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Ecosystem Factors Influencing the Success of
Riparian Restoration in Whatcom County

Crystal Elliot

Abstract
Riparian corridors are complex and diverse ecosystems that are essential to the 

maintenance of global health. The total area occupied by riparian ecosystems in the 
United States has plummeted in the last 200 years to only 20% of its initial size. The 
recent movement to restore these fragile and complex ecosystems has produced outcomes 
of variable success. The Nooksack Salmon Enhancement Association’s riparian 
restoration project at Schell Creek in Femdale, WA provides an example of an effort that 
exhibits mixed results. Our experiment explored reasons for the variable success of the 
restoration vegetation and investigated several ecosystem factors that may limit growth of 
seedlings at this site. These included competition from grasses, low nutrient availability, 
lack of mycorrhizal associations, and water availability.

In May of 2000, seedlings of red alder {Alnus rubra) and Sitka spruce {Picea 
sitchensis) were planted in a full factorial design with treatments consisting of tilling to 
reduce competition (T), mycorrhizal inoculation (M), and nutrient supplementation in the 
form of fertilizer (F). Three replicate blocks of each treatment were situated in both the 
upper (north) and lower (south) reaches of the project, which differed in water 
availability. We assessed differences between treatment effects by comparing changes in 
tree heights, total growth, and photosynthetic rates (determined using a LI-COR 6400).

While we had hypothesized that increased water availability in the upper reach 
helped revegetation success, the excess soil moisture actually appeared to have negative 
effects on experimental seedlings: waterlogging caused poor growth and mortality in 
some cases, leading to negligible treatment effects in the upper reach. Reducing grass 
competition by tilling, which increased the water and nutrients available to experimental 
trees, had the largest positive effect on alder growth in the south site. Mycorrhizae had a 
positive effect on spruce growth, although these effected were muddled by interactions 
with tilling and fertilizer treatments, which have both been shown to have negative 
effects on the success of mycorrhizae.

Reducing competition is a technique used widely in riparian restoration, a practice 
whose benefit is bolstered by the observed considerable effect of tilling on experimental 
trees at the Schell Creek site. As the use of mycorrhizae as a restoration tool is not 
common procedure, our results suggest that future studies should continue to explore the 
advantages of this treatment, especially when planting in low nutrient areas. Current 
restoration recommendations emphasize the importance of assessing abiotic conditions 
before selecting project sites and restoration vegetation, and we agree given the very 
different treatment responses of our experimental species and the environmental 
variability at the site. We believe that further development of these techniques will 
continue to enhance project success, thereby providing a substantial contribution to the 
strong movement afoot to reestablish riparian ecosystems in Whatcom County and 
elsewhere.

1



Introduction

Riparian ecosystems have been labeled as “the most diverse, dynamic, and 

complex biophysical habitats on the terrestrial portion of the earth” (Naiman et al., 1993). 

A riparian zone consists of a stream channel and the surrounding terrestrial landscape 

interacting with that channel (Naiman et al., 1993). Their additions to global ecological 

diversity and the ecosystem services they provide are substantial both in number and 

importance (Alpert et al., 1999; Goodwin et al., 1997; Gregory et al., 1991; Naiman et al., 

1993; Simenstad and Thom, 1996; Young, 1996). Riparian habitats contribute 

immensely to sustaining local water quality and salmon populations by way of their run­

off filtering and water-cooling properties (Berg, 1995; Carpenter et al., 1992). These 

habitats also support other unique wildlife, and both plant and animal species richness in 

these zones is unusually high compared to other ecosystems (Karr and Chu, 1999;

Naiman et al., 1993). For example, studies in Sweden, Finland, the Peruvian Amazon 

Basin, southern France, and the northwestern United States found that riparian vascular 

plants exhibited extremely high levels of diversity in all of these areas (Decamps and 

Tabacchi, 1993; Gregory et al., 1991; Junk, 1989; Kalliola and Puhakka, 1988; Kalliola et 

al., 1992; Raedeke, 1989; Salo et al., 1986 as cited in Naiman et al., 1993). The 

ecosystem services provided by these environments, such as detoxifying and purifying 

water, have been increasingly recognized, and awareness of their considerable 

significance to humans is continuing to grow (Young, 1996). People also depend on 

riparian habitats for a variety of industrial and economic activities, as well as deriving 

sport and recreational utility from the usage of these ecosystems (Carpenter et al., 1992).
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The number of riparian and wetland zones in the United States has plummeted in 

the last 200 years, resulting in a total area less than 20% of its previous amount (Naiman 

et al., 1993). The majority of this loss has resulted from urban and agricultural 

development; both caused by the escalating human population (Brussard, 1991;

Carpenter et al., 1992; Karr and Chu, 1999; Madsen, 1986). This destruction of riparian 

ecosystems has had devastating consequences. Water quality and water resources in 

many areas have been significantly degraded, and wildlife populations have been 

considerably damaged (Berg, 1995; Burrows et al., 1998; Karr and Chu, 1999; Young,

1996) . Pacific Northwest salmon populations have been hit especially hard by the 

disruption and depletion of riparian corridors (Berg, 1995; Karr and Chu, 1999; Nehlsen,

1997) . The number of fish returning to spawning and rearing grounds has dropped 

dramatically in recent years, due to habitat destruction and the stripping of Large Woody 

Debris (LWD) from spawning corridors (Berg, 1995; Young, 1996).

A strong movement is afoot to reestablish the vigor of these fragile ecosystems 

(Malakoff, 1998; Naiman et al., 1993; Young, 1996). Some believe that the solution lies 

in allowing these wounded riparian zones to heal themselves (Berg, 1995). However, 

Berg states that this “passive approach leaves damaged ecosystems degraded for decades, 

perhaps centuries” (1995). An alternative solution, restoring the damaged ecosystems, is 

an idea that has continued to gain momentum and support in recent years (Goodwin et al., 

1997; Malakoff, 1998; Naiman et al., 1993; Streever and Zedler, 2000; Young, 1996). 

Because riparian zones are such complex ecosystems, the restoration approach demands 

the cooperation of many scientific disciplines and the consideration of a number of 

interacting factors (Young, 1996). This makes the restoration of riparian and wetland
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zones a very collaborative, fragile, and difficult endeavor. Restoration efforts are often 

rewarded with positive outcomes, but, sometimes these very involved and time- 

consuming projects turn out to be unsuccessful (Malakoff, 1998; Mitsch and Wilson, 

1996). Given these contradicting results, there has been much controversy surrounding 

riparian/wetland restorations, and numerous studies have been conducted that have tested 

and challenged the success and reliability of this approach (Mitsch and Wilson, 1996; 

Mitsch et al., 1998). With the goal of assessing the viability of the resulting constructed 

ecosystems, these studies have mainly focussed on scrutinizing the overall success of 

restoration sites. Not many inquiries, however, have focussed specifically on the 

influence of individual ecosystem factors on the success of a restoration project. 

Identification of problems with particular ecosystem variables would allow investigators 

to determine which aspects of a project had failed and which had succeeded. This 

method, instead of looking only at overall success, would allow for greater “fine-tuning” 

of restoration efforts in the future, and would reduce usage of the “hit and miss” approach 

that is currently commonplace.

Vegetation productivity is the main determinant of the success of any given 

project (Mitsch and Wilson, 1996; Mitsch et al., 1998). With this, great attention is given 

to plants, namely trees, to promote their establishment. Keeping in mind the complexity 

of these ecosystems, any number of variables may inhibit seedlings from gaining a 

foothold in a newly restored riparian environment.

This is the avenue I chose to explore with my experiment: What might limit 

revegetated plant growth, and therefore limit project success, in a restored riparian 

ecosystem? The Schell Creek riparian restoration site in Femdale, WA provided an
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excellent study location for exploration of this question. The strong presence of grasses 

on the site indicated that competition would be a likely ecosystem factor to limit the 

growth of revegetated seedlings. We hypothesized that competition for resources from 

neighboring plants would have a negative effect on tree establishment. We grew trees in 

both competitive and non-competitive environments to see if and to what degree 

seedlings were effected by this factor. In addition, a soil test revealed that the site was 

deficient in nitrogen, sulfur, and, especially, phosphorus (Table 1), and so it was possible 

that a lack of nutrients might limit newly planted seedlings. We grew trees with and 

without a nutrient supplement to test this hypothesis. Absence of the proper mycorrhizal 

associations was another ecosystem factor that we thought might limit tree growth. 

Herbaceous pasture grasses, such as those characterizing the Schell Creek restoration site, 

do not foster ectomycorrhizae (Barbour et al., 1999; Smith and Read, 1997), which are 

the symbioses exhibited by most temperate tree species (Barbour et al., 1999). Since the 

site was in an area that had been converted from forest to pasture at least one hundred 

years ago (Steve Brommers; pers. comm. May 2001), the native mycorrhizal community 

may have been greatly reduced. Past plowing and disturbance may also have had the 

effect of decreasing the mycorrhizal population (Cuenca and Lovera, 1992; McGonigle 

and Miller, 1996). Mycorrhizae are often essential for proper seedling development 

because they play a significant role in the uptake of nutrients, namely phosphorus, which 

is vital in the early stages of tree growth (Gange et al., 1990; Raven et al., 1999; Reid and 

Woods, 1968). This relationship with a fungal partner is the most prevalent symbiosis in 

the plant kingdom (Molles, 1999). Given the importance of mycorrhizae and the low- 

phosphorus environment at the Schell Creek site, it was quite possible that a lack of
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mycorrhizal inoculation would also limit seedling success. We tested this by inoculating 

some of our trees with mycorrhizae and leaving others untreated. Water availability was 

a factor that we thought might be limiting the growth of previously established trees at 

this specific riparian restoration site. There was a distinct difference in productivity 

between the upper and lower reaches of the site, represented by differences in alder 

height and vigor. We believed this variation to be caused by a difference in soil moisture, 

and we explored this idea by taking volumetric soil moisture measurements throughout 

the summer using Time Domain Reflectometry (TDR).

Methods 

Study Site

Experimental plots were established along the bank of Upper Schell Creek in 

Femdale, Washington on a riparian site restored recently (1994, 1995) by the Nooksack 

Salmon Enhancement Association (NSEA), an organization dedicated to the restoration 

and preservation of native salmon habitat. The property is owned by the City of 

Femdale, which donated the use of the land to support salmon restoration. This location 

experiences a maritime climate with cool, wet winters and mild summers. The growing 

season in this area extends from approximately March to November (Stevens and 

Bursick, 1990).

This site was once a native riparian environment through which Schell Creek 

flowed on its way to meeting the Lummi River (Shannon Moore; pers. comm. September 

2000). In order to expand pastureland, the creek was then diverted from its natural 

course and forced to parallel the property by way of a roadside ditch (Field, 1997 as cited 

in Burrows et al., 1998; Lookabill et al., 1998). The city of Femdale then acquired the

6



property and left it as open grassland designated as city park property (Field, 1997 as 

cited in Burrows et al., 1998).

In the summer of 1994, NSEA constructed a new channel that diverted the creek’s 

flow away from the road on a meandering course through the property; eventually 

spilling into the Lummi River (NSEA, 1995b). Following new channel construction, 

riparian vegetation and grasses were planted in the fall for raw bank stabilization. 

Extensive planting occurred in the spring of 1995 by the North Whatcom Rotary Club 

and other volunteers (NSEA, 1995b). Among the wide variety of riparian plants that 

were used for revegetation are Aims rubra (red alder) and Salix spp. (willow), which, 

along with Typha latifolia (common cattail) and invasive Phalaris arundinacea L. (reed 

canary grass), now dominate the restoration site. Other native plants used for 

revegetation in local riparian restoration efforts include Fraxinus latifolia (Oregon ash), 

Pseudostuga menziesii (Douglas fir), Populus balsamifera (black cottonwood), Picea 

sitchensis (Sitka spruce), Taxus brevifolia (Pacific yew). Thuja plicata (western red 

cedar), and Holodiscus discolor (oceanspray) (NSEA, 1995a). Currently, the vegetation 

on the north side of the culvert (referred to as the upper reach) is noticeably more 

productive than that on the south side of the culvert (referred to as the lower reach).

Experimental Design

Two tree species frequently used by NSEA in local riparian restorations, Alnus 

rubra (red alder) and Picea sitchensis (Sitka spruce), were utilized for this project.

Alnus rubra is a fast-growing deciduous species that is often found in moist, riparian 

habitats and participates in actinorhizal nitrogen-fixing symbioses (Barbour et al., 1999; 

Taiz and Zeiger, 1998). Picea sitchensis is a native conifer that is restricted to maritime

1



climates and prefers moist soil (Earle, 1999). Seedlings of both tree types were donated 

by NSEA, who acquired them from the Washington Conservation Commission’s Plant 

Materials Center. We hoped that using both a conifer and a deciduous species for 

experimentation would ensure more generalized and inclusive results.

Twelve 3.0 x 4.0 m blocks were created: six blocks for spruce and six blocks for 

alder (six replicate blocks per species). Within each block, two sets of four 1.0 x 1.0 m 

plots were separated by a 1.0 x 4.0 m buffer strip (Fig. 1).

I used a randomized split-split plot experimental design for a total of eight 

different treatments in each block (one tree per plot and treatment) (Fig 1). To test 

individual factors and factor interactions, the three treatment types, mycorrhizal 

inoculation, tillage, and fertilization, were administered in a full factorial cross-control 

plots (C); each group alone: tilling (T), mycorrhizae (M), fertilizer (F); all two-way 

combinations: tilling and mycorrhizae (TM), tilling and fertilizer (TF), mycorrhizae and 

fertilizer (MF); and the three-way combination: tilling, mycorrhizae, and fertilizer 

(TMF).

Six experimental plots, three blocks for each species, were established in both the 

lower and upper reaches of the site (Fig. 1). Block placement was limited by the need to 

coordinate with NSEA plantings.

Planting occurred on May 8, 2000 with the help of WWU and NSEA volunteers. 

Plots requiring a tilling treatment were tilled v^th a Rototiller just prior to planting: trees 

with tilling treatments were mulched three days after planting to prevent grass regrowth. 

Periodic weeding and Rodeo® application in following months were used to control the 

infiltration of weeds into the tilled areas. Those trees receiving mycorrhizae treatment
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were inoculated at the time of planting with Plant Success Root Dip Gel®, (Mycorrhizal 

Applications, Grants Pass, OR). Bare-root trees were dipped in the gel immediately prior 

to planting. The inoculum contained spores from five species of ectomycorrhizal fimgi, 

{Pisolithus tinctorius, and four species of Rhizopogon) and seven species of 

endomycorrhizal fungi, {Glomus mosseae, Glomus intraradices, Glomus clarum, Glomus 

monosporous, Glomus deserticola, Glomus brasilianum, and Gigaspora margarita). 

Expandable tubing was also placed around the base of the alder seedlings to protect 

against vole herbivory. Fertilizer treatments were administered after tree establishment 

and soil sample collection and analysis by SoilTest (Moses Lake, WA) to determine 

nutrient deficiencies at the site (Table 1). Using SoilTest’s results, the Whatcom Farmers 

Coop mixed a fertilizer medium meeting the specific needs of our soil. Fertilizer was 

applied approximately two months after planting on July 13,2000 and was reapplied 

approximately a month later on August 22, 2000. Per application, 85 g of fertilizer in 

pellet form was distributed around the base of the specified trees, resulting in an 

application of 20.29 g Nitrogen, 12.16 g Phosphorus, and 4.38 g Sulfur, per square meter. 

Watering on July 20, 2000 (two gallons of stream water per tree) was necessary to 

dissolve the fertilizer after the first application, but rain following the reapplication 

eliminated the need for a second watering.

Assessment of Productivity

Height growth, total growth, and photosynthesis rates were measured to determine 

differences in productivity among treatments. Height measurements were taken on May 

23, June 7, June 22, July 5, August 4, and September 6,2000. Alder heights were taken 

as the distance from the base of the tree to the apical meristem. Since the apical meristem
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on the spruce was sometimes difficult to determine, we measured from the base to the 

greatest vertical extent of the tree. Final height results were then compared to initial 

measurements to achieve height growth values.

Photosynthetic rates of the alder were measured using a LI-COR 6400 (LI-COR, 

1999). Measurements were taken on July 26, 2000. Leaves for measurement were 

chosen that were mature and receiving full sun (i.e., those leaves most representative of 

maximum photosynthesis). Measurements were taken for approximately one minute 

using “survey mode”. The chamber environment was set to ambient conditions (LED: 

1800 PAR, CO2 levels: 428 ppm. Relative Humidity: 41%, Flow: set to maintain constant 

humidity). Two leaves per tree were sampled, and the measurements were averaged to 

get an average photosynthetic rate for each tree.

Total stem length of each tree was measured on September 6, 2000 to determine 

total growth. Total stem length included the height of the main stem axis, as well as the 

length of the branches and sub-branches. This measurement was compared to the initial 

tree height to get total growth, since branching was minimal in seedlings.

Soil Moisture

We used Time Domain Reflectometry (TDR) to test our hypothesis that the 

variable productivity of the revegetated trees at the Schell Creek was due to differences in 

water availability between the upper and lower reaches of the site. TDR is a method that 

determines the dielectric consteint of moist soils by the rate of electromagnetic pulse 

return and then converts the result to volumetric water content (Cassel et al., 1994; 

Herkelrath et al., 1991). We used a three-prong method and placed two sets of 30 cm and 

60 cm probes in each block, one probe set of each length in both the tilled and non-tilled
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areas. TDR measurements were taken on June 29, July 13, August 1, August 22, and 

September 5, 2000.

Statistics

All analyses of variance and regressions were done using the General Linear 

Model in SYSTAT (SYSTAT, 1999). The dependent variables, height growth, total 

growth, and photosynthesis rates were analyzed using a factorial model incorporating 

reach (upper and lower), with and without tilling, with and without fertilizer, and with 

and without mycorrhizae. The model was described as: variable= constant + reach + 

block(reach) + fert + myc + till + fert*myc + fert*till + fert*reach + myc*till + 

myc*reach + till*reach + fert*myc*till + fert* myc* reach + fert*till*reach + 

myc*till*reach + fert*myc*till*reach. Water availability was determined using the 

following model: soil moisture = reach + block(reach) + till + reach*till. The block 

effects were nested within the reach effects for both treatment and water availability 

analyses, and each measurement date for soil moisture was analyzed separately.

Results

In terms of soil moisture, the upper reach was significantly wetter than the lower 

reach. At the 30cm depth, soil moisture in the upper reach was significantly greater than 

that of the lower reach in both the tilled and non-tilled areas of each block throughout the 

summer (Fig. 2). Upper reach soil moisture values in the tilled areas averaged 35 % 

saturation, while those in the lower reach averaged 25% saturation. Upper reach soil 

moisture in the non-tilled areas averaged 21% saturation, while those in the lower reach 

averaged 14% saturation (Fig. 2). A similar pattern was found at 60cm depth (Fig. 3).
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Upper reach soil moisture values in the tilled areas averaged 43% saturation, while those 

in the lower reach averaged 30% saturation. Upper reach soil moisture values in the non- 

tilled areas averaged 35% saturation, while those in the lower reach averaged 22% 

saturation (Fig. 3). Many of the experimental seedlings in the upper reach were 

waterlogged during the wetter early summer months, leading to mortality in one alder and 

six spruce.

The alder grew significantly more in height in the lower reach them in the upper 

reach (Fig. 4). Tilling had a significant positive effect on height growth in the lower 

reach; the trees that received a treatment with tilling grew significantly more than those 

without. The other treatments had negligible effects on alder height growth (Fig. 4). The 

total growth of alder in the lower reach was significantly greater than that in the upper ■ 

reach (Fig. 5). Tilling also had a significant positive effect on total growth in the lower 

reach. There was a trend for a fertilizer, mycorrhizae, tilling interaction: fertilizer and 

mycorrhizae together had a positive effect on total growth, but only in the presence of 

tilling (Fig 5). Patterns for maximum photosynthesis were similar to those for growth, 

though not as strong (Fig. 6). Photosynthesis rates for the alder were significantly greater 

in the lower reach, and there was a trend for a positive tilling effect in the lower reach 

(Fig. 6).

There was a trend for a positive effect of mycorrhizae on spruce height growth in 

the lower reach (Fig. 7). Other treatments had negligible effects. The total growth of the 

spruce was significantly greater in the lower reach (Fig. 8). A significant mycorrhizae 

effect was visible in the lower reach, but this was muddled by interactions with the other 

treatments. For example, seedlings inoculated with mycorrhizae alone exhibited greater
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total growth than those receiving mycorrhizae treatments in combination with tilling, 

fertilizer, or both (Fig. 8).

Note: Mortality was excluded from statistical analyses of treatment effects, however, 

including values of “zero” for dead trees did not change results.

Discussion

The greater water availability in the upper reach than in the lower reach (Fig, 2 

and 3) may explain the difference in productivity of the revegetated tree growth between 

the upper and lower reaches of the Schell Creek site. Tree cores revealed that the 

revegetated alder in the upper reach were one to two years older than the trees in the 

lower reach, but this slight age difference would not account for the large observable 

difference in productivity. This issue does, however, deserve further investigation. The 

additional soil moisture in the upper reach would enable the established alder trees to 

maintain a higher level of productivity throughout the summer months in the past years 

than those trees in the drier lower reach, therefore leading to overall greater growth in the 

upper reach (Taiz and Zeiger, 1998).

Whereas increased soil moisture appeared to improve growth of established trees, 

it had a negative effect on newly planted seedlings. Most of our measurements showed 

that the experimental trees grew best in the lower reach where there was less soil 

moisture (Fig. 4,5,6, and 8). The saturated soil conditions in the upper reach created a 

hypoxic and anoxic root environment, thus limiting aerobic root respiration (Lambers et 

al., 1998). These conditions caused poor growth in most cases, and prevented the 

treatments from having much effect on the experimental trees in the upper reach.
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The soil moisture inquiry also revealed that the tilled areas were wetter than the 

non-tilled areas (Fig. 2 and 3). By tilling, we decreased the number of plants absorbing 

water, thereby decreasing the amount of evapotranspiration (Lambers et al., 1998; Taiz 

and Zeiger, 1998). As said before, however, this increased soil moisture was not 

beneficial to experimental trees in the upper reach where water-logging was a problem.

In addition, by eradicating grasses, the tilling treatment reduced competition for nutrients. 

This resulted in more water and nutrients available for uptake by experimental trees in 

tilled areas, thus improving their productivity. These ideas help explain the alder results, 

where seedlings exhibited significantly greater growth and photosynthesis in tilled areas 

(Fig. 4, 5, and 6).

Inoculating with mycorrhizae tended to have a positive effect on spruce growth 

(Fig. 7 and 8), which was not surprising given Sitka spruce’s tendency to engage in 

ectomycorrhizal symbioses (Harley and Smith, 1983; Smith and Read, 1997) and the 

site’s phosphorus shortage and potential deficiency in the proper mycorrhizae. The 

alders’ lack of response to the treatment was initially puzzling because it has been shown 

that red alder also exhibit and benefit from mycorrhizae (Harley and Smith, 1983;

Molina, 1979; Smith and Read, 1997). After learning that we had been misinformed 

about the content of the gel inoculum, however, the reasons for this result became clear: 

the ftmgal symbionts that have been shown to associate with red alder, Alpova - 

diplophoeus, Paxillus involotus, Astraeus pteroides, and Scleroderma hypogaeus (Harley 

and Smith, 1983; Molina, 1979; Smith and Read, 1997), were absent from the mixture 

used for the mycorrhizae treatment. Pisolithus tinctorius, one of the many mycorrhizal 

fungi commonly utilized by Sitka spruce (Harley and Smith, 1983), was, on the other

14



hand, present in the inoculum. The mycorrhizae treatment didn’t have an effect on either 

experimental tree species in the upper reach which exhibited increased soil moisture and 

waterlogging in early summer months (Fig. 3-8). These results are consistent with 

findings showing that mycorrhizal infection can be reduced in waterlogged habitats 

(Smith and Read, 1997).

Contrary to our predictions, seedlings receiving a combination of all treatments 

did not always exhibit the greatest productivity. This idea was illustrated by the spruce 

total growth results, where mycorrhizae had a significant positive effect alone, but was 

less effective in combination wdth the other treatments (Fig. 8). These negative treatment 

interactions have potential biological explanations. In regard to a fertilizer-mycorrhizae 

interaction, it has been shown that mycorrhizal fungi may be suppressed or even exhibit 

parasitic behavior in the presence of abundant phosphorus (Lumbers et al., 1998; Marler 

et al., 1999), a main component of our fertilizer. Mycorrhizal infection has also been 

found to be hindered in tilled soil (McGonigle and Miller, 1996), which could explain the 

negative tilling-mycorrhizae interaction.

An interesting finding from this study was that fertilizing had essentially no effect 

on seedling success. This would suggest that low nutrient availability was not a limiting 

factor, but the soil test (Table 1) revealed otherwise. And it has been shown that fertilizer 

treatments, especially nitrogen on spruce and phosphorus on alder, tend to improve 

growth (Brovm, 1999; Chandler and Dale, 1995). This contradiction can perhaps be 

explained by the tardiness of the fertilizer treatment. The experimental trees were only 

exposed to the treatment for two months before the final measurements. Following
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experimental tree productivity in future years may show less ambiguous effects of the 

fertilizer treatment.

Competition from grasses was found to have the biggest influence on the success 

of seedling growth, and it was the ecosystem factor most limiting establishment of 

seedlings, especially alder, on this site. NSEA and other riparian restoration authorities 

have acknowledged the importance of reducing competition (Durkee-Neuman et al.,

1999; Landers, 1997; Olson and Harris, 1997), and methods aimed at this goal have been 

incorporated into restoration schemes. Common procedures include weedwacking, 

mulching, and herbicide application (Durkee-Neuman et al., 1999). Mycorrhizal 

inoculation of restoration vegetation, although it has been utilized to some degree (Smith 

and Read, 1997), does not seem to be common a practice. Given the positive effect of 

mycorrhizae on Sitka spruce seedlings at the Schell Creek site, (and potentially on red 

alder given the proper circumstances), we recommend that future studies explore the 

advantages of using mycorrhizae as a restoration tool, especially in low nutrient areas.

As seen in the mortality data, alder seedlings at Schell Creek were better able to cope 

with the saturated soil conditions than spruce seedlings, but both species were impaired 

by the excess soil moisture. Plant species have varying tolerances ranges in regard to 

water availability and other resources (Barbour et al., 1999; Lambers et al., 1998; Raven 

et al., 1999). With this as just one among many reasons, we agree with the consensus 

that it is necessary to assess and consider the complex abiotic conditions of an area when 

choosing project sites and vegetation for restoration planting (Goodwin et al., 1997; 

Kershner, 1997; Olson and Harris, 1997). This idea is becoming widely incorporated into 

riparian restoration recommendations and designs (Kentula, 1997; Kershner, 1997).
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Fortunately, riparian restorations are improving in number and success (Goodwin 

et al., 1997), but as discussed, the convoluted science of riparian restoration is still far 

from perfected. As natural riparian ecosystems continue to be stressed by the ever- 

expanding human population, further development of this approach will become 

increasingly important for preserving these environments. By paying close attention to 

individual ecosystem factors (such as competition, mycorrhizal associations, and abiotic 

conditions), scientists will continue to fine-tune their restoration efforts to better 

accommodate the needs of specific ecosystems, leading to improved sustenance of these 

fragile habitats that are so vital to global health.
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Table 1. Results of soil test done on soil samples from the upper and lower reaches of the Schell 
Creek Restoration Site. Interpretation guide shows relative levels of important nutrients, where 
H=high, M=medium, and L=low in relation to red alder and sitka spruce requirements.

Up 3er Reach
Actual Soil Test Results Interpretation Guide

Nitrate Nitrogen 2 ppm Nitrogen L
Available Phosphorus 2 ppm Available Phosphorus L
Potassium 209 ppm Potassium H
Sulfur 3 ppm Sulfur L
Boron 0.4 ppm Boron M
Zinc 2.1 ppm Zinc H
Manganese 32.3 ppm
Copper 3.3 ppm
Iron 320 ppm
Calcium 1480 ppm
Magnesium 546.8 ppm

Lower Reach
Actual Soil Test Results Interpretation Guide

Nitrate Nitrogen 2 ppm Nitrogen L
Available Phosphorus 1 ppm Available Phosphorus L
Potassium 87 ppm Potassium M
Sulfur 2 ppm Sulfur L
Boron 0.3 ppm Boron M
Zinc 1.8 ppm Zinc H
Manganese 8.5 ppm
Copper 1.6 ppm
Iron 157 ppm
Calcium 1360 ppm
Magnesium 619.7 ppm



Figure. 1. Schell Creek Riparian Restoration Site location in Washington, site map, and example 
block layout with treatments (F=fertilizer, myc=mycorrhizae, till=tilling).

Figure 2. Water content at 30cm depth on five dates during the summer of 2000 in the tilled and 
non-tilled portions of blocks in both the upper and lower reaches of the Schell Creek Riparian 
Restoration Site. Measurements made with Time Domain Reflectometry.

Figure 3. Water content at 60cm depth on five dates during the summer of 2000 in the tilled and 
non-tilled portions of blocks in both the upper and lower reaches of the Schell Creek Riparian 
Restoration Site. Measurements made with Time Domain Reflectometry.

Figure 4. Average height gro\vth of alder receiving eight different treatments (till, myc, fert, 
t*m, t*f, f'm, t*m*f) in the upper and lower reaches of the Schell Creek Riparian Restoration 
Site.

Figure 5. Average total growth of alder receiving eight different treatments (till, myc, fert, t*m, 
t*f, f*m, t*m*f) in the upper and lower reaches of the Schell Creek Riparian Restoration Site.

Figure 6. Average photosynthetic rate of alder receiving eight different treatments (till, myc, 
fert, t*m, t*f, f'm, t*m*f) in the upper and lower reaches of the Schell Creek Riparian 
Restoration Site. Photosynthesis measured using a Licor LI-6400, and units are in pmol m'^s'*.

Figure 7. Average height growth of spruce receiving eight different treatments (till, myc, fert, 
t*m, t*f, f'm, t*m’'‘f) in the upper and lower reaches of the Schell Creek Riparian Restoration
Site.

Figure 8. Average total growth of spruce receiving eight different treatments (till, myc, fert, t*m, 
t*f, f'm, t*m*f) in the upper and lower reaches of the Schell Creek Riparian Restoration Site.
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