The assessment of nutrient, metal, and organic contaminant concentrations in eelgrass (Zostera marina L.) in Puget Sound, WA (USA): A project overview

Jeffrey Gaeckle
Nearshore Habitat Program (Wash.), jeffrey.gaeckle@dnr.wa.gov

Follow this and additional works at: https://cedar.wwu.edu/ssec

Part of the Terrestrial and Aquatic Ecology Commons

This Event is brought to you for free and open access by the Conferences and Events at Western CEDAR. It has been accepted for inclusion in Salish Sea Ecosystem Conference by an authorized administrator of Western CEDAR. For more information, please contact westerncedar@wwu.edu.
Metals, Nutrients, and Organic Contaminants in Eelgrass (Zostera marina L.)

Jeffrey Gaeckle
Nearshore Habitat Program
Washington State Department of Natural Resources (DNR)

Salish Sea Ecosystem Conference
30 April 2014
• DNR manages aquatic lands and resources throughout Puget Sound

• Eelgrass is an embedded resource that has important ecosystem values
Toxicity Pathways in Seagrass Meadows

CONTAMINANT TROPHIC TRANSFER (GRAZING)
- Planktonic Herbivores
- Epibenthic Meio-Macrofauna
- Infaunal Meio-Macrofauna

MODIFYING FACTORS
- Temperature
- Irradiance
- Nutrients
- Salinity

DRIFT and EXPORT

CONTAMINANT TOXICITY and BIOACCUMULATION (Blades, Epiphytes, and Grazers)

MODIFYING FACTORS
- Dissolved Oxygen
- Sulphide Concentrations
- Total Organic Carbon

SEDIMENT TOXICITY and CONTAMINANT BIOACCUMULATION (Rhizome, Roots, Epibenthic and Infaunal Species)

LITTER DECOMPOSITION

(Lewis & Devereux 2009)
Trace elements and oil related contaminants

- Document background levels in sediment, bivalves and eelgrass in the event of an oil spill
- Higher PAH levels in eelgrass were observed at sites closest to the oil refinery infrastructure
 - PAHs: 0.05 – 0.17 µg gww⁻¹
- Higher arsenic levels associated with the March Point Landfill
 - Arsenic: 2-8 µg gdw⁻¹
Project Objectives

• Baseline assessment of nutrients, metals, and organic contaminants in eelgrass (*Zostera marina*) throughout Puget Sound
 – Spatial distribution
 – Proximity to outfalls
 – Co-locate with Mussel Watch sites

• Assess the effects of an outfall *modification* on eelgrass
 – Installation
 – Removal
 – Upgrade in treatment

(L. Ferrier)
Site Selection

- Spatially distributed
- Impacted and pristine areas
- Access (safety at night)
- Permission
- Assistance
- Co-location with other research
 - eelgrass (USFW 1994)
 - mussels (Lanksbury et al. 2012)
Baseline Data

FIELD – January 8-14, 2013

- Triplicate 0.25 m² samples of eelgrass
- Rinsed with seawater
- Stored at 6°C until processed at the DNR Aquatic Botany Lab

LAB – January 8-25, 2013

- Eelgrass processing – aboveground and belowground compartments
- Metals - inductively coupled plasma mass spectrometry (ICPMS) and cold vapor atomic absorption (Hg-CVAA)
 - arsenic, cadmium, chromium, copper, iron, lead, nickel, vanadium, zinc, and mercury
- Organic contaminants – gas chromatography/mass spectrometry
 - polyaromatic hydrocarbons (PAHs)
 - polychlorinated biphenyls (PCBs)
 - polybrominated diphenyl ethers (PBDEs)
 - persistent organic pollutants (POPS).
- Eelgrass tissue – elemental analyzer
 - C and N - δ¹⁵N and δ¹³C
LEAD

- μg gdw$^{-1}$ (mean ± SE)
- aboveground
- belowground
- only 8 sites presented
 - 4 highest values
 - 4 lowest values
COPPER

- \(\mu g \text{ gdw}^{-1} \) (mean ± SE)
- aboveground
- belowground
- only 8 sites presented
 - 4 highest values
 - 4 lowest values
ZINC

- μg gdw\(^{-1}\) (mean ± SE)
- aboveground
- belowground
- only 8 sites presented
 - 4 highest values
 - 4 lowest values
<table>
<thead>
<tr>
<th>LOCATION</th>
<th>Cu</th>
<th>Pb</th>
<th>Zn</th>
<th>REFERENCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Limfjord, Denmark</td>
<td>16.6</td>
<td>37.5</td>
<td>175</td>
<td>Brix et al. 1983</td>
</tr>
<tr>
<td>(max)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Limfjord, Denmark</td>
<td>4.8</td>
<td>1.1</td>
<td>78</td>
<td>Brix et al. 1983</td>
</tr>
<tr>
<td>(means)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yaquina Bay, OR</td>
<td>10</td>
<td>-</td>
<td>29</td>
<td>Kaldy 2006</td>
</tr>
<tr>
<td>Ayamonte, Spain</td>
<td>36</td>
<td>16</td>
<td>215</td>
<td>Stenner & Nickless 1975</td>
</tr>
<tr>
<td>LaRábida, Spain</td>
<td>1350</td>
<td>1800</td>
<td>1480</td>
<td>Stenner & Nickless 1975</td>
</tr>
<tr>
<td>(max)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cadiz Bay, Spain</td>
<td>9</td>
<td>6</td>
<td>100</td>
<td>Stenner & Nickless 1975</td>
</tr>
<tr>
<td>Padilla Bay, WA</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>USFW 1994</td>
</tr>
<tr>
<td>Puget Sound, WA</td>
<td>16.0-74.1</td>
<td>0.1-0.5</td>
<td>56.6-106.6</td>
<td>This study</td>
</tr>
</tbody>
</table>

Evidence of Toxicity
- >10 ppm dose
 - 10 days
 - ↓ growth rate
- >100 ppm dose
 - 5 days
 - ↓ N₂ fixation
- >10 ppm dose
 - 10 days
 - ↓ growth rate

Review by Lewis & Devereux 2009
Source vs. Sink

How much of a particular metal is cycled or stored?

• Assuming there are
 – 8-10 million kg of aboveground eelgrass biomass in PS
 – 2-5 million kg of belowground eelgrass biomass in PS

<table>
<thead>
<tr>
<th></th>
<th>ABOVEGROUND</th>
<th>BELOWGROUND</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(kg)</td>
<td>(kg)</td>
</tr>
<tr>
<td>Cu</td>
<td>250 – 300</td>
<td>10 – 30</td>
</tr>
<tr>
<td>Pb</td>
<td>2</td>
<td>120 – 280</td>
</tr>
<tr>
<td>Zn</td>
<td>650 – 800</td>
<td>0.1 – 0.4</td>
</tr>
</tbody>
</table>

• Few things to consider
 – Standing stock calculation only
 • Eelgrass produces new leaves every 7-20 days
 • Eelgrass shoots have on average 5 leaves
 • Therefore, 3-10 times calculated value may be cycled or stored in one year
 – Eelgrass is only one component of the plant community in Puget Sound
PAH (high molecular weight)

- 20 analytes
- ng gww\(^{-1}\) (mean ± SE)
- aboveground
- belowground
- only 8 sites analyzed
Orcas Island Outfall Assessment

- Eelgrass bed characteristics
 - Area
 - Depth distribution

- Plant parameters
 - Morphology
 - Tissue concentrations
 - Nutrient
 - Metals
 - Organic contaminants

- Environmental parameters
 - Photosynthetically available radiation (PAR)
 - Temperature
Orcas Island Eelgrass

<table>
<thead>
<tr>
<th>EELGRASS</th>
<th>West</th>
<th>Center</th>
<th>East</th>
</tr>
</thead>
<tbody>
<tr>
<td>Area (ha ± SE)</td>
<td>4.1 ± 0.1</td>
<td>1.5 ± 0.1</td>
<td>1.3 ± 0.2</td>
</tr>
<tr>
<td>Shallow Depth (m ± SE)</td>
<td>-0.6 ± 0.0</td>
<td>-0.1 ± 0.1</td>
<td>-0.4 ± 0.2</td>
</tr>
<tr>
<td>Deep Depth (m ± SE)</td>
<td>-8.4 ± 0.2</td>
<td>-6.6 ± 0.1</td>
<td>-4.4 ± 0.1</td>
</tr>
</tbody>
</table>
NEXT

- Complete analysis with the remaining organic contaminant data from the sound-wide and Orcas Island sites
- Explore the potential of nutrient, metal, and organic contaminant cycling (aboveground tissue) and storage (belowground tissue)
- Monitor eelgrass and environmental parameters at Orcas Island after the installation of the new, shallower, outfall
 - Eelgrass area and distribution
 - PAR and temperature
 - Nutrients, metals, and organic contaminants
- Research threshold effect concentrations under environmental conditions similar to Puget Sound
Partners and Volunteers

Nearshore Habitat Program
- Helen Berry
- Lisa Ferrier
- Kate Sherman
- Fred Short
- Andrew Ryan
- Jessica Demetro-Stowe
- Kiri Kreamer

Aquatic Reserves Program
- Kyle Murphy
- Mike Grilliot
- Puget Sound Corps

WDFW
- Jennifer Lanksbury
- Laurie Niewolny
- Jim West

Laboratories
- Gina Ylitalo (NOAA-Montlake Lab)
- Katherine Bourbonais (KCEL)
- Connie Harrington (USFS)
- Ben Harlow (WSU)

Site Contacts and Assistance
- Puget Sound Corps (WCC team, Birch Bay, Cypress Island, Anderson Island, Sandy Bay)
- Port of Orcas Island Airport (Orcas Island)
- FHL, Pema Kitaeff and divers (Orcas Island)
- Padilla Bay NERR (D. Bulthuis & H. Bohlmann, Padilla Bay)
- Megan Black (Thompson Spit)
- Al Bahl (Big Gulch Wastewater Treatment Facility, Big Gulch)
- Lincoln Lohr (Big Gulch)
- Seattle Parks and Recreation (Barbara DeCaro, 4-Mile Rock)
- Arlene Bac and Holly White (Holly)
- Cathy Short (Holly)
- Archdiocese of Seattle (Dumas Bay)
- Neifert Family (Anderson Island)

Consultants
- Marine Resources Consultants

Funding provided by WDFW-DNR Puget Sound Marine and Nearshore Protection and Restoration Program. This project received funding from the EPA under an agreement with WDFW. The contents do not necessarily reflect the views and policies of the EPA. Mention of trade names or commercial products does not reflect endorsement.