Y altn)g™
v=0
If f(2) =Y a(n)g" € M%(I?(\/N), X) and v is a Dirichlet character modulo m, then the
twist of f by v is given by

—_

(2.14) f@ui=3 dn)aln)g" € My (To(Nm?), x?).

For each prime p { N, the integral weight Hecke operator T} n,(p) preserves the space
M(To(N), x). The effect of Ty n,(p) on the Fourier expansion of f(z) = > a(n)¢" €
Mi(To(N), x) is given by

(215) FOTnals) = X [atom) +x~a (2)] -
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In the half-integral weight case, for each prime p { N, the Hecke operator Tg ’N,X(pQ)

—~—

preserves the space My /2(I'o(INV), x). The effect of T v (P?) on the Fourier expansion of
f(z) =22 a(n)q" € My2(To(N), x) is
(216) F(2)[Ts, (57)

_ 2 (=) =n k22 2y k=2, (| o
- [a(pn>+x<p>( ; )p (n) + () (pQ)]q.

3. PROOF OF THEOREM 1.1
The following result is critical for proving Theorem 1.1.

Theorem 3.1. Suppose that p is an odd prime, k, m and N are integers with (N,p) = 1,
and x 1s a Dirichlet character modulo N. Let K be an algebraic number field with ring of

integers Ok. Let f(z) = Y. a(n)¢" € Mg(fm,x) N Ok((q)). If m is sufficiently large,

then for every positive integer j, there is an integer 3 > j — 1 and a cusp form

—~—

9p,i(2) € S§+pﬂ(p22—1) (FO(NPQ),XXI;m)

with the property that
o
9pj(z) = Z a(p " (mod p?).
=1

n

pin

To prove Theorem 3.1, we show that we can pick an integer m large enough so that
f(2)|Upm = > a(p™n)q™ is holomorphic at every cusp £ of T'o(Np?) with p* | c. We then
define the modular form fn,(2) := >_,, a(p™n)g", which vanishes at each of these cusps.
Finally for each j > 1, we form g, ;(z) by multiplying f.,(z) by an eta-quotient which
vanishes at all of the cusps with p® { ¢, and is congruent to 1 modulo p?. The product g,,;(2)
is then a cusp form congruent to f,,(z) modulo p’.

First we need to know the explicit form of the Fourier expansion of f(z)|Uy» at a cusp ¢
with p? | c.
Proposition 3.2. Suppose that p is an odd prime, k and N are integers with (N,p) = 1,
and x is a Dirichlet character modulo N. Let f(z) = a(n)q" € Mg(FO(N), X). Suppose

. a b

p € {+1,+i}, and that £ = (( o d
exists an integer ng, a sequence {ag(n)}n>n,, @ positive integer ho|N , and anry € {0,1,2, 3}
such that for each m > 1, we have

F@UmE= S aln)gn.

n>no
4n+ro=0 (mod p™)

Proof. Fix m > 1, and let 0,4 be defined as in (2.9). By (2.10),

pm—1

(3.1) (f()|Upm)[:€ = )it Z f(2) ko pmé.

) , i/ cp?z +d> € G', with ac > 0. Then there
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For each v appearing in (3.1), we choose an integer s, = 0 (mod 4) so that

(3.2) syN = (a + vep?) ™ (b + vd) (mod p™),
and set
(3.3) Wy = s, N.

We can ensure that 4 | s, since any integer s, satisfying the congruence can be replaced by
(1 — p*™)s,. We require a lemma to show that the w, are distinct modulo p™.

Lemma 3.3. Let w, = s,N, with s, defined as in (3.2). The integers w, run through the
residue classes mod p™ as v does.

Proof. Suppose w, = w, (mod p™). Then using (3.2) we have

(3.4) (a + ucp®)(b+vd) = (a +vep?)(b+ ud) (mod p™).

Expanding and simplifying (3.4) yields

(3.5) avd + bucp® = aud + bvep®  (mod p™).

If u # v then write

(3.6) U=+ vp°

with v1 # 0, p t v; and e > 0. Substituting expression (3.6) in (3.5) and simplifying, we have
(3.7) v1bep®™? = advip®  (mod p™).

Since p t advy, this gives a contradiction unless e > m. The lemma then follows from
(3.6). O

Now we return to the proof of Proposition 3.2. Recall the definitions of w, (3.3) and o,
(2.9). For each v, define

(3 8) . a—+ UCp2 b—|—vd—a1;:,n—wvvcp2

. Yo * Cpm+2 d— ’wUCp2
and

(3.9) @y = (Yo, p/cp? (P2 — wy) + d).

It is easy to verify that the determinant of v, is 1, and that the choice of w, makes the upper
right entry of «, an integer. Therefore v, is in SLy(Z). A computation using (2.2) shows
that

(310) O-v,pmg = a;uo'wv,pm’

so from (3.1) and (3.10), we have

p"—1

(3.11) FIUm)sE = ™) F(2)] 5000w, .
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For each v, some computations using (2.2) and (3.8) show that

1
(3.12) 0yt = (%, p/ep?(pmz — wy) + d) (70, p/ep?(pmz — wo) + d)

1
vy ,u\/cp mz - w'u) + d (7_17 — )
) " e (pm (v %) — wo) +d

= (
( L Verr(rm (g T2 wv)+d)

YvYo
° Ver?(p z) —wo) +d

= (%75 , \/(wv — wo)CmeHz + 14 (wo — wv)acp2) ,

where
2 2
(3.13) vt = (1 (wo —wo)(acp® +vep") o+ (wo — w) () )
o (wy — wo)e?p™ 14 (wo — wy)acp®

—~——

The next lemma shows that a, a5 € Ty (N).
Lemma 3.4. Let o, and o be defined as in (3.9). Then

—~——

wag' = (1w 5i(w 7)) € Ti(N).
Proof. By (3.3) we have N|(w, — wg), 50 7,7, € ['1(N). By (3.12) it remains to show that

it 2) = \/(w,, — wp)e?p™ iz + 1+ (wy — wy)acp?.
By (2.5) and (3.13),

L (wy — wo)c?p™tt Y\
7(71170 1a Z) = (1 _+_v(w0 _ wv)acp2 ‘Sli(wo—wu)acp2 \/(wv - w0)62pm+4z +1+ (wO - ’LUU)GCPQ.

Each w, =0 (mod 4), S0 €1 (wo—wy)acp> = 1 by (2.6). To evaluate the Jacobi symbol requires
two cases: either w, > wy or w, < wy. Note that the case w, = wy is trivial. We will treat
the case where w, > wy.

Define ¢ := {0,1} by e = m (mod 2). Since ac > 0, we have 1 + (wy — w,)acp? < 0, so

(wy — wo)Pp™ Y\ (wy — wo)p°

1+ (wo —wy)acp? ) \ (w, — wp)acp? —1)°
Set w, — wy = 2°r, where r is odd. Then using properties of Jacobi symbols, and the fact
that (w, — wp)acp® = 0 (mod 8), we find that

(@ e 1) ~ () (o ar—)
_wo)acp - 1) (_1)(wa—1)

(™
()

The other case is handled similarly. This proves Lemma 3.4. 0
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Returning to the proof of Proposition 3.2, we see that (3.11) and Lemma 3.4 yield

pm—1

(3.14) (f (2)|Upm)| € = )it Z f(2)] 5 oo, prm-

Then using (2.4), we see that there exist integers hy | N, ng and ry, and a sequence
{ao(n) }n>n,, such that

(3.15) f@lsao= 3" amy * =3 ao(n)glyi.

n>no n>ng
Now (2.3), (3.15) and (2.9) yield
prl prl 2 tu
(3.16) D F(@)s 00y, pm = Z pFES " ag(n (375) (55 Yuntro)
v=0 n>no
—km/4 Z ag(n 64232,% (4n+ro) Z ef{g;’% (4ntro)
n>no
For each v, we have 4hqy | 4N | w, and (4hg,p™) = 1, so by Lemma 3.3, the numbers 1> Tun
through the residue classes modulo p™ as v does. Therefore,
-1 .
2;“:7% (4n+ro) _ 2,,%” (4n+ro) _ p" ifdn+ro =0 (mOd pm)’
prn Y e Y e (0
Putting (3.16) and (3.17) together, we obtain
pm—1
k 27z
(3.18) Z f(z)|§ozoawv,pm = pm(-%) Z ag(n)e*hor™ m (4ntro)
v=0 n>no
4n+ro=0 (mod p™)
Finally, (3.14) and (3.18) imply
(3.19) (f ()|Upm )| € = > ao(1) ghopm 4.
n>no
4n+ro=0 (mod p™)
This concludes the proof of Proposition 3.2. O

Proposition 3.5. Suppose that p is an odd prime, k and N are integers with (N,p) = 1,

and x is a Dirichlet character modulo N. Let f(z) =Y a(n)q" € Mg(FO(N), X)- For each
nonnegative integer m, define

fm(2) = f(2)|Upn = f(2)|Upms1 |[V;y € M (Do(ND?), x05™)-
Then for m sufficiently large, f,, vanishes at each cusp C;% of To(Np?) with ac > 0.

Proof. By Proposition 3.2, for each m and each

(3.20) = (( a2 b),,u cp22+d)€G'

cp® d



12 STEPHANIE TRENEER

with ac > 0 and p € {£1, £i}, we have
FIUm)sE= 3 ap(n)guopn " D).

n>no
4n+ro=0 (mod p™)
Let o be defined as in (3.8). The integers ny and r¢ are determined by the equivalence class
of the cusp y00 under I'y(N), so there are finitely many such distinct pairs (ng, 7o) as C;%
runs over all possible equivalence classes. If m is sufficiently large, then

—p™ < dng + g

for all such pairs. Fix such an m, and suppose £ has the form (3.20). In the corresponding
Fourier expansion, if ag(n) # 0 and 4n+ 9 = 0 (mod p™), then 4n + rq > 4ng + ro > —p™,
so 4n + ry > 0, from which n > 0. Therefore,

n+"0
(3.21) (f (2)|Upm) & = D ()Gt
n>0
4n+ro=0 (mod p™)

s0 f(2)|Upn is holomorphic at the cusp _75. Now
(3.22) P25 = (F(2) Uy 5 — (FUpm) UV 1.
Using (2.13), the second term in (3.22) becomes
p—1
(3.23) (FNUpm)|Up|Vpl 56 = 7 Y (f(2)|Upm) [ 706
v=0

For each v, we choose an integer s, =0 (mod 4) so that

(3.24) s,N = a 'vd (mod p),
and set
(3.25) Wy = S, N.
Define
5 1 + aw,cp + vw,c*p? ‘“’d_p% — acvw, — buep
v wycp? 1 — aw,cp ’
and

By = ((L,, Vw,e?pdz +1— aw,,cp) )

A computation shows that

(326) Tv,pg = ﬁvé-va,p-
Using arguments similar to those used to prove Lemma 3.4, we find that
(327) By = (6vaj(5va Z)) € Fl(Np)

Then by (3.26) and (3.27), for each v appearing in (3.23), we have
(3.28) (f D) Upm) 5 70p€ = (f(2)|Upm) |5 Bo€Tws, p = (f (2)[Upm) [ £ T, -
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Now we rewrite (3.23) using (3.28), (3.21), (2.3) and (2.12) to get

p—1
(3:29) (f(2)|Upm)[Up[Vpls& =p" D (f(2)[Upm)| 5T
v=0
p—1 0
j— n+

=p' Y aMgupn || Twep

v=0 n>0

4n+ro=0 (mod p™) %

p-1 27TZ(Z + M) r
_ 1 p 0
=p 2 ; ap(n) exp ( hop™ (n + 1 )

4n+ro=0 (mod p™)

_ +I0 2w,
=p! Z qhop Zexp (4h — (4n+r0))

n>0
4n+ro=0 (mod p™)

p—1 .
1 n+0 2miw, [ 4n + 1o
=p Z ao (1) @y pm Z exp < ( .
n>0 e 4hop P

4n+ro=0 (mod p™)

Recall the definition of w, (3.25). Note that since a, d, hy and 4 are all coprime to p, the
numbers w, /4hg run through the residue classes modulo p as v does, so

—1
2miw, (4n + 1o B X 2miv (4n + 1y | p ifp 4"”0
(3:30) Zexp ( 4hgp ( pm )) B Uz_;exp ( P ( pm 10 othervvlse
Putting together (3.29) and (3.30), we have
n—l—%o
(3.31) (f (2)|Upm) | Up|Vp| £ € = > (1) Gpopm -

n>0
4n+79=0 (mod p™+1)

Now using (3.22), (3.21) and (3.31), we have

+2 n+20
(39 fa@hi= Y awmani- Y amani.
n>0 n>0
4n+ro=0 (mod p™) 4n+79o=0 (mod p™+1)

If ro # 0 then neither series in (3.32) has a constant term, and if ry = 0, then the constant
term in each expansion is ag(0), so they cancel. Therefore f,,(z) vanishes at the cusp =
This concludes the proof of Proposition 3.5. O

Now for each odd prime p, we define the eta-quotient

2
P& e My (To(p?) if p> 5,
2

F,(z) :== "gp 2)
’ T € Mip(To(9)  ifp=3.

Using a standard formula for the order of vanishing of an eta-quotient at a cusp (see [7]),
we see that F}, vanishes at every cusp 2 of I'g(Np?®) with p? { c. By the definition of 7(z), it
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is clear that F,(z) =1 (mod p), and an easy induction argument shows that F,(z)?" =1
(mod p®) for any integer s > 1.

Proof of Theorem 3.1. Let f be as in the hypotheses of Theorem 3.1. Let m be chosen to
satisfy Proposition 3.5 for f, and fix 5. If 8 > j — 1 is sufficiently large, then

(3.33) 9pi(2) = fm(2) - Fyp(2)"" = fuu(2) (mod p?)

a

vanishes at all cusps ¢ of I'((Np?) for which p? t c. By Proposition 3.5, g, () vanishes at
the cusps ¢ for which p?|c, so we have

—_

(334) gpa](z) € Sg_l_pﬂ(p;—l) (FO(NPZ)v XXI;m)

By (2.10) and (2.13), we have

(3.35) Gpi(z Eia "—ia mHln Eia " (mod p’).

n=1 n=1 n=1

pin
Combining (3.34) and (3.35) proves Theorem 3.1. O

The proof of Theorem 1.1 uses the following result of Ahlgren and Ono, which relies on
Shimura’s theory and a result of Serre (stated below as Proposition 4.2). The proof of Serre’s
theorem involves the theory of modular Galois representations and the Chebotarev density
theorem.

Proposition 3.6. (Ahlgren-Ono [2], Lemma 3.1) Suppose that f(z) = > >0 a(n)¢" €
S§ (To(N), x) has coefficients in the ring of integers of some number field, and M is a positive

integer. Furthermore, suppose that k > 3. Then a positive proportion of the primes p = —1
(mod M N) have the property that

FE)ITe iy @) =0 (mod M).

Proof of Theorem 1.1. Let f be as in the hypotheses of Theorem 1.1. Fix an odd prime p,
and an integer j > 1, and let

o0

9i(2) = a(p™n)q" (mod p’)

n=1
pin

be the cusp form guaranteed by Theorem 3.1, with 3 chosen so that x := l_s:—l—pﬁ(p2 —-1) > 3.
By Proposition 3.6, a positive proportion of the primes @ = —1 (mod Np’) have

(3.36) .3 ()| Ts N2y (Q°) = 0 (mod p?).
If we write g, ;(2) = Y oo, b(n)g", then (2.16) and (3.36) yield

(3.37)  gp,i(2) |Tﬂ,Np2,xx’;m (@%)

Z ( ) + XXp Q) (ﬂ%) Q%Sb(n) + XXp ™R*)Q" b (Q2>) ¢"=0 (modp’).

=1
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Replacing n by @Qn in (3.37), we have

(3.38)

°° ~1)" -

S (b(an) £ 00m(©Q) (UTQ”) Q7 H(Qn) + (@)@ (%)) e

n=1

=0 (mod p’).
If (Q,n) = 1, then the coefficient of ¢9" in (3.38) is just b(Q3n). So
a(P™@’n) = b(Q*n) = 0 (mod p’)

for all n coprime to ()p. This completes the proof of Theorem 1.1. 1

4. PROOF OF THEOREM 1.2

For the integral weight case we use two results of Serre.

Proof of Theorem 1.2. Let f and p be as in the hypotheses of Theorem 1.2, and fix 7 > 1.
First, if 4 + N, we may consider f(z) as a modular form on I'j(4N), so we will assume that
4 | N. Then by (2.8) and Theorem 3.1, there exists a cusp form g, ; of positive integral
weight such that

(4.1) 9p.i(2) = Z a(p™n)g” (mod p?).

pin
The first assertion follows from (4.1) together with the following result of Serre [15].

o0

Proposition 4.1. (Serre [15], Corollaire du Théoreme 1) Let

f2) = caqhy, M>1,

n=0
be a modular form of integral weight k > 1 on a congruence subgroup of SLy(Z), and suppose
that the coefficients c, lie in the ring of integers of an algebraic number field K. Then for
any integer m > 1,
¢n =0 (mod m)
for almost all n.
For the second assertion, we use another result of Serre.

Proposition 4.2. (Serre [16], Exercise 6.4) Suppose that f(z) =>.>2, a(n)q™ € Sk(To(N), x)

n=1
has coefficients in Ok, and M is a positive integer. Furthermore, suppose that k > 1. Then
a positive proportion of the primes p = —1 (mod M N) have the property that

F(2)|Teny() =0 (mod M).

It follows from (4.1) and Proposition 4.2 that if g, ;(2) has weight x and character ¢, then
a positive proportion of the primes @ = —1 (mod Np’) have the property that

(4.2) 993 (2)| Thenp2,(Q) = 0 (mod p7).
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If we write g, ;(2) = > oo, b(n)¢", then (2.15) and (4.2) imply that

(43) gp,j(z)\Tn,N;(Q) - Eo_oj (b(@n) FPQ)Q" (%)) =0 (mod ).

If (Q,n) =1, then the coefficient of ¢" in (4.3) is just b(Qn). Therefore

a(Qp™n) = b(@Qn) =0 (mod p’)
for all n coprime to (Qp. This concludes the proof of Theorem 1.2. O

5. ETA-QUOTIENTS

Here we prove Corollary 1.3 and Proposition 1.4. The first result concerning eta-quotients
follows easily from the main theorems.

Proof of Corollary 1.3. Let f be as in the hypotheses of Corollary 1.3. It is clear by (1.3)
that 7(z) is holomorphic and non-vanishing on H, so f is also holomorphic on H. Since 7(z)
has integer coefficients, so does f(z). Replace N by a power of N, if necessary, so that f(z)
satisfies

(5.1) NZ% =0 (mod 24).

3N

Then f is a weakly holomorphic modular form of weight g and some character y with level
N [7]. We may now apply either Theorem 1.1 or Theorem 1.2, depending on the parity of
k, to complete the proof of Corollary 1.3. O

We now prove Proposition 1.4, which gives an infinite class of congruences for overparti-
tions modulo 5.

Proof of Proposition 1.4. Consider the theta functions

—_—

O(2) = > ¢" =1+2¢+2¢" +2¢° +--- € M1(To(4)),

and
772(’2) = n n? 4 9 S T
O1(z) == n22) = E (=1)"¢" =1-2q+2¢" —2¢ +--- € M1(I'o(16)).

Let x5V be the trivial character modulo 2. Using (2.14), it is easy to verify that these theta
functions satisfy

—~—

(5.2) 01(2)* = 0(2)° = 20(2)° ® x3™" € M3 (To(16)).

Recall that the generating function for overpartitions is

2. n n(22) 1
2P = =

Let

(5.3) A(z) = q[J(1 = ¢")** = 1*(2) € Sa(D),
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and set

(5.4) f(z) = —G

Since the numerator is of level 2, and the 24th power of the denominator is also of level 2,
it suffices to check holomorphicity at the two cusps of I'¢(2). It is clear by (1.3) and (2.15)
that f is holomorphic at infinity. A computation using (2.15) shows that

(5.5) A%z) Tho2(5) = 48828126 A(2) + 2342387712A(2) + 4630511616 A(22).
A(2z) ’ A(2z)
Using the transformation formula
1 N1
(5:6) 0(-1) = it

([14], Theorem 1.61) with (5.4) and (5.5), we calculate that the expansion of f(z) at 0 has
the form

for some constant ¢ € C. Therefore

P

6.7 £(2) € My (Fo(16))

Since Ti52(5) is the same as the operator Us modulo 5, it can be verified using (1.3) and
(2.10) that

10
(5.8) f(z) = G (mod 5)
7°(22)
50(, . n
(- Spma) | Us
= P (mod 5)
n°(z)
n°(22)
= Z;T)(5n)q" (mod 5)
The Eisenstein series
(5.9) Ey(2) :=1+240) o3(n)q" € My(T)
n=1
clearly satisfies
(5.10) Eiz) =1 (mod 5).
Using (5.2), (5.9) and (5.10), we have
(5.11) 01(2)° - E3(2) € Mis (To(16))
with

(5.12) 01(2)® = ©1(2)* - E2(z) (mod 5).
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—~——

By a result of Sturm ([19], Theorem 1), two holomorphic modular forms in M 5 (To(N), x)

are congruent modulo m if their coefficients are congruent modulo m for each index n <
£ [ : To(N)]. Using (5.12), the congruence

(5.13) f(z) =01(2)*> (mod 5)

can be easily verified with a computer algebra system, well beyond the Sturm bound of 19.
Then (5.8) and (5.13) imply that

(5.14) ©1(2)° =) B(5n)¢" (mod 5).

It is well known that ©3(z), considered as a form of level 16, is a normalized eigenform
for Ts 1 (@?), satisfying

(5.15) 0(2)°|T3 15(Q°) = (Q +1)©°(2)

for each odd prime Q.
The Hecke operator T’ 16(Q?) commutes with the quadratic twist x4, so using (5.2) and

(5.15) we have

(5.16) 01(2)°|T3,16(Q%) = (@ +1)01(2)° =0 (mod 5)

when Q = —1 (mod 5). Then using (5.14) and an argument as in (3.38), we have
p(5Q°n) =0 (mod 5),

when n is coprime to (). This concludes the proof of Proposition 1.4. O

6. TRACES OF CM VALUES OF MODULAR FUNCTIONS

In [5], Bruinier and Funke realize the traces of arbitrary modular functions on any con-
gruence subgroup as the Fourier coefficients of certain weakly holomorphic modular forms.
These forms are obtained by integrating the modular functions against a theta series asso-
ciated to a certain lattice and a certain Schwartz function. The authors give the following
theorem as a concrete example of their more general result.

Recall the modular trace function for I'j(p) given in (1.7). Define o1(n) := -, t for

n € Lo, set 01(0) := —5;, and let o1 (z) := 0 for = & Zs,.

Theorem 6.1. (Bruinier-Funke [5], Theorem 1.1) Let f € My(T§(p)) have Fourier expan-
sion f(z) = > a(n)g™ with a(0) = 0. Then

)= t5(D)g” + Y (o1(n) + por(n/p))a(—n) = Y > ma(-mn)g™

D>0 n>0 m>0 n>0

—_

is a weakly holomorphic modular form of weight 3/2 for the group T'o(4p).

Proof of Corollary 1.5. For simplicity, let G(z) := G(z, f) be the modular form guaranteed
by Theorem 6.1. The following lemma shows that G(z) has algebraic coefficients.

Lemma 6.2. Let f be a weakly holomorphic modular function for T'j(p) whose Fourier
coefficients with respect to g, lie in Q((,). Then for each discriminant D > 0, t3(D) is
algebraic.
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Proof. We can view f as a modular function for the principal congruence subgroup I'(p),
which consists of matrices in I' congruent to the identity modulo p. Let k, be the field
of modular functions for I', whose Fourier expansions with respect to g, have coefficients
in Q(¢y). Fix a discriminant D > 0 and a quadratic form F' € Qp,, and let ar be the
associated root in H. Set K = Q(ar). By the theory of complex multiplication, the field
Kk,(ap), generated over K by all values f(ap) with f € k, and f defined at ap, is the
ray class field over K with conductor p (see [9], Ch. 10 §1, Corollary to Theorem 2). So in
particular, f(ar) is algebraic. Lemma 6.2 then follows from definition (1.7). O

By Lemma 6.2, we have G(z) € Q((¢)). The next lemma proves conclusion (a) of Corollary
1.5.

Lemma 6.3. Let f be as in the hypotheses of Corollary 1.5, and let G(z) := G(z, f) be
the modular form guaranteed by Theorem 6.1. There exists an integer M and an algebraic
number field L such that MG(z) € Or((q))-

Proof. Recall the function A(z) from (5.3). Since G(z) is meromorphic at the cusps of I'y(4p)
and A(z) vanishes at each cusp, then for sufficiently large h, the function A*(2)G(z) is a

cusp form for 'y(4p). Since A(z) has integer coefficients,
A"(2)G(2) € Qld].

Hence A"(2)G(z) has bounded denominators, that is, there is an algebraic number field L
and an integer M such that
MAMz)G(2) € Owq]
(see Lemma 8 of [17]). But A%(z) also has integer coeflicients, so we have
MG(2) € OL((9))-
O

Now we prove Corollary 1.5(b). By Lemma 6.3, we can apply Theorem 1.1 to MG(z).
Hence for each j > 1, a positive proportion of the primes Q = —1 (mod 4p¢?) have

Mt3(Q*™D) =0 (mod )
for all D coprime to Q. This concludes the proof of Corollary 1.5. O

REFERENCES

[1] S. Ahlgren, Distribution of the partition function modulo composite integers M, Math. Ann. 318 (2000),
795-803.

[2] S. Ahlgren and K. Ono, Congruence Properties for the Partition Function, Proc. Natl. Acad. Sci. USA
98 (2001), no. 23, 12882-12884.

[3] S. Ahlgren and K. Ono, Congruences and conjectures for the partition function, Proceedings of the
Conference on g-series with Applications to Combinatorics, Number Theory and Physics, AMS Con-
temporary Mathematics, vol. 291, 2001, pp. 1-10.

[4] S. Ahlgren and K. Ono, Arithmetic of Singular Moduli and Class Equations, Compositio Math. 141
(2005), 293-312.

[5] J. H. Bruinier and J. Funke, Traces of CM Values of Modular Functions, J. Reine Angew. Math., to
appear.

[6] S. Corteel and J. Lovejoy, Overpartitions, Trans. Amer. Math. Soc. 356 (2004), 1623-1635.



20 STEPHANIE TRENEER

[7] B. Gordon and K. Hughes, Multiplicative properties of eta-products, Contemp. Math. 143 (1993), 415-
430.

[8] N. Koblitz, Introduction to Elliptic Curves and Modular Forms, Springer-Verlag, New York, 1993.

[9] S. Lang, Elliptic Functions, Springer-Verlag, New York, 1987.

[10] J. Lovejoy, Divisibility and distribution of partitions into distinct parts, Adv. Math. 158 (2001), 253-263.

[11] Y. Martin, Multiplicative n-quotients, Trans. Amer. Math. Soc. 348 (1996), 4825-4856.

[12] K. Ono, Distribution of the partition function modulo m, Ann. of Math. 151 (2000), 293-307.

[13] K. Ono, Arithmetic of the partition function, Proceedings of the NATO Advanced Study Institute on
Special Functions, Special Functions 2000 (J. Bustoz, S. Suslov, eds.), Kluwer Academic Publishers,
2002, pp. 243-253.

[14] K. Ono, The Web of Modularity: Arithmetic of the Coefficients of Modular Forms and q-series, CBMS
Regional Conference Series in Mathematics, vol. 102, American Mathematical Society, Providence, RI,
2004.

[15] J.-P. Serre, Divisibilité des coefficients des formes modulaires de poids entier, C. R. Acad. Sci. Paris
Ser. I Math. 279 (1974), 679-682.

[16] J.-P. Serre, Divisibilité des certaines fonctions arithmétiques, Enseign. Math. 22 (1976), 227-260.

[17] J.-P. Serre and H. M. Stark, Modular forms of weight 1/2, Modular functions of one variable VI (Proc.
Second Internat. Conf., Univ. Bonn, Bonn 1976), Lecture Notes in Math, vol. 627, Springer, 1977, pp.
27-67.

[18] G. Shimura, On modular forms of half-integral weight, Ann. of Math. 97 (1973), 440-481.

[19] J. Sturm, On the congruence of modular forms, Springer Lect. Notes 1240 (1984), 275-280.

[20] H. Swisher, The Andrews-Stanley partition function and p(n), Trans. Amer. Math. Soc., recommended
for publication.

[21] D. Zagier, Traces of singular moduli, Motives, Polylogarithms and Hodge Theory, Part I. (F. Bogomolov
and L. Katzarkov, eds.), International Press, Somerville, 2002, pp. 211-244.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF ILLINOIS, URBANA, ILLINOIS 61801
E-mail address: treneer@math.uiuc.edu



	Congruences for the Coefficients of Weakly Holomorphic Modular Forms
	Recommended Citation

	mypaper.dvi

