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Abstract: Cypress Island, Washington is composed of three distinct rock units separated 
by two major faults with east-west trending surface traces. The rock units are from south 
to north; an ultramafic unit with varyingly serpentinized harzburgite, a volcanic/ 
sedimentary unit composed of basalt, numerous pelagic sediments and serpentine, and a 
greywacke unit. The orientations of the fault contacts at depth are not interpretable by 
surface data. This study compiled magnetic data from several sources to model 
subsurface geologic aspects of the island. Magnetic anomaly profiles were created from 
the data, then analyzed and modeled using the computer program GM-SYS. The primary 
goal of this study was to model the orientation of the fault separating the ultramafic unit 
from the volcanic/sedimentary unit. The results indicate that the fault has a high-angle 
south dipping orientation. Data collected also indicate unexpected large quantities of 
subsurface magnetic material in the volcanic/sedimentary unit. Due to the presence of 
small amounts of serpentine found as outcrop in this unit, these subsurface magnetic 
bodies are interpreted to be serpentine as well. The distribution and quantity of this 
serpentine suggests that the sedimentary/volcanic unit is a serpentine melange.
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Introduction: Cypress Island, of the San Juan Islands, Washington, presents a near ideal 

location for using modeling of magnetic anomaly data to examine and describe sub­

surface geologic characteristics. The island has both important structures that are not 

interpretable by surface data alone, and a unique arrangement of rock units of highly 

varied magnetic susceptibilities creating excellent magnetic anomaly profiles. These 

profiles present the opportunity to model and interpret the sub-surface characteristics of 

the island to create a more complete picture of the structures only hinted at by exposures 

at the surface. This study added newly collected magnetic data to a compilation of 

previously measured data with the purpose of modeling large-scale structures of Cypress 

Island.

Cypress Island lies on the eastern edge of the San Juan Islands, which are located 

between Vancouver Island, British Columbia, and the northern coast of Washington. The 

overall composition of the island is fairly simple with three distinct rock units separated 

by two major faults with roughly east-west surface traces (Fig. I). However, the 

geometries of these faults at depth are ambiguous and preliminary fieldwork done for this 

study examining surface exposures found no definitive structural indication of orientation 

or offset for either. Previous work concurs with this finding, with McLellan (1927) and 

Whetten (1975) mapping both faults as south-dipping thrusts, with the dip of the northern 

fault “inferred”. More recently, Lapen (2000) mapped only the surface traces and 

specified the dips and offsets of both as unknown. This uncertainty is the result of a lack 

of well-exposed contacts, as much of the island is covered in growth and exposed rocks 

are often extensively weathered.
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Figure 1. Map of Cypress Island showing relevant locations, including the two major 
faults and the rock units separated by the faults. The southern fault was modeled in this 
study. Fault traces are those mapped by Lapen (2000). Inset shows study location as 
white rectangle (modified from Sterner, 1995).

The southern fault separates highly magnetic ultramafic rocks in the southern 

two-thirds of the island from magnetically quiet volcanic and sedimentary rocks in the 

middle. These volcanics and sediments are then separated from similarly magnetically 

quiet greywacke to the north by the northern fault (Fig. I). Based on this configuration

4



and the properties of these units, a north-south magnetic profile of the island reflects 

almost exclusively characteristics of the ultramafic rocks. By modeling the shape of the 

ultramafic unit using the large-scale aspects of such profiles, the orientation of the 

ultramafic-volcanic/sedimentary contact, and therefore the geometry of the southern fault 

at depth, can be examined. This was the primary focus of the study. While the northern 

fault cannot be examined in this manner, as it is a contact between relatively non­

magnetic units, other implications for sub-surface configuration based on the smaller 

scale aspects of the data can be modeled and considered.

Although magnetic data had previously been collected for the area in general and 

for the island in particular, a comprehensive attempt to model the sub-surface structures 

of the island had not been performed. This study compiled a number of these data 

sources, along with collecting new data, to create and compare multiple models of the 

island.

Geology: Cypress Island has experienced the scrutiny of geologists for a considerable 

length of time. These investigations have ranged from perfunctory glances as part of 

larger studies to in-depth petrologic examinations of one unit of the island (Brandon et 

al., 1988; Raleigh, 1965). As a result of these studies, and the presence of the same rock 

units on Cypress as at other closely examined locations, a considerable amount is known 

and surmised about the geologic history of the area and the island.

Jurassic ultramafic rocks comprise the southern two-thirds of Cypress Island and 

correlate with the lowest part of the Fidalgo ophiolite of Brown et al. (1979) and the 

Fidalgo Igneous Complex of Brandon et al. (1988) (Fig. 1). They are also exposed on
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several surrounding islands, including excellent outcrops on nearby Fidalgo Island 

(Gussey, 1978; Lapen, 2000). Serpentinization from hydrothermal alteration has 

occurred in varying amounts throughout the unit, causing local areas to appear from near 

black to slippery green. Unserpentinized areas are predominantly harzburgite with small 

areas of dunite (Brown et al., 1979; Lapen, 2(XX)). These rocks have generally been 

interpreted to be the lowest part of an ophiolite. On Fidalgo Island they lie at the base of 

an essentially continuous stratigraphic column with overlying gabbro and tonalite topped 

by felsic volcanic sediments. Based on this sequence and chemical analysis, this 

complex is thought to be of island arc origin, although that interpretation is not 

conclusive (Brown et al., 1979). Other possibilities include that the ultramafics are the 

base of a regular piece of ocean crust, or the base of continental crust.

The northernmost unit of Cypress Island is a well bedded to massive greywacke 

cross cut by an extensive quartz vein system representing several periods of post 

depositional deformation. These greywackes are considered part of the Lummi 

Formation as identified by Vance (1975). Turbidite sequences along with other 

structures suggest that these rocks were deposited in a sub-marine environment (Brandon 

et al., 1988). The rocks on Cypress Island represent only a portion of the total unit that 

can be observed more completely on Lummi Island. On Lummi Island, the unit ranges 

from pebble conglomerate to mudstone, with greywacke as an intermediate. Also on 

Lummi Island, gradationally underlying these epiclastic sediments are radiolarian cherts 

(Carroll, 1980; Lapen, 20(X)). The age of this unit has been determined as late Jurassic to 

early Cretaceous (Carroll, 1980).
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The middle section of this island is predominantly Jurassic pillow basalt, basaltic 

breccia and to a lesser extent greywacke. This is a marked difference from the other two 

units comprising the island which are both composed almost exclusively of one distinct 

rock type. Like the northern greywacke unit, this middle unit is classified as part of the 

Lummi Formation. Elsewhere, correlated Lummi Formation basalts have been defined as 

mid-ocean ridge basalts (MORE), or remains of ocean floor formed at a spreading center 

upon which oceanic sediments were deposited (Brandon et al., 1988). Excellent 

corresponding outcrops on nearby Lummi Island showing pillow basalts overlain by 

chert, argillite and greywacke are evidence for this ocean crust interpretation. The basalt 

of Cypress Island’s middle section contains many discemable pillows and this, along 

with chemical analysis, implies it too is MORE (M.C. Blake, Western Wash. Univ., 

unpublished data, 2000). However, as mentioned, many other rock types are also present 

in the middle section of Cypress Island.

The most thoroughly distributed of these secondary rocks are blocks and lenses of 

serpentine, seen as large and small isolated outcrops throughout the basalt unit. Argillite 

and greywacke are also present, with one outcrop near Eagle Harbor lO’s of meters long 

and tall (Fig. 1). Chert is also found in several locations. Through chemical analysis, it 

has been determined that the basalt that makes up Eagle Cliff on Cypress Island and parts 

of the near-by Cone Islands is not MORE, but a second, more alkalic basalt like those 

produced at mid-ocean hotspots (Fig 1). Basalt of this origin is referred to as ocean 

island basalt (OEB). Intrusives of the same chemistry as the OIB are also seen, 

presumably the remnants of the feeder dike of the OIB (M.C. Blake, Western Wash. 

Univ., unpublished data, 2000).
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One possibility for the proximity of these two basalt types is that an island was 

made by intrusion of a hotspot through the ocean floor, placing the OIB on top of the 

MORB. This island and the underlying plate could then have been subducted and carried 

to depth under the overriding continental plate or island arc where they would have been 

metamorphosed (Fig. 2). This model is supported by the presence of the metamorphic 

minerals aragonite and lawsonite along with other blueschist facies minerals throughout 

both the greywacke and basalt sections of Cypress Island (although not in the 

ultramafics) (Carroll, 1980). These minerals are indicative of rocks subjected to 

conditions of significant depth but with relatively low temperatures, like those found in a 

subduction zone.

Chert and other

Figure 2. Possible tectonic model for rock units found on Cypress Island. Note two 
possible locations for the source of the ultramafic rocks.

As the island was carried to the subduction zone, chert and other pelagic 

sediments could accumulate. When it neared the continental margin, greywacke would 

then be deposited (Fig. 2). This model accounts for all of the rock types of the Lummi 

Formation seen on Cypress Island.
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This model leaves at least two possibilities for the ultramafics. Brandon et al. 

(1988) suggested that the Lummi Formation was deposited on top of the Fidalgo 

ophiolite, including the ultramafics, during the formation of oceanic crust, making 

Fidalgo and Lummi part of the same terrane. More recent work has concluded that due to 

the differences in metamorphic grade (blueshist facies for the Lummi Formation vs. 

relatively unmetamorphosed Fidalgo Ophiolite), as well as structural and stratigraphic 

incompatibilities, these units were instead placed in proximity after being transported 

from different locations and are in fact separate terranes (Blake et al., 2000). A second 

possibility based on the model presented here is that the ultramafics were part of the 

overriding continental plate and were placed in contact with the Lummi Formation during 

subduction.

Data Collection and Preparation: The majority of the data collected and used in this 

study involved magnetic anomaly transects. These are collected as a series of 

measurements in a more or less linear path of the total magnetic field over a feature or 

area. The total magnetic field (also called the observed or measured field) equals the 

field generated by the Earth at a given point (the expected field) plus or minus any fields 

created by magnetic bodies large enough to affect the Earth’s field at that point (the 

magnetic anomaly) (Fig. 3). The Earth’s (expected) field is relatively constant in 

direction and magnitude for a given location on the Earth’s surface. This field acts a 

vector and interacts with the anomalous fields generated by magnetic bodies in the area. 

These bodies’ fields also act as vectors which add to or subtract from the Earth’s field, 

creating positive and negative anomalies in the measured field.
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Figure 3. The vectors of the field generated by an anomalous body add to or subtract 
I from the Earth’s field at a given point creating a measurable magnetic anomaly. Where

the arrows point the same direction, the anomaly is positive. Where the arrows oppose 
each other the anomaly is negative. Black arrow is Earth’s/expected field. Blue lines are 
the anomalous field generated by a buried magnetic body. Red line is the total/measured

I
 field and its distance above and below the green line equals the anomaly. The person

uses a magnetometer to measure the total field.

Measurements taken are of the total magnetic field, reflecting both the magnitude

and direction of the Earth’s field and the fields generated by any anomalous bodies.

Identification of the anomalous magnetic bodies is the purpose of these measurements,

and so their effect needs to be extracted from the raw total field measurements. The

magnetic anomaly is the magnitude of this effect, and is calculated by subtracting the

expected field at a location from the observed field. This removes the Earth’s field from

the measurement and leaves a positive or negative number quantifying the affect of any
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anomalous magnetic bodies at that point. Combining a series of these corrected 

measurements in a transect creates a magnetic anomaly profile, which can then be used to 

interpret what the properties of the anomalous magnetic bodies may be (Fig. 4).

Distance in km

Figure 4. Upper graph shows raw observed field measurements for a water based transect 
of Cypress Island. Values are near those of the Earth’s magnetic field of 55,950 nT. 
Lower graph is anomaly values of the same transect created by subtracting the Earth’s 
magnetic field from the upper graph. Note minor differences in shape and positive and 
negative values with magnitudes less than 1000 nT. The lower graph is an anomaly 
profile, the data form all modeling was done with.

Magnetic data for Cypress Island were available in two forms at the beginning of 

this study. An air-based survey (aeromag) was conducted by Blakely et al. (1999) over 

most of the San Juan Islands and a significant portion of the surrounding area. These
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data were taken as a grid with data points separated by 222 meters (.002°) horizontally 

north/south and east/west 500 meters above topography. For this study, values for two 

north to south transects over the island and adjacent water were extracted from this grid 

(Fig. 5). Water-based transects had been conducted by Engebretson (Western Wash. 

Univ., unpublished data, 1996) off the northeastern shore of the island. These data were 

much less regularly spaced and oriented, with values taken approximately every 30 

meters in a roughly northwest to southeast line. Bathymetry measurements averaged 

around 30 meters. One transect was created from these data and used in this study (Fig. 

5).

In addition to these two pre-existing data sets, a ground-based survey was 

conducted and used this study. The two tools used for this survey were a GPS unit and a 

magnetometer. The GPS unit was a Garmin GPS III PluSj which gives a latitude and 

longitude location in degrees and minutes, with minutes given to three decimal places. 

The magnetometer was a Geometries G-856 Memory-Mag Proton Precession 

Magnetometer. Magnetometer readings are given in nanotesla (nT) to one decimal place. 

For reference, the Earth’s expected magnetic field on Cypress Island is around 55,950 nT.

A north to south transect of the island was made (Fig. 5). Measurements of both 

location and total magnetic field were taken for approximately each hundredth of a 

minute distance change in latitude. This translates to measurements taken about every 20 

meters along north-south line, meaning all near surface objects 10 meters and bigger 

would be detected by the magnetometer.
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2 0 2 4 Kilometers

Inferred Fault Location 
Susceptibility Sample Locations 
West Aeromag Transect 
East Aeromag Transect 
Water Transect 
Ground Transect 
40 m Contours

Figure 5. Locations of transects, susceptibility samples and the inferred fault locations. 

All four of these transects were then converted into magnetic anomaly profiles for

modeling (Appendix A). The aeromag data were already in this form, with anomaly 

magnitude as a function of latitude, as longitude was fixed. The water and ground based
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data were in observed values. Calculating the anomaly requires the expected field value 

at each point. Calculations of the expected field require latitude, longitude, elevation and 

date to account for fluctuations of the Earth’s magnetic field through space and over time. 

All locations and the elevation of the water based transect were known. For the ground- 

based transects, elevation was obtained from a digital elevation map (DEM) of the island 

using ArcView and the known latitude and longitude of each point. With this 

information, the program GEOMAG (Quinn, 2000) calculated the expected field at each 

data point. With the expected and observed field values known, the anomaly at each 

point was calculated, turning the water and ground based transects into anomaly profiles.

The final data used in this study were magnetic susceptibility values for the rocks 

on Cypress Island. Susceptibility is the quality of a rock that controls the relationship 

between the magnetic field applied to the rock and the magnetic field generated by the 

rock. More specifically, it is the unitless coefficient which describes the linear 

relationship between the applied and induced fields for a given rock (H = kM, where k is 

susceptibility, H is induced field and M is applied field). A bigger susceptibility means a 

larger magnitude magnetic field generated by a rock for a given applied field. In the case 

of Cypress Island the applied field is that generated by the Earth.

These values are important for this study for two major reasons. The first is to 

insure that any susceptibility values used to model the island are close to the actual values 

measured. The second is to confirm an assumption used to model the island, namely that 

the ultramafic rocks are the only rocks magnetic enough, or with high enough 

susceptibilities, to have contributed significantly to the measured anomalies. The basalt 

and greywacke are assumed to have a negligible affect on the anomaly profile as both
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should have low susceptibilities. This is certainly the case for the greywacke, but basalts 

can and do have large susceptibilities.

Magnetic susceptibility values for rocks in the San Juan Islands are reported by 

Burmester (2000). This information was in database form at the Pacific Northwest 

Paleomagnetism Lab. While some of the samples were specified by rock type, others 

were only labeled by location. The locations of samples taken on Cypress Island were 

plotted on a map of the island using ArcView, thereby linking the location database to the 

map (Fig. 5). The database containing susceptibility values was then linked to the 

location database. This created a way to determine what rock types the samples were and 

their susceptibilities by visually observing where on the island they were taken.

The results of this inquiry supported the assumption that the ultramafic rocks are 

the only significant contributor to the anomalies measured on Cypress Island. The median 

magnetic susceptibility found from the samples for the ultramafic rocks is 0.05 in SI units 

and values ranged from 0.01 to 0.33. This is an order of magnitude higher than the basalt 

samples, which have a median of 0.008 and values from 0.002-0.06 (Appendix B). These 

are predominantly small enough values that the large-scale magnetic affects of these 

rocks can be ignored in the modeling. All values are well within the range for these rock 

types found by other researchers (Hunt et al., 1995).

Modeling Parameters: The modeling program used in this study was GM-SYS 

(Northwest Geophysical Associates, Inc., 1998). GM-SYS allows the user to design a 

geologic model that may have generated an observed anomaly. The program then 

calculates the interaction between the Earth’s field and the geologic model and displays
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the anomaly for that model. The observed and the modeled anomalies can then be 

visually inspected for correspondence and the program calculates the RMS (root mean 

square) misfit between the two. The model and modeled anomaly are instantaneously 

linked, so changes in the model immediately change the modeled anomaly. In this way 

the geologic model may be revised by trial and error to arrive at the smallest possible 

misfit between observed and modeled anomalies.

The program requires the input of several parameters. The first of these is the 

azimuth of the transect so that the model is oriented with respect to the Earth’s field, 

which in all cases for this study was north-south. Next, the height of the measurements 

above the rocks must be specified; this is to account for the decrease in magnitude of the 

field generated by the rocks over distance. These values are known for all of the 

transects. The susceptibilities of the rocks in the model are also a variable. Values used 

were kept within the constraints dictated by the actual susceptibilities measured on the 

island, and the ultramafics and serpentine blocks were considered the only measurably 

magnetic rocks. Other parts of the models include air, water, basalt (representing the 

mixed rocks of the middle section), greywacke and unspecified “crustal rock”. All of 

these were assigned zero magnetic susceptibility and acted as spatial fillers around the 

ultramafic block.

The variable with the greatest range of possibilities is the geometry of the rocks. 

This is strongly influenced by the field data; only rocks seen in the field were used in the 

model. Also, certain configurations are extremely unlikely, both based on what is seen 

on the island and on general knowledge of geology. The relatively simple general 

geometry of the contacts on Cypress Island simplified matters considerably.
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A critical assumption simplifying the rock geometry was that the lowest value of 

the measured anomalies was located at the point where the southern (ultramafic/basalt) 

fault contact reached the surface. In other words, the lowest measured field value for 

each transect was measured directly over the fault trace (Fig. 6). This was observed in 

the field (Engebretson, oral communication, 2002) and was reinforced by plotting the 

location of several of these low values on a map. These points are aligned with the 

known trace of the fault (Fig. 1, 5).

Figure 6. The lowest measured total field (and anomaly) value corresponds to the surface 
location of the fault. The location in latitude and longitude of these lowest measured 
values are plotted on figure 5, corresponding to the fault trace.

This surface trace/lowest measured value association is important as it fixes a 

point for the models. This reduces the possibilities for the shape and location of the fault 

by requiring the fault to contact the surface directly at the lowest measured field value. 

This meant for the fault only the dip angle and depth were orientation variables. To 

eliminate depth as a variable, trial models were made with the same fault orientation but 

with varying ultramafic block depths (e.g, 2 km vs. 20 km). This was found to have a 

minimal affect on the modeled anomaly, particularly after a depth of around 4 km. This
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depth was chosen as a constant for all of the models as a realistic estimate of the fault 

depth.

Geologic Models of Cypress Island: The first step in the modeling was to ascertain the 

orientation of the southern, ultramafic-volcanic/sedimentary fault. This was the primary 

focus of the study, and it established the general geometry of the island for later, more 

complicated models. This was done by using the above assumptions and constants and 

by varying the fault dip. Susceptibility for the ultramafic unit was also adjusted for each 

model to acquire the best model to measured anomaly fit. Values used ranged from .012- 

.047 in SI.

The comparison process used was to model multiple fault dips covering the range 

of possibilities and examine which modeled orientation had the best fit to the measured 

anomalies. As the fault trace runs east to west, the only dips modeled were north, vertical 

and south. Five different fault orientations were used. These are north-dipping high 

(60°) and low (30°) angle, vertical, and south-dipping high and low angle. To check for 

consistency, each orientation was modeled against the same three anomaly profiles. The 

water transect and an aeromag transect that ran over it were chosen in order to compare 

the same features at different heights. Also chosen was a second aeromag transect that 

ran roughly over the north-south land transect (Fig. 5).

This created a total of fifteen models, or five sets of the same three transects, 

which were then compared. For each model, the program calculated an RMS value, 

which is a statistical average of the difference between the modeled and actual anomaly 

for all of the data points for a given transect. For this reason, differences in transect
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length or number of data points are accounted for and a comparison between models can 

be made. This is displayed by GM-SYS both as a number in nanotesla (nT, magnetic field 

strength) and by an error line that shows the magnitude of difference at each point 

between the modeled and measured anomalies. For each fault orientation, the sum of the 

error for the three transects was calculated for comparison with the other orientations 

(Fig. 7, Appendix C).

After summing the error values for the three models for each fault dip orientation, 

the orientations were ranked with the smallest error sum being the most likely geometry. 

This order was south dipping high-angle with 318, vertical with 370, north dipping high- 

angle with 478, south dipping low-angle with 520 and north dipping low-angle with 670. 

Based on this, the south dipping high-angle orientation was assumed to be most likely 

and was then used for subsequent modeling.

The ground transect was not used in the modeling of the fault orientation. The 

initial purpose for this transect was to acquire near-source data to compare with the water 

and aeromag data in order to model the fault more accurately. However, for the north- 

south land transect the obvious sudden drop in the anomaly at the fault present in the air 

and water based transects is overwhelmed by spikes and troughs of the measured 

anomaly (Fig. 8). The relatively smooth anomaly curve of the water and aeromag 

transects which was influenced primarily by the shape of the fault is almost totally 

overprinted by extreme local variations in the measured field. This made the transect 

difficult to use for modeling of the fault but did indicate large variations in magnetic 

susceptibility in both the ultramafic and volcanic/sedimentary units.

19



Water Transect-Steeply Dipping South Model: RMS = 84

East Aeromag Transect-Steeply Dipping South Model: RMS = 63
(/)

Distance (km)

Figure 7a. South dipping high-angle fault models. RMS sum for this orientation is 318, 
the smallest misfit of the five orientations. Profiles are from south to north. “S” indicates 
susceptibilities, with values given in SI. Blue V’s represent the locations at which 
measurements were taken.
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Figure 7b. North dipping low-angle fault models. RMS sum is 670, the highest misfit of 
the five orientations.
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One interesting aspect of the ground-based data is the anomaly fluctuations in the 

volcanic and sedimentary unit of the Lummi Formation. Based on the measured 

susceptibilities of the basalts and other rocks in this middle section, this unit should have 

a relatively low anomaly profile compared to the ultramafics. The anomaly data actually 

show larger anomaly values in this unit than in the ultramafic unit (Fig. 8). The source of 

these fluctuations may be the serpentine bodies found in the midst of the middle section 

of the island. As mentioned, these are found throughout the volcanic/sedimentary unit 

and are of a soft, shiny, green appearance and texture representative of highly altered 

ultramafic rock. However, field observations do not show the volume of serpentine 

required to account for the extreme anomaly fluctuations. One aspect of serpentine that 

may help to explain this lack of prevalence is its highly unstable nature at the surface of 

the Earth. As much of the island is vegetated and many of the rocks highly weathered, it 

is likely that exposed serpentine has been eroded away. This does not preclude the 

possibility of large amounts of well distributed, subsurface serpentine.

Ground Transect

Figure 8. Ground transect with location of fault labeled. South is on the left. 
High frequency anomaly variations made this profile difficult to model, but did indicate 
unexpected, significant numbers of magnetic bodies in the basalt unit, north of the fault.
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To examine this possibility, a model was prepared of the water transect with 

bodies of serpentine added. The air and water based transects show a fairly large 

amplitude anomaly increase over the volcanic/sedimentary unit (Fig. 9). By inserting 

serpentine bodies into the basalt unit, this increase can be accounted for. Additionally, the 

variance in the anomaly over the ultramafic unit can be accounted for by adding areas of 

differing susceptibility within it, representing differently altered sections of ultramafics to 

serpentine (Fig. 10). As an alternative possibility, models were also made using the small 

susceptibility values for the basalt gathered by Burmester et al. (2000). Magnetic basalt 

alone was unable to account for the observed anomalies.
West AeromagTransect

Distune* m Ion

Figure 9, Anomaly increase over volcanic/sedimentary unit indicating the presence of 
significant amounts of magnetic material for the middle section of the island.
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Figure 10. Model of water transect with high angle south dipping fault. Areas of 
differing amounts of serpentinization have been added to the ultramafics, and serpentine 
bodies have been added to the basalt (volcanic/sedimentary unit) to improve the fit of the 
model. South is on the left.

Discussion: The results of the modeling indicate that the fault is high-angle and south 

dipping with the ultramafics structurally above the volcanic/sedimentary unit. While the 

south dipping geometry was not unexpected, the high-angle aspect is. Many of the 

models for the geologic history of the San Juan Islands involve area-wide compression 

and thrusting (Brandon and Cowan 1985; Brown, 1987; Brandon et al., 1988; Maekawa 

and Brown, 1991). This type of movement is not generally associated with high angle

faults (Twiss and Moores, 1992).



While it is feasible to have compressional displacement accommodated by 

creation of a high angle fault, it seems likely here that further explanation is necessary. 

Perhaps the initial creation of the fault was by tensional stress, making a high angle 

normal fault which later moved in a reverse manner to accommodate compressive stress. 

A second possibility is rotation of the fault from its created orientation to its present one. 

Also possible is that the fault is listric and becomes low-angle at depth. Limitations on 

modeling prevent the exclusion of this possibility. The simplest explanation is that it 

really is a normal fault. Whatever the model, within it the orientation of this fault 

requires justification.

A second unexpected finding was the extreme variation in susceptibility displayed 

by the ground surveys. The explanation for this variation in the anomaly for the 

ultramafics is supplied by what is known empirically, that local variations in 

serpentinization are present. Differences in degree of serpentinization lead to variations 

in susceptibility (Dunlop and Ozdemar, 1997). These variations would both reinforce 

and subtract from each other magnetically thereby creating the observed anomaly. 

Variation in susceptibility for the ultramafics on a lower frequency than in the ground 

data can be seen in the water and air based data, and local variations of susceptibility 

were found in the samples taken by Burmester et al. (2(X)0).

The volcanic/sedimentary unit, however, seems more complicated. Several facts 

need to be accounted for. First, like the ultramafics (only more so), there are extreme 

high frequency and amplitude variations in the measured anomaly (Figs. 8,9). Second, 

susceptibilities measured for the basalt and other rocks in the middle section of the island 

are not large enough to account for these variations. Third, highly magnetic serpentine.
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along with a variety of non-magnetic rocks, are seen distributed throughout the 

volcanic/sedimentary unit. The final model of this study supports the idea of subsurface, 

well-distributed serpentine in the volcanic/sedimentary unit (Fig. 10). This accounts for 

the above facts, but does not explain why extensive serpentine would be present.

One possibility is that the volcanic/sedimentary unit is a serpentine melange. The 

definition of melange is broad and arguments over its true meaning exist, but generally 

they are zones containing many rock types of various sizes in some kind of matrix. One 

definition says they are “characterized both by the lack of internal continuity of contacts 

or strata and by the inclusion of fragments and blocks of all sizes, both exotic and native, 

embedded in a fragmented matrix of finer grained material,” (Raymond, 1975).

In the case of the volcanic/sedimentary unit of Cypress Island, the multitude of 

rock types and their distribution satisfies the block and fragment and lack of internal 

continuity criteria. The missing observable feature is the matrix. Serpentine is the 

proposed material here based on the measured subsurface extent of a highly magnetic 

material. Also, serpentine matrix melanges are a common result of tectonically and 

hydrothermally altered ophiolites, many of the components of which are present on 

Cypress Island (Saleeby, 1984).

At least two possible histories exist for this melange. The first is that the 

ultramafics that compose the matrix are different from the current ultramafic unit of the 

island. They would instead have been part of the ocean floor underlying the basalt of the 

volcanic/sedimentary unit (either the MORB or both the OEB and the MORB) (Fig. 2). 

Serpentinzation of these ophiolite ultramafics would have begun almost as soon as they 

were formed and continued through subduction as the unit was sheared and mixed
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(Saleeby, 1984). After subduction, the already melanged unit could have been faulted to 

the surface and placed next to the unrelated ultramafic unit we see today.

A second possibility is that the Lummi Formation was subducted as a whole 

without underlying ultramafics, in the process creating fracturing and deformation. Then, 

as it was faulted to the surface the basalts were faulted as a unit between the already 

present greywackes and ultramafic rocks of the overriding continental plate or island arc 

(Fig. 2). This process would continue to fracture the basalts and add pieces of the 

greywacke and ultramafic units to them. This fractured body would be an excellent 

conduit of fluids and would allow serpentinization of the ultramafics included in it. As 

they serpentinized, their newly ductile nature would disperse them throughout the 

melange. This proposal is supported by the apparent cohesiveness of the greywackes to 

the north, which are less deformed than the basalts.

Several future studies could help resolve some of these issues. One way to 

narrow down the origin of the melange would be to examine the serpentine in it and find 

out if it was indeed the same as the ultramafic rocks making up the south part of the 

island. Also, knowing more about the greywackes would help to define the extent of the 

melange. The ground based transect did not cover these rocks, and according to the air 

and water based data, they are magnetically quiet. Discovering extensive serpentine in 

them as well would suggest that they too are a part of the melange. Finally, evidence to 

explain the orientation of the fault should be looked for. Indication of recent normal 

movement along the fault would add an interesting new element to the geologic history of 

the area.
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Appendices

Appendix A: Comparison of four anomaly profiles used. Y-axis (anomaly) is scaled 
consistently for all four. X-axis (distance) scale is varied to display approximate 
locational relationship of the transects (Fig. 5). Beginning and end points for each are 
aligned by longitude. Fault locations are indicated by the black X’s and are similarly 
aligned. South is on the left.

Water Transect
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Appendix B: Measured susceptibility values for samples from Cypress Island taken by 
Burmester et al. (2000).

Ultramafic Susceptibilities (SI) Mean
Volcanic/Sedimentaty
Susceptibilities Mean

0.0191 0.0877 0.0065 0.0159
0.0584 0.0560
0.0583 Median 0.0072 Median
0.0472 0.0522 0.0420 0.0080
0.0191 0.0080
0.0261 0.0088
0.0328 0.0078
0.0452 0.0104
0.0941 0.0030
0.2080 0.0021
0.0755 0.0065
0.2633 0.0088
0.1299 0.0067
0.0397 0.0083
0.0667 0.0055
0.3349 0.0622
0.1764 0.0202
0.0434
0.0393
0.0522
0.0121
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Appendix C.l- Vertical fault models. RMS sum is 370.

Water Transect-Vertical Model: RMS = 98
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West Aeromag Transect-Vertical Model: RMS = 150
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Appendix C.2- North dipping high-angle fault models. RMS sum is 478.
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West Aeromag Transect-Steeply Dipping North Model: RMS = 163
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Appendix C.3- South dipping low-angle fault models. RMS sum is 520.

Water Transect-Shallowly Dipping South Model: RMS = 158

-0.6 2.4 5.4
West Aeromag Transect-Shallowly Dipping South Model: RMS = 270

East Aeromag Transect-Shallowly Dipping South Model: RMS = 92
300-

Distance (km)
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