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ABSTRACT 

The Relative Risk Model (RRM) is a tool used to calculate and assess the likelihood of 

effects to endpoints when multiple stressors occur in complex ecological systems. In this 

study a Bayesian network was used to calculate relative risk and uncertainty (BN-RRM) in 

the Puyallup River Watershed.  First, I calculated the risk of prespawn mortality of coho 

salmon. Second, I evaluated the effect of low impact development (LID) as a means to 

reduce risk. Prespawner mortality in coho salmon within the Puyallup watershed was the 

endpoint selected for this study. A conceptual model showing causal pathways between 

stressors and endpoints was created to show where linkages exist. The greatest risk of 

prespawner mortality was found in the urbanized risk regions with large amounts of 

impervious surface. The greatest risk reduction due to LID was observed in more developed 

regions, and implementing types of LID that are most effective in retaining and filtering 

stormwater during large storm events would be the most effective type. However, a great 

deal of surface area would have to be converted to LID to reduce the risk of stormwater 

impact to the coho fisheries. The structure of the BN-RRM also provides a framework for 

water quality-related and water quantity-related endpoints within this and other watersheds. 

The adaptability of using BNs for a relative risk assessment provides opportunity for the 

model to be adapted for other watersheds in the Puget Sound region.  
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INTRODUCTION 

The Puget Sound Partnership is the Washington State agency responsible for the restoration 

of Puget Sound including the numerous watersheds that compose the Salish Sea.  The 

Puyallup River is one of those rivers within that management area.  While the Partnership has 

identified numerous endpoints of concern (Puget Sound Partnership 2011), the task of 

creating a Puget Sound basin-wide restoration plan has yet to come to fruition. An 

impediment to managing the Salish Sea and other large systems is the lack of a quantitative 

causal framework in which to examine likely impacts and management alternatives.  

Landscape scale management involves multiple stressors interacting both spatially and 

temporally to induce a variety of effects.  A tool that has found use in contaminated sites and 

other scenarios has been ecological risk assessment. 

Ecological risk assessment (ERA) has been a field of study since the mid-1980s 

(Suter 2008). Since then, ERAs have evolved to model situations involving numerous 

stressors acting on several endpoints over landscape and temporal scales (Hart Hayes and 

Landis 2004, Colnar and Landis 2007, Landis and Wiegers 2007). The relative risk model 

(RRM; Landis and Wiegers 1997, 2005) currently uses Bayesian networks (BN) within the 

RRM framework (BN-RRM; Ayre and Landis 2012). 

Bayesian networks are now used in risk assessment and specifically in the RRM for a 

number of reasons (Uusitalo et al. 2007, Hart and Pollino 2008, Ayre and Landis 2012). 

Bayesian statistics evaluate the opposite of frequentist, or classical, statistics which evaluate 

the probability of the evidence given a hypothesis. Bayesian modeling creates an output of 

posterior probability distributions based on inputs of prior probability distributions 

determined by site-specific data or expert knowledge (Hart and Pollino 2008). Bayesian 

 



networks differ from other ecological approaches by combining quantitative data and 

qualitative knowledge to generate probabilistic risk. The causal pathways between multiple 

stressors on a given endpoint are described by BNs, which makes BN models able to assess 

synergistic and antagonistic effects between stressors (Hart and Pollino 2008). As Bayesian 

belief and decision networks work well as modeling tools for adaptive management (Nyberg 

et al. 2006), the BN-RRM lends itself well to adaptive management applications. Multiple 

management scenarios may be examined to inform management decisions and key stressors 

may be identified with a sensitivity analysis.  New information may be incorporated into the 

model as it becomes available. Once the model framework is created, the model may be used 

for other watersheds with similar characteristics and endpoints. 

Low Impact Development (LID) has been considered an effective management tool 

for several decades (Taylor and Fletcher 2007). Rain gardens, pervious pavement, and 

bioswales are a few examples of LID. The main objective of LID is to implement structures 

that aim to restore hydrological processes to predevelopment state by filtering and retaining 

stormwater. There has been little progress, however, to collect data on the actual 

effectiveness of LID, despite such data having been called for by researchers and managers 

since the 1980s (see Finnermore and Lynard 1982).  Therefore, I elvaluated LID as a 

management tool, posing the question: How effectively can watershed scale management 

plans that implement low impact development (LID) strategies reduce nonpoint runoff inputs 

to meet Puget Sound restoration? 

My study area included portions of the Puyallup River Watershed (PRW) and the 

City of Tacoma within Pierce County and a small portion of King County. This area was 
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selected to allow relative comparisons throughout a watershed and to compare areas with 

different land uses.  Managers in this region are interested in the use of LID. After 

considering several endpoints, the PRW coho salmon (Oncorhynchus kisutch) population 

was chosen, with prespawn mortality (PSM) as the endpoint to be considered.  Prespawn 

mortality is currently only recognized as a syndrome occurring in adult coho salmon shortly 

after returning to the fresh water to spawn (Wild Fish Conservancy 2008, Feist et al. 2011, 

Scholz et al. 2011, Spromberg and Scholz 2011). While PSM has not been officially reported 

in my study area, very high PSM, sometimes exceeding 90%, has been observed for 

returning adult coho in southern Puget Sound lowland urban streams (McCarthy et al. 2008). 

The cause for PSM is currently unknown, although the cause is suspected to be related to 

stormwater runoff associated with specific land uses. Land use within the lower PRW and 

City of Tacoma is consistent with the types of land use found in areas where PSM has been 

reported (see Feist et al. 2011).  

 In summary, a BN-RRM incorporating LID was created to predict risk and evaluate 

the usefulness of LID to reduce risk. Regions characterized largely by areas of impervious 

surface and urban influence were found to have the highest risk. Although LID can reduce 

risk in the high risk areas, large proportions of these areas would need to implement LID to 

reduce these regions to low risk. The process used here is transferable to other endpoints 

within the watershed. The combination of risk assessment and management evaluations may 

be transferable to other watershed within the Salish Sea region. 
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MATERIALS AND METHODS 
 
Study Area 

The study area encompassed by my study includes two major watersheds, Water Resource 

Inventory Areas (WRIAs) 10 and 12 in Washington State (Figure 1). WRIA 12 drains an area 

of 467 km2, which consists of independent drainages to southern Puget Sound and includes 

the City of Tacoma. WRIA 10 drains an area of 2679 km2, and consists of the PRW, which 

splits into two main forks, the White River to the north and the Carbon/Puyallup rivers to the 

south. Originating in the highlands of the Mt. Rainer and The Cascade Range in forested 

parkland, the watershed flows through agricultural, residential, and commercial land before 

terminating in an urbanized, industrial harbor area feeding into Puget Sound (Department of 

Ecology 1995). The temperate climate of Pierce County averages 101 cm of rainfall a year 

but has suffered from extensive flooding events, including recent floods in 2005, 2006, 2008 

and especially during the severe New Year’s flooding of 2009. Puyallup River Watershed 

coho salmon adult returns from 1983 to 2011 have varied annually between 391 and 5,153, 

and were rated as “healthy” in 2002 due to considerably higher escapement values since 1992 

(Washington Department of Fish and Wildlife 2011). Spawning coho return to this watershed 

in fall through winter months when rivers and streams tend to be high enough for adult fish 

passage, coinciding with the rain season (Puyallup Tribe 2011). 

 

Determination of Risk Regions 

Geographic data on watersheds (Pierce County 2003), salmon (Washington Department of 

Fish and Wildlife 2013a, 2013b), land use (Department of Ecology Washington State 2013), 

 4 



roads (Pierce County 2001-2013; Puget Sound Regional Council 2010), and impervious 

surfaces (Department of Ecology Washington State 2010) for WRIA 10 and 12 were 

compiled. Major watershed basin layers for WRIA 10 and 12 were broken down as shown in 

Table 1 for a total of 6 risk regions. Risk regions were defined based on the criteria of land 

use, separating watersheds dominated by heavily forested, agricultural, residential, 

commercial, and industrial use (Figure 1). The use of GIS to gather input information for 

nodes is described below in the Model Parameterization section. The majority of the study 

area lay within Pierce County; however, a small portion of risk region 4 lies within King 

County, so that GIS data from both counties had to be pooled for my assessment. 

 

Structure of the BN-RRM Process 

A step-by-step description of the formulation of a RRM is presented by Landis and Wiegers 

(2005).  First, management goals and associated endpoints, potential stressors, sources, and 

habitats linked to endpoints were identified and a map delineating risk regions was created. 

The next step was to create a conceptual model demonstrating the causal pathways to link 

sources to spatial and temporal overlaps with habitat and management endpoints (Figure 2). 

This was then formatted into a BN structure (Figure 3), and the model was parameterized. 

Rankings were defined for each node in the model based on management goals (Table 2). 

Risk was calculated, once the structure of the model was created, using conditional 

probability tables (CPTs) to describe causal relationships based on existing knowledge. The 

model was then evaluated for uncertainty and a sensitivity analysis for the endpoint 

examined using an entropy reduction analysis. As one of the final steps, risk was calculated 
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for management scenarios using other relative amounts of LID to evaluate how an increased 

abundance of LID may affect the overall calculated risk.   Details of this specific application 

are presented in the Model Parameterization section. 

  

Conceptual model- The conceptual model (Figure 2) shows the causal pathways for the risk 

posed to WRIA 10 and 12 coho populations due to the threat of PSM. Prespawn mortality in 

this model is represented by the effect due to stormwater and contaminants in stormwater 

runoff from specific land use. Specifically, commercial property, roads, and other impervious 

surfaces were used as the three land use types assumed to contribute the contaminants 

responsible for PSM and are used here as predictors (Wild Fish Conservancy 2008, Feist et 

al. 2011, Scholz et al. 2011, Spromberg and Scholz 2011). The link to roads and other 

impervious surfaces implies that motor vehicles and a mixture of heavy metals and 

polycyclic aromatic hydrocarbons (PAHs) are likely linked to thus syndrome (Scholz et al. 

2011). Both the amount of rainfall and amount of contaminants present in stormwater are 

assumed to affect the likelihood of PSM (Scholz et al. 2011), with LID possibly lowering the 

likelihood of PSM. Coho migratory habitat and observed escapements are also incorporated 

into the model to demonstrate the likelihood coho will encounter an overlap and exposure 

with the stressors that cause PSM. 

 

Bayesian network structure- A BN model structure was derived directly from the 

conceptual model where each source, stressor, habitat, and effect, as well as the endpoint 

were converted into either nature nodes when probability distributions were available or 
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decision nodes when only a one-time discrete value could be used (Figure 3). The BN-RRM 

is generally transparent about uncertainty.  However, decision nodes are not presented as 

probability distributions, masking the uncertainty regarding those decisions. The BN 

structure consists of tiers of nodes; here sources of stressors make up the first tiers, habitats 

in the middle tier, and ecological endpoints in the last tiers. Nodes are linked based on causal 

relationships defined by CPTs, which are developed after relative ranking schemes have been 

determined. Relative ranks were defined for each node. Table 1 summarizes each model 

node, including sources, rationale, and definitions of rankings. Three or four potential 

discrete states were determined for each node. When there was greater uncertainty, three 

discrete states were used, while four discrete ranks were used when there was less 

uncertainty. Throughout the model, “zero” or “low” was used to describe an unlikely 

contribution to the overall risk score to the endpoint, while “high” was used to describe a 

high likelihood that there exists a greater risk to the endpoint due to that node. For example, 

because a low relative abundance of LID is considered to increase watershed risk, the risk 

rank for the abundance of LID is set to “high.”  

Interactions between nodes and tiers are determined by CPTs that define posterior 

probability distributions for output nodes given the prior probability distributions from input 

nodes. Next, the model was parameterized. The BN software Netica (Norsys Software Corp., 

Vancouver, B.C., Canada) was used to calculate and evaluate the BN-RRM.  This software 

may be downloaded for free. 
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Model Parameterization 

This section describes my decisions and assumptions for each node and causal relationships 

based on existing knowledge available at the time of the creation of the model (Table 2). 

Model parameters were defined using a combination of spatial analysis data, empirical data 

from published and state government data, and expert judgment gathered from published 

reports. Using this knowledge, casual relationships were used to parameterize the model and 

develop CPTs reasonably to our current knowledge. 

 

Land use- Land use nodes include the input nodes for Commercial Property, Roads, and 

Other Impervious Surfaces (Figure 3). These three land use types were used as indicators for 

the presence of contaminants that are suspected to cause the acute and fatal toxicological 

effect of PSM (Feist et al. 2011). Impervious surfaces, roads, and commercial land use types 

were defined by the percent cover and categorized as low (0-10%), moderate (11-40%), or 

high (41-100%) for each risk region (Tables 1 and 3). These three input nodes were set as 

decision nodes because the input values can only be discrete values, not distributions 

describing likely or observed occurrences for each rank. 

Geographical analysis data from Pierce County (Pierce County 2001-2013) and the 

Puget Sound Regional Council model transportation network dataset (Puget Sound Regional 

Council 2010) were combined to find total road length data for each region. Combining these 

two sources allowed for a more complete quantification of possible surfaces regardless of 

road classification and also allowed for the inclusion of road length count in areas within 

WRIA 10 that extend into King County but were not included in the Pierce County database.  
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Commercial property type areas were found with Washington Department of Ecology 

Land Use 2010 data based on tax parcel shapefiles (Table 4). Metadata (Department of 

Ecology Washington State 2013) helped determine how commercial property was defined. 

For the final model inputs, the commercial area for each region was then converted into a 

total percentage per risk region. 

Impervious surface percent cover per risk region was found using remote sensing 

information from 2006 Washington Department of Ecology (Department of Ecology 

Washington State 2010). 

 

Large stormwater event- Contaminants in stormwater are often found at the highest 

concentrations when a large storm event occurs after a sustained period of little to no rain. 

The accumulation of contaminants on impervious surfaces in the absence of stormwater 

runoff contributes to these high concentrations (Booth et al. 2002). To calculate risk, this 

model needs to predict when coho adults return to fresh water and the chance of these returns 

coinciding with a storm event. Coho salmon typically return to the PRW during November 

and December, but coho spawners have been known to enter fresh water as early as August 

or as late as March in the PRW (Puyallup Tribe 2011). To coincide with migratory coho 

returns, daily precipitation data from 1 August through 15 March were used dating from 1 

August 2007 through 15 March 2012. Rankings were determined using the Western Regional 

Climate Center “Precipitation Probability by Quantity” predictive modeling for station 

Tacoma 1 for a period of one-day rainfall (Applied Climate Information Systems 2013). The 
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distribution in the input node for Large Stormwater Event reflects the frequency at which 

storm events occur at the levels described for each of the rankings, given any spawner year. 

 

LID abundance- In my examination of the literature, LID projects were not documented in a 

readily available format. The most extensive documentation of LID was found to have over 

100 LID sites within the southern Puget Sound region (approximately 85 of which are 

located within the study area) and are documented in an online interactive map by the 

Stewardship Partners and the Washington State University Extension as part of a 12,000 Rain 

Gardens in Puget Sound campaign (Stewardship Partners 2011). Because LID projects 

typically are less than a hectare (0.01 km2) in size while the areas for the risk regions totaled 

149-1035 km2, abundance of LID by percent cover per region was considered negligible. 

Rankings for all nodes were defined as “high” because of an increased probability of high 

overall risk, and a small relative abundance of LID was assumed to increase the probability 

of overall risk. These nodes, like the land use nodes, were discrete because the abundance per 

risk region is a discrete number and therefore does not have a distribution.  

 

LID filtration- An extensive literature review was conducted to determine the effectiveness 

of LID to filter polycyclic aromatic hydrocarbons (PAHs) and heavy metals. The input node 

in the model was defined by three categories: low, moderate, and high. This input node is the 

same for each risk region. For my model, the distribution for LID effectiveness was defined 

as 65% of the time being able to reasonably filter/retain stormwater; 25% of the time as being 

moderately able to filter/retain stormwater; and 10% of the time LID effectively fails to 
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filter/retain stormwater. Although some studies suggest that LID is likely to be more 

successful than the input prior distribution used (Dietz 2007), other studies showed that LID 

often failed to be optimally effective during increased water volumes for large storm events 

(Diblasi et al. 2009).  Due to the fact that my study was interested in LID performance during 

large storm events, the distribution was skewed towards ineffectiveness. It should also be 

noted that there is not enough information on the effectiveness of specific types of LID, and 

therefore this input node represents the frequencies of effectiveness of LID found in the 

literature regardless of LID type. The various types of LID studied are reasonably 

representative of LID that may be found within my study area.  

 

Coho migratory habitat- This input node brings into the model the overlap of a stressor and 

habitat, which affects the probability that PSM will occur within a region. Even if a large 

storm event occurs in a region with high risk from land use, if there is no overlap with 

habitat, then PSM will not occur without a receptor to receive the stressor. Coho habitat for 

each risk region was assessed by combining two factors: Washington Department of Fish and 

Wildlife (WDFW) habitat status and overall length of river migratory habitat. First, the 

relative amount of coho habitat was assessed, then the condition of habitat was accounted for 

in the model. Salmon habitat categories included critical, depressed, healthy, and unknown as 

defined by WDFW’s Salmonid Stock Inventory (SaSI) Status (Washington Department of 

Fish and Wildlife 2013a). The amount of coho habitat for each category of habitat status in 

each risk region was found by querying the total number of river miles of coho migratory 

habitat according to WDFW’s salmon scape within each region (Washington Department of 
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Fish and Wildlife 2013b; Table 5).  Next, the rankings for amount of habitat and status were 

weighted between zero and six and averages between the two calculated. This was put into 

the node as a discrete number since no distributions exist.  

 

Coho population status- Numbers of returning adult spawner coho salmon were found in 

WDFW and Puyallup Tribe salmon spawner surveys per reach (Washington Department of 

Fish and Wildlife 2012a, 2012b). Each survey reach was matched with the risk region with 

which it corresponded, and then total numbers of returning fish were calculated for each 

region by return year, as available from surveys. The annual numbers of returning fish were 

categorized as zero, low, medium, and high as defined in Table 6. These input nodes 

represent a distribution of the frequency at which coho were recorded returning annually in 

the defined categories as far back as WDFW data were available.  

 

Prespawner mortality- The PSM node represents the probable percentage of returning coho 

population die-off due to land use factors that are suspected to be correlated to PSM (Feist et 

al. 2011) after LID has both filtered and retained stormwater. Here, roads, commercial 

property types, and other impervious surfaces are the main sources of contaminants that run 

off in stormwater and cause PSM. LID also has a limited effectiveness to reduce stormwater 

quantity and quality. Stormwater is not as strong of an indicator of PSM occurring in 

comparison to the presence of contaminants. The CPT for this node reflected that PSM was 

more likely to occur if there was a high probability that toxicants were present while less 

likely to occur in the event of a large storm event without toxicants.  

 12 



Coho population- The coho population node represents the fishability of the WRIA 10 and 

12 coho stocks. Rankings were defined partially by WDFW escapement goals to maintain a 

sustainable fishery for the PRW coho stock as well as where natural breaks occurred based 

on past return numbers (Washington Department of Fish and Wildlife 2011). 

 

Sensitivity and Uncertainty Analysis 

The sensitivity analysis was calculated in Netica. The degree of entropy reductions for each 

BN node was recorded. The degree of entropy reduction describes to what degree an input 

variable influences the response variable, where a greater entropy value indicates a greater 

degree of influence (Marcot et al. 2006). These entropy reduction scores were then used to 

inform which parameters had the greatest influence on risk estimates for each region. 

 

RESULTS 

Risk in the PRW 

The mean risk score for each relative region generally increased with the downstream 

gradient of the watershed (Figure 4). The lower risk regions, 3, 5, and 6, had the highest 

mean risk scores of 4.57±1.2, 4.57±1.2, and 4.55±1.2 respectively (Table 7). Regions 5 and 6 

are the mouths of WRIAs 10 and 12 respectively. Region 3 is upstream and adjacent to 

region 5, composed of the southern fork of the Puyllup River system. The distributions for 

these indicate the probability of high risk (Figure 5). The likelihood of a high-risk outcome 

was predicted to occur 84.7%, 84.7%, and 83.0% of the time for risk regions 3, 5, and 6, 

respectively (Table 8).  
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Risk region 4, in the middle of the watershed, had a mean risk score 14% lower than 

the highest risk regions (3.93±1.7). The distribution outcome for region 4 was similarly 

skewed towards high risk, but to a lesser degree with a 64.5% chance of high risk (Figure 5). 

At the start of the watershed, risk regions 1 and 2 had the lowest mean scores of 3.03±2.1 and 

2.78±2.0, respectively; however, the posterior probability distribution demonstrated a higher 

uncertainty in the outcome. Table 8 shows that regions 1 and 2 had a more even distribution 

than the other regions. This means that each rank had closer to a 1 in 4 chance; although, 

these regions were still skewed towards high risk with a 43.9% and 37.8% probability of a 

high-risk outcome for regions 1 and 2, respectively. 

 

Sensitivity Analysis 

The risk of prespawn mortality was the greatest contributor to total risk for each region 

according to the sensitivity analysis. The next two top contributors varied among regions 

(Table 9 and 10). The land use nodes were not included in the sensitivity analysis (Road, 

Commercial Property, and Other Impervious Surfaces) because these were decision nodes. 

Regions 3, 5, and 6 all had in common at least one or more high ranks for one of the three 

land use types while the regions at lower risk did not (Table 3), indicating that land use may 

influence the endpoint considerably. 

 

Alternative Management Scenario Results 

One purpose of my model was to investigate alternative management scenarios. Because it is 

unlikely that the land used for development will decrease, altering the amounts of LID was 
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evaluated in the model to determine how much LID could minimize the risk PSM poses to 

coho populations (Table 11).  The results confirmed that increasing the relative abundance of 

LID decreased the overall risk score for each region. The largest change in risk reduction was 

observed in the most developed risk regions, 3, 5, and 6. Risk was reduced more than a full 

integer in the overall risk score between evaluating a low amount of LID (high risk rank) to a 

large amount of LID (low risk rank). Optimally, LID would be implemented to a scale that 

would reduce imperviousness effectively to below 10 percent land cover per region (Booth 

and Jackson 1997). Intermediate abundances of LID will also reduce risk, although to a lesser 

degree.   

 

DISCUSSION 

Patterns of Risk 

The predicted relative risk for coho populations due to PSM fell within the range of medium 

to high, with the highest score of 4.57 out of 6.0. With a range of mean risk scores of 2.78 to 

4.57, a gradient was observed (Figure 4). Lower risk was found in the upper stream reaches 

and increased downstream to where WRIA 10 and 12 drain into Puget Sound. This gradient 

matches a land use gradient where the upper watershed has less development and the lower 

watershed is the most heavily developed. 

 Because the highest risk was found in regions 3, 5, and 6 at the bottom of the 

watershed, management efforts to reduce the risk of PSM should be focused here. Managing 

the bottom of the watershed for returning adult salmon makes sense because coho are 
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anadromous fish that migrate upstream, the returning adult salmon must pass through at least 

one or more of the downstream high risk regions in order to spawn.  

 

Data Gaps 

During the creation of my model, data gaps were identified for LID and PSM. While 

comprehensive empirical data for LID have been requested by managers for several decades, 

there is still considerable uncertainty in the relationship between LID and reducing impacts 

to non-point sources of contaminants (Taylor and Fletcher 2007).  As more data become 

available on the overall watershed impacts in relation to LID, this data can be incorporated 

into the model to reduce the uncertainty of what kind of LID or how much LID is needed.   

In spite of the uncertainties, a pattern was apparent. Past studies indicated that 10% or 

less impervious surface in a watershed can impact salmon populations (Booth and Jackson 

1997). Risk regions 3, 5, and 6 have as much as 49%, 70%, and 67% impervious surface, 

respectively, indicating that LID may be needed on a very large scale to reduce risk. Region 

2 had the lowest risk to PSM and had 6% impervious surface.  A better understanding of how 

LID can reduce the impacts of impervious surface will allow a calculation of how much 

needs to be constructed to reach an acceptable likelihood of meeting the management goal 

for coho in the PRW.   

The cause of PSM and where PSM is occurring in the PRW is currently unknown. 

My model identified where PSM is likely to occur, so the next step is for the Puyallup Tribe 

Fisheries and WDFD to document observations of PSM. NOAA Fisheries is continuing 

research to determine the direct stressors of PSM. Once this syndrome is better understood, 
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specific stressors instead of land use associated with the occurrence of PSM can be 

incorporated into the model. Closing these information gaps could result in a more 

informative BN-RRM with the ability to reduce uncertainty and display the interactions in 

the model more accurately. 

 

Risk Assessment as a Management Tool 

The BN-RRM works well within a management framework. Management scenarios can be 

evaluated, such as examining different relative abundances of LID and the change in overall 

risk scores. In my model, an increase of LID was found to decrease risk; however, a large 

increase of LID will be needed to decrease the most risk. This same framework can be 

applied to other management scenarios for other endpoints and watersheds within the Salish 

Sea region to aid in management decisions. 

An overall benefit of producing a risk assessment with LID incorporated is 

identifying where and how much LID needs to be implemented. My model quantitatively 

demonstrates that a large amount of LID will be needed in the most developed regions to 

reduce the risk of PSM. Long term management will need to take into consideration tradeoffs 

between the cost of installing LID and the overall potential to reduce risk. Additionally, my 

model characterized a high risk in the developed regions before PSM was officially 

documented in WRIAs 10 or 12, thus identifying a management goal before the problem was 

observed. 
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Adaptive Management 

As models are created for restoration endpoints, the adaptive management framework 

outlined by Nyberg et al. (2006) could be followed. My model showed that LID could lower 

the potential risk of PSM. For this BN-RRM and management to effectively work together in 

the future in an adaptive management framework, first, the current coho population affected 

by PSM should be assessed. Next, after a measured amount of LID is installed within risk 

regions 3, 5, and 6, the response in occurrences of PSM should be monitored and evaluated. 

This could provide insight into the accuracy of the model predictions and provide 

information about how much LID may be needed to reduce the risk of PSM. Similar 

experiments that include monitoring and evaluating management decisions should be 

implemented when possible. Such an adaptive management scheme may also provide useful 

information as to what scale LID is actually necessary to reduce risk. The Puget Sound 

Partnership uses the Open Standards for the Practice of Conservation that builds on this 

adaptive management framework by adding the component of capturing and sharing lessons 

learned (Puget Sound Partnership 2010). This is an important step; Taylor and Fletcher 

(2007) identified that educated communities were a key driver for implementing LID 

practices.  

 

Next steps 

The next steps will be to create models for other Puget Sound restoration management 

objectives in WRIA 10 and 12. An overall conceptual model has already been created for all 

identified endpoints for the watershed. If anthropogenic sources are linked as sources for 
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other endpoints, the same gradient of increasing risk moving down the watershed may be 

expected. The model structure already created here for water quality and water quantity may 

be transferable to other endpoints within the area that demonstrate the same causal pathways. 

Once a risk assessment has been calculated and completed for each of the endpoints, the 

cumulative risk due to all the endpoints for each risk region can be calculated. This would 

provide a broader presentation of risk by region within WRIA 10 and 12, with the 

information of which regions are most in need of watershed management to protect 

restoration endpoints. Once proven valuable on the scale of one major watershed of Puget 

Sound, similar models may be used for other major watersheds of Puget Sound. 
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FIGURES 

 

Figure 1. Map of Water Resource Inventory Areas (WRIAs) 10 and 12 summarizing land 

use and risk regions. Risk regions 1-5 compose WRIA 10 and risk region 6 encompasses 

WRIA 12. The start of the Puyallup River Watershed starts at Mount Rainer in forested 

parkland, in the southeast corner of the map and drains to the northwest into southern Puget 

Sound, which is much more densely populated with higher industrial, commercial, and 

industrial land use. WRIA 12 consists of mostly independent drainages. 
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Figure 2. Conceptual model for the relative risk present to WRIA 10 and 12 coho salmon 

stocks. Causal pathways between sources, stressors and overlap with habitat to induce an 

effect to the endpoint are demonstrated here. 
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Figure 3. The structure of a conceptual model demonstrating causal relationships between 

stressors, habitat, and endpoints translates easily to the structure for a Bayesian network (BN) 

model. Coho populations with prespawn mortality as the effect contributing to a decline in 

coho are shown above. The BN does not have inputs yet; therefore distributions show equal 

probabilities for nature nodes. Decision nodes show only one possible state. Here decision 

nodes are set to where they most likely occurred for all regions. 
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Figure 4.  Map of study area relative risk regions with overall risk scores for coho 

populations. Top of watershed is split between risk regions 1 and 2, beginning at Mount 

Rainer. Overall risk of prespawn mortality generally increases down the watershed where 

land use is more developed in risk regions 3, 5, and 6. 
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Figure 5. Graphical representations from Netica show the posterior distributions for overall 

risk by region. Only the last node for each region’s BN-RRM is shown here, including the 

overall mean risk scores and standard deviations. These distributions give a better 

representation of the probability of risk rather than a risk score alone.  In each case the 

distribution is skewed.  
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TABLES 

Table 1. Each relative risk region was broken down by watersheds within Water Resource 

Inventory Areas (WRIAs) 10 and 12. Watersheds in Pierce County are identified below for 

each risk region. Risk regions 1, 4 and 5 had small areas of watersheds overlapping into King 

County.   

 
Risk Region RR1 RR2 RR3 RR4 RR5 RR6 
 
Watersheds 
included 

• Upper 
White 
River 

• Partial 
overlap 
of water-
sheds in 
Pierce 
and King 
Counties 

• South 
Prairie  

• Lower 
Carbon 
River 

• Upper 
Puyallup 
River 

• Upper 
Carbon 
River 

• Mid-
Puyallup 
River 

 

• Mud 
mountain 

• Lower 
White River 

• Partial 
overlap of 
water-sheds 
in Pierce 
and King 
Counties 

• Clear 
Clark’s 
Creek 

• Hylebos 
• Partial 

overlap of 
water-
sheds in 
Pierce and 
King 
Counties 

• All of 
WRIA 
12 

Water 
Resource 
Inventory 
Area 
(WRIA) 

 
WRIA 10 

 
WRIA 10 

 
WRIA 10 

 
WRIA 10 

 
WRIA 10 

 
WRIA 12 
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Table 2. Summary explanation of model variables, definitions, rankings, and sources for the 

BN-RRM for the Puyallup River Watershed, examining LID as a management tool to reduce 

the risk of prespawner mortality in coho salmon. 

 
Model Variable Model Variable 

Definition 
Variable States Data Sources 

Roads Intensity of road lengths Low: <1868 km 
Moderate: 1869-2267 
km 
High: >2268 km 
(length of roads) 

• Feist et al. 2011 
(casual pathway) 

• Pierce County 2001-
2013(ranks) 

• Puget Sound Regional 
Council 2010 (ranks) 

Commercial Property Intensity of commercial 
property land use  

Low: 0-10% 
Moderate: 11-40% 
High: 41-100% 
(percent land cover) 

• Feist et al. 2011 
(casual pathway) 

• Booth et al. 2002 
(ranks) 

• Department of 
Ecology Washington 
State 2013 (ranks) 

Other Impervious 
Surfaces 

Intensity of other 
impervious surface land 
use 

Low: 0-10% 
Moderate: 11-40% 
High: 41-100% 
(percent land cover) 

• Feist et al. 2011 
(casual pathway) 

• Booth et al. 2002 
(ranks) 

• Department of 
Ecology Washington 
State 2010 (ranks) 

Inability LID Filter  The probability of LID 
failing to filter toxicants 

Low: 80-100% 
Moderate: 50-79% 
High: 0-49% 
(percent toxicants 
reduced) 

• The Use of BMPs in 
Urban Watersheds 
(Field et al. 2006) 

Lack of LID Cont The absence of LID 
capable of filtering 
contaminants 

Low: 41-100% 
Moderate: 11-40% 
High: 0-10% 
(percent land cover) 

• Booth et al. 2002 
(ranks) 

Lack of LID Ret The absence of LID 
capable of retaining 
stormwater 

Low: 41-100% 
Moderate: 11-40% 
High: 0-10% 
(percent land cover) 

• Booth et al. 2002 
(ranks) 

Inability LID Reduction The probability of LID 
failing to retain 
stormwater volume 

Low: 80-100% 
Moderate: 50-79% 
High: 0-49% 
(percent stormwater 
volume reduced) 

• The Use of BMPs in 
Urban Watersheds 
(Field et al. 2006) 

Land Use Contaminants The probability of the 
presence of 
contaminants due to 
land use that are likely 
to cause PSM 

Low: 80-100% 
Moderate: 50-79% 
High: 0-49% 
(percent toxicants 
reduced) 

• Feist et al. 2011 
• Spromberg and 

Scholz 2011 
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LID Untreated The probability of LID 
failing to filter toxicants 
due to the predicted 
effectiveness of LID to 
filter contaminants 
given the overall 
abundance within the 
region 

Low: 80-100% 
Moderate: 50-79% 
High: 0-49% 
(percent toxicants 
reduced) 

• The Use of BMPs in 
Urban Watersheds 
(Field et al. 2006) 

Large Stormwater Event The probability of a 
large storm event 
occurring that is large 
enough to cause PSM 

Low: <0.10 in. 
Moderate: 0.10-0.99 in. 
High: >1.00  in. 
(inches of rainfall in a 
day) 

• Spromberg and 
Scholz 2011 (causal 
pathway) 

• Western Regional 
Climate Center 
(rankings) 

LID Not Retained The probability of LID 
failing to retain 
stormwater due to the 
predicted effectiveness 
of LID to retain runoff 
given the overall 
abundance within the 
region 

Low: 80-100% 
Moderate: 50-79% 
High: 0-49% 
(percent stormwater 
volume reduced) 

• The Use of BMPs in 
Urban Watersheds 
(Field et al. 2006) 

Toxicity Post LID The probability of 
toxicants present due to 
land use after the 
filtration of LID, which 
are suspected to cause 
PSM 

Low: 80-100% 
Moderate: 50-79% 
High: 0-49% 
(percent toxicants 
reduced) 

• Spromberg and 
Scholz 2011 

• Feist et al. 2011 

Migratory Habitat The intensity of 
migratory coho habitat 
and WDFW habitat 
category 

Habitat in River Mile 
Lengths:  
Zero: <285018 (weight= 
0) 
Low: 285019 – 369741 
(weight= 2) 
Medium: 369742 – 
479708 (weight= 4) 
High: 479709 – 642600 
(weight= 6) 
Habitat by status: 
Low: Healthy/unknown 
(weight= 1)  
Moderate: Depressed 
(weight= 3) 
High: Critical (weight= 
6) 
 

• WDFW and Puyallup 
Tribe Fisheries 

• Washington 
Department of Fish 
and Wildlife 2013a 

• Washington 
Department of Fish 
and Wildlife 2013b 

Hydrology Post LID The probability of 
stormwater runoff 
present due to 
stormwater runoff after 
retention of LID, which 
is suspected to 
contribute to PSM 

Low: 80-100% 
Moderate: 50-79% 
High: 0-49% 
(percent stormwater 
volume reduced) 

• The Use of BMPs in 
Urban Watersheds 
(Field et al. 2006) 

• Spromberg and 
Scholz 2011 
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PSM Coho The likelihood of PSM 
occurring due to the 
presence of 
contaminants, 
stormwater runoff, and 
the amount and quality 
of coho migratory 
habitat 

Zero: 0-25% 
Low: 26-40% 
Medium: 41-50% 
High: 50-100% 
(percent population die-
offs) 

• Scholz et al. 2011 
• Spromberg and 

Scholz 2011 
• Feist et al. 2011 

Coho Population Status The frequency of 
returning coho spawning 
salmon 

Zero: >3000 
Low: 3000 - 1001 
Medium: 1000 - 401 
High: <400 
(number of returning 
coho adults) 

• WDFW and Puyallup 
Tribe Fisheries (up to 
2011 returning year) 

Coho Population Predicted coho 
population after 
exposure to PSM 

Zero: >3000 
Low: 3000 - 1001 
Medium: 1000 - 401 
High: <400 
 (number of returning 
coho adults) 

• WDFW and Puyallup 
Tribe Fisheries  
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Table 3. Summary of land use model input ranks and percent land cover for each risk region, 

including total risk region areas.  Road length ranks were determined by natural breaks while 

commercial property types and other impervious surface ranks were determined by Booth et 

al. (2002) and Department of Ecology Washington State (2010). 

Risk 
Region 

 

Area 
(km2) 

 

Commercial 
Property  

(% of region) 
Roads  

(length in km) 
Other Impervious (% 

of region) 
1 

 
1035 

 
Low (0%) Low (650) Low (4%) 

2 
 

1026 
 

Low (0%) Low (960) Low (6%) 
3 

 
149 

 
Low (5%) Moderate (1557) High (49%) 

4 
 

248 
 

Low (6%) Moderate (1488) Moderate (32%) 
5 

 
221 

 
Moderate (11%) High (2503) High (70%) 

6 
 

467 
 

High (71%) High (4052) High (68%) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 29 



Table 4. List of categories from Department of Ecology Washington State (2013) used in 

GIS data as commercial property. 

Land Use CD Description 
16 Hotels/motels 
51 Wholesale trade 
52 Retail trade - building materials, hardware, and farm equipment 
53 Retail trade - general merchandise 
54 Retail trade - food 
55 Retail trade - automotive, marine craft, aircraft, and accessories 
56 Retail trade - apparel and accessories 
57 Retail trade - furniture, home furnishings, and equipment 
58 Retail trade - eating and drinking 
59 Other retail trade 
61 Finance, insurance, and real estate services 
62 Personal services 
63 Business services 
64 Repair services 
65 Professional services 
66 Contract construction services 
67 Government services 
68 Educational services 
69 Miscellaneous services 
72 Public assembly 
73 Amusement 
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Table 8. Summary table of distributions for each node by risk region. 
 

  
Risk Region 

Node Rank 1 2 3 4 5 6 

Roads* 
low 100 100 0 0 0 0 
moderate 0 0 100 100 0 0 
high 0 0 0 0 100 100 

Commercial_Property* 
low 100 100 100 100 0 0 
moderate 0 0 0 0 100 0 
high 0 0 0 0 0 100 

Other_Impervious_Surface* 
low 100 100 0 0 0 0 
moderate 0 0 0 100 0 0 
high 0 0 100 0 100 100 

Inability_LID_Filter 
low 65.0 65.0 65.0 65.0 65.0 65.0 
moderate 25.0 25.0 25.0 25.0 25.0 25.0 
high 10.0 10.0 10.0 10.0 10.0 10.0 

Lack_of_LID_Cont* 
low 0 0 0 0 0 0 
moderate 0 0 0 0 0 0 
high 100 100 100 100 100 100 

Lack_of_LID_Retention* 
low 0 0 0 0 0 0 
moderate 0 0 0 0 0 0 
high 100 100 100 100 100 100 

Inability_LID_Retention 
low 65.0 65.0 65.0 65.0 65.0 65.0 
moderate 25.0 25.0 25.0 25.0 25.0 25.0 
high 10.0 10.0 10.0 10.0 10.0 10.0 

Land_Use_Contamination* 
low 100.0 100.0 0 0.0 0 0 
moderate 0.0 0.0 0 100.0 0 0 
high 0.0 0.0 100 0.0 100 100 

LID_Untreated 
low 0.0 0.0 0.0 0.0 0.0 0.0 
moderate 9.0 9.0 9.0 9.0 9.0 9.0 
high 91.0 91.0 91.0 91.0 91.0 91.0 

Large_Stormwater_Event 
low 5.0 5.0 5.0 5.0 5.0 5.0 
moderate 15.0 15.0 15.0 15.0 15.0 15.0 
high 80.0 80.0 80.0 80.0 80.0 80.0 

LID_Not_Retained 
low 0.0 0.0 0.0 0.0 0.0 0.0 
moderate 9.0 9.0 9.0 9.0 9.0 9.0 
high 91.0 91.0 91.0 91.0 91.0 91.0 

Toxicity_Post_LID 
low 76.3 76.3 0 0 0 0 
moderate 19.1 19.1 6.7 81.8 6.7 6.7 
high 4.6 4.6 93.3 18.2 93.3 93.3 
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Migratory_Habitat* 

zero 0.0 0.0 0.0 0.0 0.0 0.0 
low 0.0 0.0 100.0 100.0 100.0 0.0 
medium 100.0 100.0 0.0 0.0 0.0 100.0 
high 0.0 0.0 0.0 0.0 0.0 0.0 

Hydrology_Post_LID 
low 4.95 4.95 4.95 4.95 4.95 4.95 
moderate 16.50 16.50 16.50 16.50 16.50 16.50 
high 78.60 78.60 78.60 78.60 78.60 78.60 

PSM_Coho 

zero 0 0 0 0 0 0 
low 54.1 54.2 10.5 22.6 10.5 0.56 
medium 30.4 30.3 38.7 64.3 38.7 26.3 
high 15.5 15.5 50.8 13.1 50.8 73.2 

Coho_Population_Status 

zero 22.2 0 0 3.2 0 5.9 
low 11.1 50 0 12.9 0 35.3 
medium 11.1 37.5 1.9 22.6 2.9 35.3 
high 55.6 12.5 98.1 61.3 97.1 23.5 

Coho_Population 

zero 16.1 15.6 1.07 4.25 1.08 0.45 
low 18.1 25.3 4.61 11.6 4.63 4.7 
medium 21.8 21.3 9.57 19.6 9.62 11.8 
high 43.9 37.8 84.7 64.5 84.7 83 

 
*Decision nodes do not have a distribution and are set to only one rank per node. 
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Table 9. Summary table of input parameters with largest contribution to overall risk scores 

from sensitivity analysis. Note that decision nodes (such as inputs for land use and 

abundance of low impact development (LID)) were not included in this analysis as Netica 

software only includes Bayes nets currently in the sensitivity analysis. 

 
Parameter 

Percent 
contribution 

Risk Region 
1 

1.) PSM_Coho 37.70% 
2.) Coho_Population_Status 15.80% 
3.) Toxicity_Post_LID 13.70% 

   
Risk Region 

2 

1.) PSM_Coho 51.20% 
2.) Toxicity_Post_LID 18.40% 
3.) Coho_Population_Status 6.38% 

   
Risk Region 

3 

1.) PSM_Coho 35.80% 
2.) Toxicity_Post_LID 1.47% 
3.) LID_Untreated 1.07% 

   
Risk Region 

4 

1.) PSM_Coho 32.50% 
2.) Coho_Population_Status 5.58% 
3.) Toxicity_Post_LID 2.18% 

   
Risk Region 

5 

1.) PSM_Coho 35.80% 
2.) Toxicity_Post_LID 1.47% 
3.) LID_Untreated 1.08% 

   
Risk Region 

6 

1.) PSM_Coho 10.60% 
2.) Coho_Population_Status 6.83% 
3.) Hydrology_Post_LID 0.66% 
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Table 11. Summary of overall risk scores per region given varying relative amounts of 

overall LID during large storm events to reduce the risk of PSM. 

 

 

Risk Management Scenarios for alternative amounts 
of LID 

Risk Region 
Current conditions 

(high) Moderate Low 
1 3.03±2.1 2.75±2.1 2.56±2.0 
2 2.78±2.0 2.46±2.0 2.24±1.9 
3 4.57±1.2 4.1±1.6 3.57±1.8 
4 3.93±1.7 3.66±1.8 3.08±1.9 
5 4.57±1.2 4.09±1.6 3.56±1.8 
6 4.55±1.2 4.03±1.7 3.1±2.0 
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