Shoreline armoring disrupts marine-terrestrial connectivity in the Salish Sea, with consequences for invertebrates, fish, and birds

Sarah Heerhartz
University of Washington, sarah.heerhartz@gmail.com

Megan Dethier
University of Washington

Jason Toft
University of Washington

Jeffery R. Cordell
University of Washington

Andrea Ogston
University of Washington

Follow this and additional works at: https://cedar.wwu.edu/ssec

Heerhartz, Sarah; Dethier, Megan; Toft, Jason; Cordell, Jeffery R.; and Ogston, Andrea, "Shoreline armoring disrupts marine-terrestrial connectivity in the Salish Sea, with consequences for invertebrates, fish, and birds" (2014). *Salish Sea Ecosystem Conference*. 225.

This Event is brought to you for free and open access by the Conferences and Events at Western CEDAR. It has been accepted for inclusion in Salish Sea Ecosystem Conference by an authorized administrator of Western CEDAR. For more information, please contact westerncedar@wwu.edu.
Shoreline armoring disrupts marine-terrestrial connectivity in the Salish Sea, with consequences for invertebrates, fish, and birds

Motivation: What are the ecological effects of shoreline armoring in the Salish Sea?
1. Ecological framework:
 a) Ecotones and spatial subsidies
 b) Beach wrack
2. Results: Beach surveys
 a) Physical characteristics
 b) Beach wrack and logs
3. Results: Primary consumers (beach invertebrates)
4. Results: Secondary consumers:
 a) Terrestrial birds
 b) Juvenile salmon
5. Conclusions
 a) Ecological context of shoreline armoring
 b) Restoration and conservation implications
Well-studied aquatic-terrestrial ecotones: sandy coasts, forested streams

SPATIAL SUBSIDY: INCREASED
+ primary productivity
+ consumer density
Beach wrack

Romanuk & Levings 2010 – terrestrially derived carbon in chum salmon in Howe Sound

Ecological framework
How does armoring affect:
- Aquatic-terrestrial connectivity?
- Permeability of boundary?
- Fluxes of material and organisms?
- Subsidies for primary consumers?
Physical parameters

Armored differences (N = 29 pairs):

- Lower maximum elevation (*paired t-test, p < 0.01*)
- Narrower beach width (*paired t-test, p < 0.01*)

ARMORING = REDUCED SIZE OF ECOTONE, LOWER ELEVATION OF AQUATIC-TERRESTRIAL INTERFACE
Logs and wrack

Spring N = 24 pairs
Fall N = 27 pairs

Armored differences:
- Significantly fewer logs (paired t-test, \(p < 0.01 \))
- Width of log line significantly smaller (paired t-test, \(p < 0.01 \))

ARMORING = REMOVAL OF LOG ZONE HABITAT
Beach wrack

Spring N = 24 pairs
Fall N = 27 pairs
• Less wrack in spring than in fall (ANOVA, $p < 0.01$)

Armored differences:
• Less wrack (paired t-test, $p < 0.01$)
• Lower proportion of terrestrial material in wrack (paired t-test, $p < 0.01$)

ARMORING = REDUCED TERRESTRIAL-AQUATIC FLUX OF ORGANIC MATERIALS
Wrack invertebrates

Including some insect taxa that have been found in juvenile salmon diets (e.g. Toft et al. 2007; Romanuk & Levings 2010)

ARMORING = FEWER INVERTEBRATES AND DIFFERENT TAXA
Wrack invertebrates

- Overall invertebrate assemblage significantly different between armored and unarmored
- Differences explained by combination of physical predictor variables
- Unarmored assemblage correlated with talitrid amphipods, flies, and beetles
- Armored assemblage correlated with aquatic isopods and bivalves
Secondary consumers: birds

Abundance and species composition

- Fewer birds overall at armored beaches
 - Armored beaches: crows most common, no shorebirds
 - Unarmored beaches: sparrows most common, no seagulls

FEWER BIRDS AND DIFFERENT TAXA AT ARMORED BEACHES
Secondary consumers: birds

Behavior (terrestrial birds)

- DIFFERENCES IN HABITAT USE BETWEEN ARMORED AND UNARMORED BEACHES
- FEWER PREY? OR REDUCED FORAGING OPPORTUNITY?

Ecological framework/Beach survey results/Primary consumers/Secondary consumers
Secondary consumers: juvenile salmon

- More observations at unarmored beaches
- Juvenile salmon in deeper water along armored shorelines

- DIFFERENCES IN DISTRIBUTION BETWEEN ARMORED AND UNARMORED BEACHES
- FEEDING RATES CONSISTENT
- FEWER PREY?
Conclusions

- Aquatic-terrestrial connectivity is important for Salish Sea ecosystem health
- Armoring disrupts connectivity – landward and seaward impacts
Acknowledgements – thank you!

Field and lab support:
- WA Dept. of Natural Resources: Helen Berry, Jeff Gaeckle
- UW Wetland Ecosystem Team: Erin Morgan, Katie Dowell, Claire Levy, Beth Armbrust
- UW Marine Geology Group: Rip Hale, Katie Boldt, Dan Nowacki, Emily Eidam, Julia Marks, Niall Twomey
Restoration and conservation considerations

- Aquatic-terrestrial
- Physical-biological

Restoring connectivity can restore ecological functions
- Can be stable/self-maintaining over time
Restoration and conservation considerations

- Aquatic-terrestrial
- Physical-biological

- Full restoration of aquatic-terrestrial connectivity sometimes not possible
- Connectivity can be restored for some components or processes within urban constraints
Shoreline armoring – previous research

- Loss of terrestrial vegetation
 - Romanuk & Levings 2003

- Lower density and diversity of insects
 - Rice 2006; Morley et al. 2012

- Greater microclimate variability
 - Rice 2006; Morley et al. 2012

- Altered fish distribution
 - Toft et al. 2007; Bilkovic & Roggero 2008

- No sediment source
 - Pilkey & Wright 1988; Griggs 2005

- Wave reflection

- Suspended sediment

- Lower density and diversity of invertebrates on bottom substrates
 - Chapman 2003

- Encroachment on upper beach

- Armoring structure

- Hypothetical unarmored profile

- Water

- Beach
AMOUNT AND COMPOSITION OF WRACK SIGNIFICANTLY DIFFERENT

(LESS WRACK)

(MORE WRACK)

Eelgrass

Terrestrial

Amount of algae, eelgrass, and terrestrial wrack

(Type)

Armored

Unarmored

2D Stress: 0.12

Wrack assemblage significantly different by type

(paired PERMANOVA, fall, p = 0.001; spring, p = 0.002)
Results: wrack “assemblage”

- MORE WRACK CORRELATED WITH WIDTH OF LOG LINE AND MAX ELEVATION/BEACH WIDTH
- SIZE OF ECOTONE IMPORTANT

Amount of algae, eelgrass, and terrestrial wrack

(paired PERMANOVA, fall, \(p = 0.001 \); spring, \(p = 0.002 \))
Wrack invertebrates

- Density of invertebrates (how many?)
- Taxonomic composition (what kind?)

Variation between points explained by physical variables (6 out of 12 possible)
Secondary consumers: juvenile salmon

- PRIMARY BEHAVIOR: FORAGING AT SURFACE
- INSECTS?

Straightness index: Net/Total = 0.57

Total distance: 87 m

Net distance: 50 m
• FEEDING RATES, MOVEMENT RATES, STRAIGHTNESS INDEX CONSISTENT BETWEEN ARMORED-UNARMORED
• DIFFERENCES IN DEPTH DISTRIBUTION

Total distance: 87 m
Net distance: 50 m
Straightness index: Net/Total = 0.57
Secondary consumers: juvenile salmon

FEEDING BEHAVIOR AFFECTS MOVEMENT PATHS

ST:
Net/Total
= 0.57

Total distance: 87 m

Net distance: 50 m

Intro/Hypotheses, Approach, Methods/Beach survey results/Conceptual model/Primary consumers/Secondary consumers
Conceptual model: Unarmored nearshore

Marine riparian – trees and shrubs

Riparian insects

Beach wrack

Eelgrass

Algae

Marine/estuarine water

Shallow water

Juvenile salmon

Wrack invertebrates

Birds

Leaf litter

Riparian insects

Fallen trees

Logs

Driftwood

Ecotone: upper intertidal
Marine riparian – trees and shrubs

Eelgrass

Marine/estuarine water

Wrack invertebrates

Beach wrack

Birds

Terrestrial

Zone of armoring

Estuarine

Eelgrass

Algae

Juvenile salmon

Marine/estuarine water

Conceptual model: Armored nearshore

Ecotone: upper intertidal

Intro/Hypotheses, Approach, Methods/Beach survey results/Conceptual model/Primary consumers/Secondary consumers/Conclusions