Modeling current flow in nanoparticle doped polymer film systems

David Seaman
Western Washington University

Joshua Spradlin
Western Washington University

Janelle Leger
Western Washington University

Armin Rahmani
Western Washington University, armin.rahmani@wwu.edu

Follow this and additional works at: https://cedar.wwu.edu/scholwk
Part of the [Physics Commons](https://cedar.wwu.edu/scholwk)

Seaman, David; Spradlin, Joshua; Leger, Janelle; and Rahmani, Armin, "Modeling current flow in nanoparticle doped polymer film systems" (2018). Scholars Week, 56.

This Event is brought to you for free and open access by the Conferences and Events at Western CEDAR. It has been accepted for inclusion in Scholars Week by an authorized administrator of Western CEDAR. For more information, please contact westerncedar@wwu.edu.
Results: Non-Constant Potential

- When the duration of the non-constant potential phase lasted half time for \(T_{\text{total}} = 1 \), we saw that the current did not return to zero with the potential (figure 3).
- When the duration of non-constant potential was restricted to one tenth of the time \(T_{\text{total}} = 10 \), the current exhibits an oscillatory behavior without damping (figure 4).

Results: Constant Potential Varying Lead Lengths

- To simulate the infinite lead limit, we considered the impact of the length of the electrode leads.
- For a constant potential, the current should also remain constant, following Ohm’s law.
- However, we see that our model predicts a non-constant current flow.
- To isolate the cause, we examine the effect of the leads has on the oscillations.
- The lead length has no noticeable impact on the current flow on the time scale we considered (figure 5).

Results: Flat Potentials

- Plotted current for different constant potentials to investigate the impact of the potential.
- To determine if the oscillations are arising from setting the potential too high.
- We consider a variety of constant potentials varying from \(V = 0.00001 \) to \(V = 0.1 \).
- The potential has no effect on the time scale we examine in the system (figure 6).

Conclusions

- Our results are preliminary without structure change.
- Size of the leads and current values below \(V = 0.1 \) has no effect on the current behavior in our model, with both exhibiting similar oscillatory behavior.
- Next step is verifying our data with linear response by comparing to a model that treats complex current junctions as a scattering problem utilizing the Landauer method as seen in Wu et al. [4].

Acknowledgments and Funding

- Leger Group
- WWU AMSEC SEED Grant funding

References