May 2016

Detecting Binaries Via Cross Correlation Function Subtraction

Jessica Reyna
Western Washington University

Follow this and additional works at: https://cedar.wwu.edu/scholwk

Part of the Higher Education Commons

Reyna, Jessica, "Detecting Binaries Via Cross Correlation Function Subtraction" (2016). Scholars Week. 11.
https://cedar.wwu.edu/scholwk/2016/Day_two/11

This Event is brought to you for free and open access by the Conferences and Events at Western CEDAR. It has been accepted for inclusion in Scholars Week by an authorized administrator of Western CEDAR. For more information, please contact westerncedar@wwu.edu.
Detecting Binaries via Cross Correlation Subtraction: Utilizing the Sloan Digital Sky Survey IV/APOGEE-2 Database

Jessica Reyna, Dr. Kevin Covey & Members of the SDSS-IV/APOGEE-2 Collaborations

Introduction
Spectroscopic binaries provide direct measurements of stellar masses that can be used to test theoretical models of stellar evolution. The SDSS-IV/APOGEE-2 survey has obtained spectra covering the wavelength range of 1.51-1.70 μm for more than 300,000 stars in the Milky Way. This survey primarily focuses on red giants with sub-projects focusing on star forming regions such as the Perseus and Orion molecular clouds. Cross correlation functions (CCFs) measure the similarities of two spectra as a function of their relative velocities. CCFs can be used for measuring the differences in two star’s velocities or it can be used to measure the changes in a single star’s velocity over time. Our program computes the difference of two CCFs measured from distinct observations of a star.

Goal:
We aim to develop a program that reads spectra and categorizes them into two groups, binaries and non-binaries.

Methods

- Detect potential binaries from changes in the residuals of two CCFs.
 - In Figure 1, the blue dashed line (CCF1) is the primary visit and the black dashed line (CCF2) is the secondary visit.
 - The red line is the CCF subtraction result.

- Find all possible CCF combinations. For example, a given source has 7 associated visit spectra so there are 21 possible CCF pairs.

- Calculate all possible unique residuals for CCF pairs in a given source:

 \[
 \text{CCF difference} = \text{CCF1} - \text{CCF2}
 \]

- Calculate statistics for describing the residuals of the CCF pairs:
 - Integrate the Residuals
 - Integrate the Squares of the Residuals
 - Root Mean Square Value (RMS) of the Residuals
 - Divide the difference in CCFs for the given spectra by the RMS
 - Divide the square of the difference in CCFs for a given spectra by the RMS

- Visually examine the histograms of each statistic to search for changes in the CCF residuals.

- Refine the statistics used to describe binary system behaviors and non-binary system behaviors. We are primarily interested in finding binary system signatures in the statistics by detecting numerical patterns associated with systems.

Results

- Non-binary candidates tend to demonstrate clean subtractions. (See Figure 1)
- Binary candidates have larger residuals in their subtractions due to changes in their CCFs as the binary members move their orbits. (See Figure 2)
- Potential binaries are tricky. Some demonstrate residuals after subtraction but on a very small scale. (See Figure 3)
- Compare suspected binaries to confirm binaries via histograms (Figure 4 and 5). Distribution differences tell us about how CCFs change over time.

Definitions

A metric is a parameter characterized as an associated statistic (i.e. integrated residuals)
A spectrum is the measurement of a star’s flux as a function of wavelength (λ)
A cross correlation function measures the agreement between two spectra for various relative velocities of a star
A visit spectrum is one of several spectra obtained for the same source at different times

Future Work

- Create spectra representing artificial binaries by adding Doppler shifted spectra
- Measure the CCF described above and distinguish which features best describe binary behavior
- Measure these metrics for real APOGEE spectra to create a pan-Galactic catalog of spectroscopic binaries
- Identify particularly compelling targets of interest such as low mass and young stars

Acknowledgements

Dr. James Davenport, Martin Fernandez, Huy Nguyen, Graham Roberts

Figures

Non-Binary Candidate

![Figure 1: A separate set of CCF pairs for a star. To the left the statistical values associated with the star are given.](image)

Binary Candidate

![Figure 2: A separate set of CCF pairs for a star that demonstrates the desired binary signatures we are looking for in a CCF subtraction curve (in red).](image)

Potential Binary Candidate

![Figure 3: A CCF subtraction for a particular star and to the left there are values associated with the CCF subtraction curve (in red).](image)

Noise or binary signature?

![Figure 4: From the Potential Binary Candidate](image)

![Figure 5: From the Confident Binary Candidate](image)