May 1st, 3:30 PM - 5:00 PM

Changes in Kelp and Other Seaweeds Following Elwha Dam Removal

Stephen P. Rubin
Geological Survey (U.S.), srubin@usgs.gov

Helen Berry
Washington (State). Department of Natural Resources

Nancy Elder
Marrowstone Marine Field Station

Ian Miller
Washington Sea Grant Program

Jeff Duda
Geological Survey (U.S.)

See next page for additional authors

Follow this and additional works at: https://cedar.wwu.edu/ssec

Part of the Terrestrial and Aquatic Ecology Commons

Rubin, Stephen P.; Berry, Helen; Elder, Nancy; Miller, Ian; Duda, Jeff; Foley, Melissa M.; Warrick, Jonathan A.; Beirne, Matt; McHenry, Mike; and Pedersen, Rob, "Changes in Kelp and Other Seaweeds Following Elwha Dam Removal" (2014). *Salish Sea Ecosystem Conference.* 268.

This Event is brought to you for free and open access by the Conferences and Events at Western CEDAR. It has been accepted for inclusion in Salish Sea Ecosystem Conference by an authorized administrator of Western CEDAR. For more information, please contact westerncedar@wwu.edu.
Speaker
Stephen P. Rubin, Helen Berry, Nancy Elder, Ian Miller, Jeff Duda, Melissa M. Foley, Jonathan A. Warrick, Matt Beirne, Mike McHenry, and Rob Pedersen

This event is available at Western CEDAR: https://cedar.wwu.edu/ssec/2014ssec/Day2/268
Changes in Kelp and Other Seaweeds Following Elwha Dam Removal

Steve Rubin1, Helen Berry2, Nancy Elder3, Ian Miller4, Jeff Duda1, Melissa Foley5, Jon Warrick5, Matt Beirne6, Mike McHenry6, Rob Pedersen7

1USGS Western Fisheries Research Center \hspace{2cm} 2WA Department of Natural Resources
3USGS WFRC Marrowstone Marine Station \hspace{2cm} 4WA Sea Grant, Port Angeles WA
5USGS Pacific Coastal and Marine Science Center \hspace{2cm} 6Lower Elwha Klallam Tribe
7USEPA Region 10 Environmental Cleanup Office
Nearshore Vegetation

• Diverse algae and seagrasses
• 3-D structure
• Important food source to local and distant ecosystems
Expected Changes

- **Long-term**
 - Shift toward soft sediment species

- **Short-term**
 - Turbidity
 - Scour
 - Burial
Floating Kelp Monitoring Methods (Since 1989)

Near-vertical aerial photography collected from small plane during a late summer low tide (7500’ MSL) with Nikon D200 digital 35mm DSLR camera. Hand delineated onto 1:12K basemaps.
Floating Kelp Canopy Area Changes Following Elwha Dam Removal

-53% (2011-2013)

- Crescent Bay -54%
- Tongue Pt – Observatory Pt -42%
- Freshwater Bay -74%
- Angeles Point – Elwha Bluffs -100%
- Ediz Hook +14%
- Dungeness Bluffs -7%
- Dungeness Spit -42%
- Angeles Point – Elwha Bluffs -100%
- Freshwater Bay -74%
- Tongue Pt – Observatory Pt -42%
- Crescent Bay -54%
- Dungeness Spit -42%
- Ediz Hook +14%
- Angeles Point – Elwha Bluffs -100%
- Dungeness Bluffs -7%
- Crescnet Bay -54%
- Tongue Pt – Observatory Pt -42%
- Freshwater Bay -74%
- Angeles Point – Elwha Bluffs -100%
- Ediz Hook +14%
- Dungeness Bluffs -7%
- Dungeness Spit -42%
Underwater Transects Surveyed in 2010*, 2012 & 2013 from shallow to -15 m

* Thanks to Clallam County (Cathy Lear) and MRC (Jim Norris) for 2010 imagery.
Underwater Video Classification

- **Vegetation Types**
 - All macrovegetation
 - All kelp
 - Stipitate kelp
 - Prostrate kelp
 - Floating kelp
 - Non-kelp red/brown algae
 - Green algae
 - Seagrass

- **Cover classes**
 - Really Low <15%
 - Low 15-33%
 - Medium 33-66%
 - High 66-85%
 - Really High >85%

Mapping Unit ~ 1 m²
Directly east of the Elwha River mouth, -8 m (MLLW).
Major Decrease in Area with Vegetation Present, 2010-2013

- **p < 0.2**
- **p < 0.05**
Dive surveys

• Identify and count plants in 30 m x 1 m swaths
• Transect endpoint markers on seafloor:
 - End pyramid
 - Center post

• Two transects per site
• Seasonal window: Late July-early September
• Surveys conducted annually at 17 sites:
 1 site: 2009-2013
 4 sites: 2010-2013
 9 sites: 2011-2013
 3 sites: 2009 (GPS only, no endpoint markers), 2012-2013
All kelp

- Density before dam removal
All kelp

- Percent change in density after dam removal

Before

Before-2012

Before-2013

Percent change

-100.0 -99.9
-99.8 -90.0
-89.9 -80.0
-79.9 -70.0
-69.9 -60.0
-59.9 -50.0
-49.9 -0.0
0.1 - 80.0

Percent change

-100.0
-99.9 -90.0
-89.9 -80.0
-79.9 -70.0
-69.9 -60.0
-59.9 -50.0
-49.9 -0.0
0.1 - 10.0
Kelp species

- Density before dam removal and in 2012 and 2013
Kelp species

- Density before dam removal and in 2012 and 2013

<table>
<thead>
<tr>
<th>Species</th>
<th>Before</th>
<th>2012</th>
<th>2013</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agarum fimbriatum</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Alaria marginata</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Costaria costata</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Cymathere triplicata</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Laminaria setchellii</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Nereocystis luetkeana (bull kelp)</td>
<td>2.5</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Pleurophyca gardneri</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Pterygophora californica</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Saccharina spp</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>
Kelp species

- Density before dam removal and in 2012 and 2013

<table>
<thead>
<tr>
<th>Species</th>
<th>Before (2011)</th>
<th>2012</th>
<th>2013</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cymathere triplicata</td>
<td>2.6</td>
<td>0.5</td>
<td>0.8</td>
</tr>
<tr>
<td>Agarum fimbriatum</td>
<td>0.1</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Alaria marginata</td>
<td>0.1</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Costaria costata</td>
<td>0.1</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Laminaria setchellii</td>
<td>0.1</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Nereocystis luetkeana</td>
<td>0.1</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Pleurophycus gardneri</td>
<td>0.1</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Pterygophora californica</td>
<td>0.1</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Saccharina spp</td>
<td>0.1</td>
<td>0.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>
Kelp species

- Density before dam removal and in 2012 and 2013

<table>
<thead>
<tr>
<th>Species</th>
<th>Before</th>
<th>2012</th>
<th>2013</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agarum fimbriatum</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pterygophora californica</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Other seaweeds

- Also decreased after dam removal
- Acid kelp (*Desmarestia* spp):

- Red algae (*Rhodophyta*):

- Kelp + acid kelp + red algae = total vegetation
Unseasonal recruitment

- Juveniles appeared in late August 2013

← Not present August 16

Present August 30 →
Unseasonal recruitment

• Species that typically recruit in spring:

 - *Alaria marginata*
 - *Cymathere triplicata*
 - *Nereocystis luetkeana*
 - *Laminaria ephemera*
 - *Desmarestia “bushy”*
 - *Desmarestia “flat-bladdled”*

• Present at three sites:

Unseasonal recruitment

- Present
- Not present
- Unknown
Physical drivers

• Not “permanent” burial

Not buried

2012: 15 sites
2013: 11 sites

Buried

2012: 0 sites
2013: 4 sites
Physical drivers

- Not “permanent” burial

Gelfenbaum et al. in prep.
Physical drivers

- Ephemeral deposition
- Scour ("sandblasting")
- Light reduction

Photos from Jonathon Warrick
Chance to learn

- How does sedimentation affect kelp and other seaweeds?