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From Fruit Flies to the Frontline: Slow Science in a Demanding Medical Climate 

Capstone Project by Riley Haner 

 

At the beginning of the 19th century, very few countries had a life expectancy over 25 years. 

Extreme poverty and little medical knowledge meant many people expected an early death. In the last 

150 years however, health statistics around the world improved tremendously. High risks of early 

death and mid-life mortality meant few people lived long enough to die from chronic diseases of 

aging; the aging process was simply not seen as a risk to public health. Breakthroughs in laboratory 

sciences however, led by Koch and Pasteur, ushered in strategies aimed at understanding and treating 

the acute diseases that were prominent among a young population (Marvasti & Stafford 2012). These 

led to advances in sanitation, vaccination, antibiotics, publicly funded healthcare, and specific 

medical interventions such as in the treatment of chronic diseases like cancer and diabetes or 

infectious diseases like malaria and influenza that have been crucial in enhancing both the quantity 

(lifespan) and quality (healthspan) of people’s lives. 

For many countries, life expectancy has since more than doubled, surpassing 65 years for men 

and 70 for women (Riley 2001). In Norway, Sweden, Australia, and Japan female life expectancy has 

risen for 160 years at a steady pace of nearly 3 months per year (Oeppen & Vaupel 2002). 

Experts have, multiple times, had a hard time imagining the rising lifespan estimated to rise 

much further. An ultimate limit to life expectancy has been suggested many times. For example, in 

1928, Dr. Louis Dublin used current US census tables to estimate a hypothetical maximum of 64.76 

years for both men and women (Dublin 1928). At the time, US life expectancy was 57 years. Without 

access to the non-Maori life table of 1921, however, Dublin did not know that female life expectancy 

in New Zealand had already reached 65.93 years (Oeppen & Vaupel 2002). Similar conclusions were 

made by Olshansky et al. in 1990, where they asserted life expectancy was “highly unlikely to exceed 

35 years at the age of 50, unless major breakthroughs occur in controlling the fundamental rate of 

aging” (Olshansky 1990). That cap was surpassed by Japanese females in 1996, alluding to a pattern 

of estimated of lifespan limits that are broken about 5 years after publication (Oeppen & Vaupel 

2002). 

Because these lifespan estimates have increased by 2.5 years per decade for over 150 years, it 

would not seem unreasonable to envision this trend continuing into the coming decades (Oeppen & 

Vaupel 2002). This estimate would predict life expectancy to reach 100 before 2100 and would imply 

https://www.biography.com/scientist/robert-koch
https://www.biography.com/scientist/louis-pasteur
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4339086/
https://ourworldindata.org/sanitation
https://ourworldindata.org/vaccination
https://ourworldindata.org/financing-healthcare
https://ourworldindata.org/cancer
https://ourworldindata.org/malaria
https://link.springer.com/content/pdf/10.1007/s11357-018-0036-9.pdf
https://www.cambridge.org/core/services/aop-cambridge-core/content/view/390DB2B785EAA9F72866734EC4B71DFC/S0025727300007729a.pdf/james_c_riley_rising_life_expectancy_a_global_history_cambridge_university_press_2001_pp_xii_243_3000_us4995_0521802458_1195_us1695_paperback_0521002818.pdf
https://user.demogr.mpg.de/jwv/pdf/scienceMay2002.pdf
https://journals.lww.com/ajnonline/Citation/1928/09000/Health_and_Wealth.61.aspx
https://user.demogr.mpg.de/jwv/pdf/scienceMay2002.pdf
http://sjayolshansky.com/sjo/Manuscripts_files/HandbookofPopulationAging.pdf
https://user.demogr.mpg.de/jwv/pdf/scienceMay2002.pdf
https://user.demogr.mpg.de/jwv/pdf/scienceMay2002.pdf
https://user.demogr.mpg.de/jwv/pdf/scienceMay2002.pdf
https://user.demogr.mpg.de/jwv/pdf/scienceMay2002.pdf
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future centenarians may be commonplace within today’s populations. Although these modest 

increments in life expectancy may plateau far below reaching true immortality – which is especially 

likely when accounting for factors like homicide, suicide, war, unavoidable accidents, 

unprecedented environmental collapse, antibiotic resistance, or future pandemic events – they 

have fueled enormous increases in overall population size, economic output, and self-reported 

satisfaction for life. 

These life-extending moves that come about by changes in many social aspects are often 

targeted at reducing rates of individual mortality. For populations of similarly low overall mortality – 

i.e. fewer rates of death – most individuals naturally survive to similar ages, implying a focus on 

reducing mortality in individual cases was critical in improving the lifespan for a greater population. 

For instance, before 1950, aiming to reduce death rates at younger ages primarily increased life 

expectancy. On the other hand, in the second half of the 20th century, it was a focus on survival after 

the age of 65 drove life expectancy (Oeppen & Vaupel 2002). 

With fewer young people – attributed to a decreasing fertility rate – and a lower mortality 

rate, there has been a particularly dramatic boom in the relative number of the elderly. This makes 

those over 80 the fastest growing population around the world (Nass & Thorner 2004). Currently, 600 

million persons worldwide are age 60 or older. The World Health Organization estimates that 

number will reach 2 billion people by 2050 (WHO 2016). 

The process of aging is generally characterized by a progressive decline in physiological 

stability that leads to an increased risk of death (López-Otín 2013). This deterioration is the primary 

risk factor for many major human pathologies, including neurodegenerative disease, 

immunosenescence, and somatic diseases like cancer, diabetes mellitus, osteoporosis, arthritis, and 

cardiovascular disease (Jaul 2017). As a specific example, the risk for developing Alzheimer’s disease, 

an age-associated neurodegenerative disorder in which there are currently no treatments that 

effectively delay or prevent its onset, has been shown to double about every five years after the age of 

65 (Alzheimer’s Society 2020, Kaeberlein 2013).  

The generally healthiest age group, on the other hand, is the group of people younger than 40 

years of age that have the fewest cases of chronic disease. It has been well established that the majority 

of patients with a chronic ailment are over the age 65. While 80% of this age group has one chronic 

disease, about 50% of this group have at least two (Prasad 2013). The widespread accumulation of 

these conditions is alarming for today’s aging population. 

https://www.washingtonpost.com/national/health-science/us-life-expectancy-declines-again-a-dismal-trend-not-seen-since-world-war-i/2018/11/28/ae58bc8c-f28c-11e8-bc79-68604ed88993_story.html
https://www.sciencealert.com/hundreds-of-top-scientists-warn-combined-environmental-crises-will-cause-global-collapse
https://www.statnews.com/2020/03/23/antibiotic-resistance-hidden-threat-lurking-behind-covid-19/
https://www.advisory.com/daily-briefing/2020/05/15/weekly-line
https://ourworldindata.org/bonheur-et-satisfaction
https://ourworldindata.org/bonheur-et-satisfaction
https://www.pnas.org/content/117/10/5250
https://user.demogr.mpg.de/jwv/pdf/scienceMay2002.pdf
https://ourworldindata.org/fertility-rate
https://sci-hub.tw/https:/www.sciencedirect.com/science/article/abs/pii/S1521690X04000041?via%3Dihub
https://www.who.int/ageing/publications/en/
https://www.who.int/ageing/events/idop_rationale/en/
https://www.cell.com/fulltext/S0092-8674(13)00645-4
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5732407/
https://www.alzheimers.org.uk/about-dementia/types-dementia/who-gets-alzheimers-disease#:~:text=Age%20is%20the%20biggest%20risk,of%20them%20have%20Alzheimer's%20disease.
https://s3-eu-west-1.amazonaws.com/science-now.reports/f1000reports/files/9002/5/5/article.pdf
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3340492/
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The economic burden of chronic disease has accelerated; increases in the prevalence of chronic 

disease are “outstripping reductions in acute infectious diseases” (Marvasti & Stafford 2012). For a 

person with one or more chronic conditions, healthcare costs are an estimated five times higher than a 

person without a chronic disease (Dukes 2019). The most common chronic ailments, causing 70% of 

US deaths, are cardiovascular disease, cancer, and diabetes (Marvasti & Stafford 2012). They account 

for nearly 75% of the nation’s $3.3 trillion in annual healthcare expenditures (Healthy People 2020, 

Marvasti & Stafford 2012). 

Although chronic disease is often referred to as all non-communicable disease, there have been 

several studies that outline many socially transmittable components of these conditions. When 

considering conventional infectious diseases, however, the elderly are one of the most susceptible 

groups. Seasonal influenza deaths by age have historically been U-shaped; deadliest for the very 

young and the very old. In 2018, 83% of influenza-related deaths occurred among people age 65 and 

older (Fox 2020). 

“One of the most striking features of the COVID-19 pandemic is this disproportionate impact 

on the elderly,” Says Dr. Matt Kaeberlein, “Nearly 80% of the over 100,000 deaths in the United 

States have been age 65 and older” (CDC 2020, Kaeberlein 2020). The shocking statistic is also seen 

in the relative age and mortality distribution of both the seasonal flu and the 2009 H1N1 influenza 

epidemic. 

The 1918 H1N1 influenza pandemic, on the other hand, is unique amongst influenza 

outbreaks. In the United States, this pandemic caused 500,000-700,000 deaths; nearly half were 

otherwise healthy, young adults (CDC 2019). The age-specific influenza deaths for the 1918 pandemic 

exhibits a distinct W-shaped pattern with the addition of a middle peak of deaths in young adults 

between the ages of 15 and 35. It is the first pandemic in which the absolute risk of influenza risk was 

higher in those younger than 65 than in those older than 65. Although the cause of this phenomenon 

has remained largely unexplained, it has been hypothesized that the elder populations could have been 

exposed to a related influenza strain during the 1889 H3N8 pandemic, from which they developed a 

partial immunity to the 1918 virus (Taubenberger & Morens 2006). 

There are several explanations for why the COVID-19 virus preferentially targets the elderly. 

Patients with underlying health conditions had a 79% greater chance of requiring advanced care 

(Begley 2020). Age-associated immunosenescence provides an opportunity for the virus to gain a 

foothold that the body’s adaptive immune system cannot fend off (Kaeberlein 2020). Age-related 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4339086/
https://www.prnewswire.com/news-releases/aging-and-chronic-disease--the-american-tsunami-of-bad-health-300939034.html
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4339086/
http://www.healthypeople.gov/2020/default.aspx
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4339086/
https://jech.bmj.com/content/57/11/838
https://health.ri.gov/diseases/infectious/
https://wwwnc.cdc.gov/eid/article/12/1/05-0979-f2
https://www.bloomberg.com/opinion/articles/2020-05-07/comparing-coronavirus-deaths-by-age-with-flu-driving-fatalities
http://kaeberlein.org/matt-kaeberlein/
https://www.cdc.gov/nchs/nvss/vsrr/covid_weekly/index.htm#AgeAndSex
https://thehill.com/opinion/healthcare/498069-covid-19-why-it-kills-the-elderly-and-what-we-should-do-about-it
https://www.bloomberg.com/opinion/articles/2020-05-07/comparing-coronavirus-deaths-by-age-with-flu-driving-fatalities
https://www.cdc.gov/flu/about/burden/2017-2018.htm
https://academic.oup.com/cid/article/52/suppl_1/S75/499147
https://academic.oup.com/cid/article/52/suppl_1/S75/499147
https://wwwnc.cdc.gov/eid/article/12/1/05-0979_article
https://www.cdc.gov/flu/pandemic-resources/1918-pandemic-h1n1.html
https://wwwnc.cdc.gov/eid/article/12/1/05-0979-f2
https://www.history.com/news/1889-russian-flu-pandemic-in-america
https://wwwnc.cdc.gov/eid/article/12/1/05-0979_article
https://www.vox.com/2020/3/12/21173783/coronavirus-death-age-covid-19-elderly-seniors
https://www.statnews.com/2020/03/03/who-is-getting-sick-and-how-sick-a-breakdown-of-coronavirus-risk-by-demographic-factors/
https://sci-hub.tw/https:/www.nature.com/articles/s41590-017-0006-x
https://thehill.com/opinion/healthcare/498069-covid-19-why-it-kills-the-elderly-and-what-we-should-do-about-it
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frailty also tends to lower resistance to stress (Epel 2014). “These are important risk factors, but the 

real reason COVID-19 kills the elderly is because of aging – specifically, these risk factors are driven 

by the biological mechanisms of aging,” says Kaeberlein. These mechanisms are suggested to have a 

forthcoming prominence in healthcare. 

Currently, however, the biomedical sciences are dominated by the disease-model approach to 

health extension and prioritizes the study of pathological mechanisms with the goal of discovering 

treatments for specific diseases. This strategy has undeniably benefitted modern medical care and 

human health; “many new treatment options are helping people live longer today than ever before” 

said Dr. Matt Kaeberlein in 2015. Even so, medicine has been largely unsuccessful at “postponing, 

ameliorating, or preventing the accumulation of morbidities during aging,” he says. This approach has 

significant implications for families that “struggle to care for elderly relatives who survive for years or 

even decades with reduced quality of life” and nations that “devote an increasing proportion of finite 

resources toward medical care for their aging populations” (Kaeberlein 2015). There may be room to 

suggest another philosophy for modern medical practice. 

What comes with the challenges of managing chronic disease is an increased emphasis on 

“basic research in the biology of aging” (Kaeberlein 2015). This effort hopes that by “successfully 

delaying the intrinsic rate of biological aging” therapeutics could “simultaneously delay the onset and 

progression of each age-related disease” (Kaeberlein 2015). This new strategy is likely a more 

effective tactic than those aimed at treating or curing an individual disease, as even if interventions 

could completely eliminate cancer, heart attack, or diabetes, most people would still fall far short of 

achieving significantly longer and healthier lives (Perry 2010). In the United States alone, the 

economic value of this delayed-aging scenario may be worth an estimated $7.1 trillion over fifty years, 

in the form of relaxed insurance costs and continued fiscal contribution (Goldman et al. 2013). Even a 

“modest one percent reduction to cancer onset” may be worth $500 billion (Murphy & Topel 2005). 

There is also, however, an undeniable, intrinsic value to individuals for living even a small amount 

healthier and for a small amount longer that goes beyond any extension of their contribution to the 

annual GDP. 

Understanding the diverse and complex process of aging, nestled between chronic disease and 

communicable disease susceptibility, represents a fundamental keystone for efforts in improving 

both longevity and quality of life. From studies on the mechanisms of aging, there have been nine 

“hallmarks of aging” proposed by López-Otín et al. in 2013 as “genomic instability, telomere 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4022128/
https://thehill.com/opinion/healthcare/498069-covid-19-why-it-kills-the-elderly-and-what-we-should-do-about-it
https://sci-hub.tw/https:/science.sciencemag.org/content/350/6265/1191.long
https://sci-hub.tw/https:/science.sciencemag.org/content/350/6265/1191.long
https://sci-hub.tw/https:/science.sciencemag.org/content/350/6265/1191.long
https://sci-hub.tw/https:/science.sciencemag.org/content/350/6265/1191.long
https://sci-hub.tw/10.1111/j.1749-6632.2009.05394.x
https://www.healthaffairs.org/doi/10.1377/hlthaff.2013.0052
https://www.nber.org/papers/w11405.pdf
https://review.chicagobooth.edu/economics/2019/article/how-speed-next-medical-breakthrough
https://review.chicagobooth.edu/economics/2019/article/how-speed-next-medical-breakthrough
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3590784/
https://www.cell.com/fulltext/S0092-8674(13)00645-4
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attrition, epigenetic alterations, loss of proteostasis, deregulated nutrient sensing, mitochondrial 

dysfunction, cellular senescence, stem cell exhaustion, and altered intercellular communication.” 

These hallmarks have been established to underlie the progressive loss of physiological integrity that 

is common among the elderly.  

While not all of the hallmarks have been fully prescribed specific interventions that succeed in 

ameliorating aging, the formalization of the hallmarks has built a strong framework for studies into the 

normal mechanistic process of aging. And importantly, this endeavor has carved out space for basic 

science to characterize the interplay between individual hallmarks and related diseases through the 

experimental aggravation and amelioration of each hallmark, especially within simple model 

organisms.  

There have been a number of geroscience interventions speculated to have clinical potential to 

modulate the hallmarks of aging. Among those are dietary restriction, exercise, telomere modifiers, 

mitochondrial-targeted therapeutics, and mTOR inhibitors (Kaeberlein 2015). 

My work in Dr. Adrienne Wang’s Lab has both exposed me to and invoked my interest in this 

aging research. Beyond obvious ethical limitations, long human lifespans make studying the direct 

mechanisms of aging difficult. Hence, we use the fruit fly Drosophila melanogaster as a model 

organism for its well-documented role exploring and quantifying the pathological mechanisms of 

neurodegenerative disease and how these might interact with the molecular changes associated with 

age. Among the hallmarks of aging, mitochondrial deficiency stands out as a worthy study candidate 

as it is attributed to both normal aging and specific mitochondrial disorders. Our work builds upon Dr. 

Wang’s post-doctoral work in the Kaeberlein lab where she used a fruit fly model to characterize a 

mitochondrial mutation implicated in the onset of Leigh Syndrome – also known as juvenile subacute 

necrotizing encephalomyelopathy – a devastating mitochondrial disorder most common in children. 

Her work into one of these mutations – a 9-nucleotide deletion compromising a subunit of ETC 

complex I (so called “ND2”) – found the mutant strain to have decreased ETC complex I assembly 

and function, locomotor and lifespan deficits, as well as a positive response to treatment with the 

pharmaceutical compound Rapamycin, alluding to its potential to ameliorate the physiological 

manifestations of mitochondrial dysfunction (Wang 2016). 

Rapamycin was isolated from a soil sample from Rapa Nui, also known as Easter Island, in 

1972. It was soon after found to be a potent antifungal metabolite produced by Streptomyces 

hygroscopicus with immunosuppressive and antiproliferative properties in mammalian cells (Li 2015). 

https://www.nia.nih.gov/research/dab/geroscience-intersection-basic-aging-biology-chronic-disease-and-health
https://nature.com/articles/nrd.2018.174
https://sci-hub.tw/https:/science.sciencemag.org/content/350/6265/1191.long
https://www.nobelprize.org/prizes/medicine/1933/morgan/article/
https://www.nobelprize.org/prizes/medicine/1933/morgan/article/
http://www.kaeberleinlab.org/index
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3972801/
https://sci-hub.tw/10.1126/science.aac4357
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5348310/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3972801/
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Rapamycin, marketed as Sirolimus, was first approved by the US Food and Drug Administration 

(FDA) in September 1999 and was first marketed under the trade name Rapamune as an 

immunosuppressive therapeutic to combat organ rejection following transplant. In 2003, a rapamycin 

derivative was approved for use in coating coronary stents. In 2007 and 2009, two rapamycin 

derivatives were approved for the intended treatment of advanced renal cancer. Most recently, the 

compound was approved in 2015 to treat lymphangioleiomyomatosis (LAM), a rare progressive lung 

disease that is caused by unregulated activation of mTOR (Kristof 2010). 

Rapamycin is an inhibitor of the (aptly named) mechanistic target of rapamycin (mTOR). This 

mTOR molecule is a protein kinase involved in a signaling pathway central to cell survival. mTOR 

activity also influences cell proliferation, cell-cycle progression, mitochondrial metabolism and 

insulin-like signaling (Kaeberlein 2009). In addition, mTOR activity regulates translation and inhibits 

autophagy – both of which have been implicated in the normal process of cellular aging (Acevo-

Rodríguez et al. 2020).  

Within cells, rapamycin binds to the FK506 binding protein 12 (FKBP12), and the FKBP12-

rapamycin complex inhibits the activity of mTOR complex 1 (mTORC1). TOR, a ~240 kDa 

serine/threonine protein kinase serves as a core component to two distinct multi-protein complexes, 

either mTORC1 or mTORC2, to form the active multi-domain regulator complex, colloquially 

referred to as mTOR (Kristof 2010). The rapamycin-sensitive mTORC1 arm of the macromolecular 

complex is defined by the presence of the regulatory associated partner of mTOR (“Raptor”). 

Following glucose deprivation, hypoxia, amino acid or growth factor-sensing pathways, Raptor links 

mTOR to one of its many effectors, including the likes of p70S6k, which can phosphorylate 

downstream pathways including Rag, Rheb, and FKBP38 (Kristof 2010). 

By inhibiting the phosphorylating ability of mTOR and regulating proliferation, the activity of 

rapamycin stands out as a therapeutic for LAM, as well as many syndromes where excessive mTOR 

activity and unregulated growth is a prominent feature (Kristof 2010). As recently as 2019, rapamycin 

has even been posed as a potential therapeutic for Alzheimer’s disease (Kaeberlein 2019). 

With readily-accessible genetic tools, my group at the Wang lab uses drosophila stocks with 

known mutations in mitochondrial proteins that we suspect model both human disease and may exhibit 

mTOR dysregulation. There are hundreds of proteins involved in normal energy metabolism and the 

formation of the electron transport chain (ETC) complexes I, II, III, IV, V and pyruvate dehydrogenase 

(Lake & Thorburn 2016). Each is susceptible to mutations with profound pathological implications. 

https://pubmed.ncbi.nlm.nih.gov/12742462/
https://ojrd.biomedcentral.com/articles/10.1186/s13023-018-0946-8
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2883527/
https://www.nature.com/articles/460331a.pdf
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7082396/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7082396/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2883527/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2883527/
https://cdrjournal.com/article/view/3277
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2883527/
https://sci-hub.tw/10.1126/scitranslmed.aar4289
https://sci-hub.tw/10.1126/scitranslmed.aar4289
http://flybase.org/
https://bdsc.indiana.edu/
https://pubmed.ncbi.nlm.nih.gov/26506407
https://ghr.nlm.nih.gov/primer/mutationsanddisorders/mitochondrialconditions
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These energy-generating structures give the mitochondria its nickname the Powerhouse of the Cell. 

Pediatric mitochondrial disorders caused by deficiencies in mitochondrial function are a devastating 

category of disease. Leigh Syndrome, the most common of these diseases, bears symptoms that 

typically appear in early infancy and progress rapidly until death, usually before patients are 7 years 

old (Wang 2016). This disorder has been linked to mutations in over 70 different mitochondrial 

proteins, with the most common deficiencies found in complexes I and IV (Lake & Thorburn 2016). 

Our research utilizes drosophila strains with mutations in mitochondrial genes to quantify the 

physiological deficiencies – decreased lifespan and worsened motor function – caused by mutations in 

specific ETC complexes and the extent to which these mutations lead to changes in TOR activity. We 

then test the efficacy of rapamycin as a therapeutic that may ameliorate functional deficiencies. In our 

preliminary experiments, we have conducted lifespan analyses and locomotor assays – testing age-

related changes sensitivity to mechanically-stimulated paralysis and climbing behavior – on cohorts 

of mitochondrial mutants. These experimental flies were reared alongside a genotype that has been 

previously documented to show an increased lifespan and improved locomotor activity with age when 

treated with rapamycin and is used as a positive control. 

In our unpublished work, we have characterized mutants with deficiencies in the mitochondrial 

electron transport chain. One strain, colloquially referred to as TTC19, is homozygous for a nonsense 

mutation in the tetratricopeptide repeat domain 19 gene which encodes for a protein with a 

tetratricopeptide repeat (TPR) domain that embeds in the inner mitochondrial membrane and is 

involved in the formation of mitochondrial ETC complex III. Another strain, referred to as SIRUP, 

possesses a TALEN-induced two base pair deletion that results in a null allele for the starvation-

upregulated protein, a gene that encodes a critical assembly factor for the enzyme succinate 

dehydrogenase (SDH), also known as ETC complex II. 

The mitochondrially-deficient mutant strains exhibit decreased lifespan and reduced climbing 

ability as compared to the control. Drosophila lifespan models human longevity and locomotor activity 

models age-related declines in motor function, which we use as an indicator of relative healthspan. 

Some of the findings thus far also suggest rapamycin may partially rescue some of the these 

phenotypes back to wildtype levels, but further research is needed to establish the efficacy of 

rapamycin in treating diseases caused by deficiencies in complex II and complex III of the ETC.  

Rather applicable to the COVID-19 pandemic, where a compromised immune system poses a 

serious threat to the elderly, rapamycin was initially proposed as a potential therapeutic for its 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5348310/
https://pubmed.ncbi.nlm.nih.gov/26506407
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3059453/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1526683/
https://www.pnas.org/content/116/49/24830
http://flybase.org/reports/FBal0018186.html
https://flybase.org/reports/FBgn0032744.html
http://flybase.org/reports/FBgn0031971.html
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immunosuppressive qualities that come from mTOR inhibition. As a therapy, it has been shown to 

have the ability “to boost response to the flu vaccine and simultaneously reduce the risk of 

respiratory infections in otherwise healthy people over the age of 65” (Kaeberlein 2020). “Protection 

against Alzheimer’s, heart disease, cancer and other age-related diseases,” Kaeberlein says, “would be 

a nice side effect to such an immune-boosting therapy.” 

From fruit fly to frontline, the process of developing a therapeutic is an immensely laborious 

and resource-exhausting process. The clinical trials alone have estimated costs of $19 million. This 

small but necessary step makes up less than one percent of the overall cost of a drug’s development 

(Moore 2018). The median overall cost hovers above $2 billion USD, with some research and 

development totaling over $5 billion (Herper 2013). When attaining FDA approval, a novel drug 

undergoes a series of clinical trials in which its off-target interactions are documented, and its 

effectivity is validated. Given that human lives are at stake, this process is especially essential for 

ensuring only safe and effective therapeutics reach the market. 

There is clearly potential for rapamycin (and other mTOR inhibiting analogues) as an anti-

aging therapeutic beyond its currently-FDA-approved immunosuppressive capability. Research in the 

field has yet to reach a point of diminishing returns when studying interventions that promise to 

combat the ailments of our modern aging world. However, we still must consider and prepare to 

accommodate a handful of challenges that have arisen from clinical-observational review. These 

challenges include: insulin sensitivity, wide-ranging dosage curves, paradoxical inflammatory 

manifestations, unknown interactions with gut microbiota, or in existing applications, low efficacy 

to risk ratio as compared to alternatives.  

Ironing out these intricacies is a long and arduous task – due, in no small part, to the 

fractally-scalable nature of biomedical research – that is represented by the high R&D costs.  It 

requires extensive understanding on a breadth of scientific literature and imposes significant 

consequences for the modern scientific community. 

Changes in the publishing world, both technological and economic, have led to increasing 

efficiency in the production of publications. Transdisciplinary studies have discovered an exponential 

growth rate in the volume of scientific literature. Using text analysis of phrases from titles and 

abstracts of various publications and found that while the number of publications grows exponentially, 

the “space of unique scientific ideas” has expanded only linearly (Fortunato 2018). This growing 

https://www.ncbi.nlm.nih.gov/pubmed/25540326
https://www.ncbi.nlm.nih.gov/pubmed/29997249
https://www.ncbi.nlm.nih.gov/pubmed/29997249
https://thehill.com/opinion/healthcare/498069-covid-19-why-it-kills-the-elderly-and-what-we-should-do-about-it
https://jamanetwork.com/journals/jamainternalmedicine/fullarticle/2702287
https://www.forbes.com/sites/matthewherper/2013/08/11/how-the-staggering-cost-of-inventing-new-drugs-is-shaping-the-future-of-medicine/
https://www.forbes.com/sites/matthewherper/2013/08/11/how-the-staggering-cost-of-inventing-new-drugs-is-shaping-the-future-of-medicine/
https://www.forbes.com/sites/matthewherper/2013/08/11/the-cost-of-inventing-a-new-drug-98-companies-ranked/#420737c82f08
https://www.fda.gov/drugs/development-approval-process-drugs
https://sci-hub.tw/10.1126/scitranslmed.aar4289
https://www.nature.com/articles/s41419-019-1822-8.pdf?origin=ppub
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2778016/
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0053078
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0053078
https://www.nature.com/articles/s41598-019-44106-5.pdf
https://pubmed.ncbi.nlm.nih.gov/21596327/
https://pubmed.ncbi.nlm.nih.gov/28561725/
https://www.medicographia.com/2013/01/fractals-and-their-contribution-to-biology-and-medicine/
https://sci-hub.tw/10.1126/science.aao0185
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competition for publication and funding space has important implications for the objectivity and 

integrity of research. 

Scientists, like all humans, certainly have ties to the outcome of their own research that makes 

separating from ingrained biases difficult. Pharmaceutical research certainly has a financial stake in 

the outcome of its result, motivated to promote medications with unrealistic expectations for what they 

can produce. Academic scientists also face a publish or perish culture, especially within the 

biomedical community when facing the rise in society’s alarming medical conditions. Papers are less 

likely to be well-received nor cited if they report negative results (Fanelli 2010) This leads to journals 

preferentially publishing high-impact, significant, positive results (Fanelli 2010, Fortunato 2018). The 

resulting system seems to deter safer, incremental research, and biases scientists to produce 

publishable results at all costs. It pressures researchers to go with one method of data interpretation 

that results in a data point that is “significant or otherwise novel and unexpected, gradually 

encouraging researchers to investigate “more and more unlikely hypotheses” (Ioannidis 2005). A 

pressure to test an increased number of contrived relationships certainly contributes to the false 

positives and exaggerated results that are rampant symptoms of this practice. These factors have the 

collective side effect of making science feel fast: research is fragmented, competition is fierce, and 

single studies are often given more emphasis than is given to those that incorporate a larger scope 

(Ioannidis 2011). 

On the other side of this initiative, competition is encouraged, if not applauded in scientifically 

advanced countries because it increases the efficiency and productivity of researchers. Nobel laureate 

designations, for instance, are reserved for discoveries that open new avenues of research or that yield 

practical applications in several branches of science and medicine. For example, Thomas Hunt Morgan 

(whose model organism was of course the Drosophila melanogaster), was awarded the Nobel Prize in 

Physiology and Medicine in 1933 for his discoveries that would establish the basis of the modern 

science of genetics (Moore 1983). From his work in identifying and tracing mutations, he 

demonstrated that genes are carried on some enigmatic material that would later come to be known as 

chromosomes. Morgan’s discoveries paved the way for an array of molecular biologists who were 

frequently (and deservedly) accompanied by Nobel prizes themselves. Of note have been Avery and 

MacLeod, Hershey and Chase, Watson and Crick (and Rosalind Franklin), and Jennifer Doudna, 

among others. 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2858206/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2858206/
https://sci-hub.tw/10.1126/science.aao0185
https://journals.plos.org/plosmedicine/article?id=10.1371/journal.pmed.0020124
https://www.scientificamerican.com/article/an-epidemic-of-false-claims/
https://sci-hub.tw/https:/academic.oup.com/icb/article/23/4/855/188335
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2135445/pdf/137.pdf
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2135445/pdf/137.pdf
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2147348/pdf/39.pdf
http://dosequis.colorado.edu/Courses/MethodsLogic/papers/WatsonCrick1953.pdf
https://www.nature.com/scitable/topicpage/rosalind-franklin-a-crucial-contribution-6538012/
https://sci-hub.tw/10.1126/science.1225829
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As of 2019, the molecular causes of nearly 6,500 human diseases have been identified, yet only 

about 500 have effective treatments (WIPO 2019). By 2030, it is likely that science and medicine will 

have seen promise for genetic technologies in treating and even curing the diseases that currently seem 

out of reach. There is certainly an application for such a technology in targeting the genes that regulate 

aging and the molecular processes that they represent. In principle, targeting these processes should be 

effective at ‘delaying onset and perhaps even reversing the pathologies of specific age-related 

diseases” (Kaeberlein 2019). Given the undesirable consequences of implementing widespread 

genetic engineering technologies – even if they promise to eliminate genetic diseases and enhance 

lives – the question of “whether or how we want to limit them remains open and pressing” (Evans 

2003). 

As technological advances are clearly of significant clinical importance, the future of 

healthcare will hopefully come to benefit continued improvements to both productivity and 

compassion. Likely, new advances will have incredible implications as they are gradually integrated 

into normal use. Some of these more broad-reaching technologies may resemble an improved EHR 

system that harnesses the power of AI to allow more efficient and reliable physician-patient 

interaction, widespread telemedicine that extends the range of medical care, and a computational 

model of the brain. As for further improvements, aspiring physicians should be taught about systems 

science that addresses determinants of disease – age, psychological, social, and economic factors – that 

are not traditionally emphasized in disease diagnoses. As an emphasis on prevention is slowly 

integrated into the organization and practice of medicine, the “unabated, economically unsustainable 

burden of chronic disease can be stemmed” (Marvasti & Stafford 2012). 

Science, at its core, is a struggle to produce knowledge for the benefit of all of humanity 

against the cognitive (and moral) limitations of individual human beings. However, we have been 

made aware of the rampant publication biases and incentive for p-hacking that are fueled by scientists’ 

own acts of self-preservation. To remedy this ailment of the modern scientific process, we can seek to 

channel a mentality that has been referred to as the “Slow Science Movement.” It encompasses the 

incremental, methodical, and critical thinking that science needs to be most effective and trustworthy; 

“time to think, to read, and to fail” (SSA 2010). 

There are serious implications that our aging population has on the modern healthcare model 

which will require a massive, interdisciplinary effort to address. These issues invoke both a personal 

and social responsibility to better understand the underlying complex mechanism of aging. By 

https://www.wipo.int/global_innovation_index/en/2019/
https://sci-hub.tw/10.1126/scitranslmed.aar4289
https://www.nature.com/articles/d41586-019-00673-1
https://muse.jhu.edu/article/748059
https://academic.oup.com/clinchem/article/62/10/1304/5611942
https://journals.sagepub.com/doi/pdf/10.1525/ctx.2003.2.2.20
https://journals.sagepub.com/doi/pdf/10.1525/ctx.2003.2.2.20
https://www.telegraph.co.uk/wellbeing/future-health/healthcare-predictions/
https://www.telegraph.co.uk/wellbeing/future-health/healthcare-predictions/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4917021/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4917021/
https://www.nature.com/articles/s41746-018-0029-1
https://www.nature.com/articles/s41746-018-0029-1
https://www.sciencedirect.com/science/article/abs/pii/S002604951730015X
https://www.nejm.org/doi/full/10.1056/NEJMp2003539
https://journals.plos.org/plosbiology/article?rev=1&id=10.1371/journal.pbio.3000066
https://journals.plos.org/plosbiology/article?rev=1&id=10.1371/journal.pbio.3000066
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4339086/
https://sci-hub.tw/https:/link.springer.com/article/10.1007/s10838-013-9229-1
https://www.universityaffairs.ca/features/feature-article/the-slow-science-movement/
http://www.slow-science.org/slow-science-manifesto.pdf
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extending these findings to age-related diseases or by targeting the rate of aging itself, we may be able 

improve both lifespan and quality of life. 
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In an article detailing the movement, Dr. Paul Sutter concludes: 

“The progressive accumulation of scientific knowledge is not a sprint. It does not leap 

from discovery to discovery, impatiently waiting for the next miracle cure, constantly 

rewriting, and overhauling long-held beliefs at a moment’s notice. Sure, science is a 

process of continual, never-ending updates, but it is a slow, gradual exercise that creaks 

and groans forward through the years, decades, and even centuries. If a headline claims a 

major new discovery will completely change our paradigms, it is likely incorrect. Not 

because the result may be incomplete or even incorrect, but because, mathematically, not 

all that is published can be correct. As such, science must take pride in vetting each new 

piece of evidence before its normalization into existing frameworks but be prepared to 

dismantle that framework in favor of a new one if the evidence accumulates beyond a 

certain critical threshold. Individual scientists routinely focus on almost bizarrely narrow 

problems, a subset of a subset of a subset of a larger theory. This is where the real progress 

in science is made: tiny efforts, slowly inching outwards and pushing on the boundaries 

of our knowledge” (Sutter 2018). 

  

https://www.forbes.com/sites/paulmsutter/2018/12/02/why-science-needs-slowness-to-survive/#77ca83384837
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