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1. Introduction 

Anthropogenic carbon dioxide (CO2) emissions since the beginning of the industrial revolution 

has quickly elevated the atmospheric level of CO2 to an average annual concentration of 409.8 ppm in 

2019.1 Furthermore, the increase in atmospheric concentration from human sources only reflects half of 

anthropogenic emissions. Though large quantities of CO2 is sequestered in biomass, this amount is 

nearly negated by land-use change such as deforestation.2,3 An even greater portion of anthropogenic 

CO2 emissions have been absorbed into the ocean,2,3 contributing to its acidification. The observable 

impact of fossil fuel use and industry, together with increasing demand for energy, elevate the need for 

a carbon-neutral energy economy. 

Despite concerted regulatory and industrial efforts to move toward such an energy economy, 

challenges arise in implementing renewable sources of energy into the energy grid. Peak wind and solar 

energy production times do not align with times of peak demand for power, and so a means of storing 

the energy for peak demand is required. Batteries are expensive, require metals such as lithium or 

cobalt, which are environmentally costly to mine and ultimately have a finite number of charge cycles. 

Additionally, in weight sensitive applications such as aviation, batteries cannot store energy with the 

same density as liquid fuel. A renewable source of gas or liquid fuel is therefore highly desirable. 

Research in indium oxide-based catalysis could potentially address the demand for renewable and 

carbon-neutral energy sources.4,5 

Indium oxide-based catalysts are especially promising due to their ability to absorb across the 

spectrum of available solar irradiance. Many photocatalysts, such as titania, are limited by their ability to 

absorb only a narrow band of solar irradiance in the ultra-violet (UV) region. They therefore only utilize a 

fraction of the available solar energy (Fig. 1). Indium-oxide based catalysts can be modified to broaden 

their absorption from the UV and across the entire visible spectrum to capture more available energy. 
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Figure 1. Extraterrestrial solar irradiance.6 

2. Catalytic Goals 

Current research is focused on developing indium oxide-based catalysts which could use thermal 

or solar energy to reduce CO2. There are two main divergent schemes in indium oxide catalyzed 

reduction of CO2. Following the reverse water gas shift (RWGS) reaction, CO2 is reduced to carbon 

monoxide (CO). Alternately, CO2 can be further reduced and hydrogenated to produce methanol. 
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Figure 2. RWGS scheme (1) and CO2 to methanol scheme (2), both at 5 MPa, 423-723 K.7  
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2a. Reverse Water Gas Shift 

Using hydrogen (H2), CO2 can be reduced to CO. Because long term storage of CO poses safety 

concerns due to its high toxicity, this can then be directly burned for energy or used as a feedstock for 

C1-based feeds (CH4, CH3OH, or HCOOH) such as Fischer-Tropsch production of fuel range hydrocarbons. 

Further, carbon monoxide and other C1 feedstocks have broad industrial importance beyond energy 

production and may be used to produce olefin polymer feedstocks.  

2b. Methanol Production 

 Greater H2/CO2 ratios, higher pressures and temperatures are necessary to favor continued 

reduction of CO2 to methanol. Though the net conversion from reactants to products is estimated to be 

exergonic,7 the higher pressures and temperatures required may result in a higher energy input to 

produce methanol than CO from CO2. Methanol production may occur as a continuation of the 

hydrogenation of carbon monoxide produced through the RWGS pathway or through a separate 

formate pathway.8 

3. Mechanistic Insights from Computation 

 The most likely mechanism for the formation of methanol from CO2 was found to be adsorption 

of one of the oxygen atoms of CO2 into an oxygen vacancy on the In2O3 surface, and the successive 

additions of three hydrogens to the carbon to produce an intermediate resembling formate, bound to 

the surface by the oxygen bonded to an indium atom.9 The final step is the addition of hydrogen to the 

oxygen forming methanol which desorbs from the In2O3 surface.9 Oxygen vacancies of In2O3 are 

recognized as the active sites of the catalyst. They are formed by reduction of stoichiometric In2O3 and 

are replenished by oxygen from CO2.10 The formation of oxygen vacancies may be altered by the 

addition of catalytic promoters which have better adsorption properties and better promote catalyst 

reduction.8 
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Computational analyses of indium oxide have analyzed cubic (c-In2O3) and hexagonal (h-In2O3) 

crystal phases of indium oxide. While it has been proposed that the production of methanol is more 

energetically favorable over h-In2O3,11,12 c-In2O3 is experimentally observed to have a higher normalized 

methanol yield than h-In2O3 until 593 K.11 Above 593 K, h-In2O3 has better methanol yields; however, c-

In2O3 has better RWGS activity for CO production.13 H-In2O3 is less stable than c-In2O3, and h-In2O3 was 

observed to convert to the c-In2O3 above 450 °C under reaction conditions.13 Ultimately, the application 

of computational studies with phase-pure, crystalline In2O3 is complicated with a loss of crystallinity in 

the recent shift of focus to intentionally sub-stoichiometric In2O3-x, which provides higher yields than any 

previously analyzed indium-oxide based catalyst.4 

4. Catalyst Design 

 Understanding the function of the indium oxide-based catalysts allows refinement of their 

design. The indium oxide can be modified directly by the control of oxygen vacancies, and several other 

factors more routinely considered in the optimization of heterogeneous catalysts such as the addition of 

promoters and use of supports are also relevant. Modifications to the catalyst must be considered 

wholistically, as any single change can have a complex set of effects. 

4a. Optimizing Light Absorption 

Incident light capture is of high importance for a solar-energy catalyst and increasing the ability 

of the catalyst to absorb light and use it to drive chemical reactions is critical to the feasibility of indium 

oxide catalysts. Photocatalysts, which often use only small portions of the available solar energy to 

perform specific, quantized electron excitations to promote chemical reactivity are limited to utilization 

of only small bands of the available light. Recent work on reduction of indium oxide to sub-

stoichiometric In2O3-x turns the indium oxide from yellow to black and promotes far greater absorption 

of available light.4 This absorption allows the In2O3-x to function using photoexcitation by UV-range 
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photons and broad spectrum warming of the catalysts by lower energy photons. This broader spectrum 

activity is referred to as photothermal catalysis.5  

4b. Promoters 

 Promoters are generally metals which improve the activity of a catalyst by favoring adsorption 

of the substrates or desorption of the desired product. Either or both effects may also contribute to 

reduced coking of the catalyst on-stream. Promoters may be added over the primary phase of the 

catalyst or during the synthesis of the active phase. The latter method usually has improved and more 

stable activity due to sintering resistance.7,14 

Palladium is by far the most common promoter tested in indium-oxide based catalysts. 

Palladium-promoted indium oxide was modelled by DFT as 4 atom palladium clusters on the indium 

oxide surface.8 The interface between the palladium clusters and the indium oxide was found to be 

more active than indium oxide alone for CO2 adsorption and hydrogenation.8 The success of small 

palladium clusters is emphasized in later studies which find larger palladium clusters promote sintering 

of In2O3 particles.7,15 Interestingly, the increase in yield of palladium-promotion of In2O3 supported on 

SBA-15 decrease from 533 K, until the behavior of promoted catalysts is indistinguishable from the un-

promoted In2O3 on SBA-15 at 633 K.16 

 The critical effect of promoter particle size is also observed in gold promoted In2O3. If the gold 

particles are sufficiently small, Rui et al. describes a partial positive charge in the gold particles which 

forms due to the withdrawal of electrons by the In2O3.17 The charge transfer has the effect of improving 

the adsorption behavior of the gold and improving its effect as a promoter. The methanol yield was 

found to be better than that of copper/zinc-oxide/alumina catalysts currently in use for methanol 

production.17 
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Other noble metals such as platinum and rhodium have recently been used as promoters for 

indium-oxide based catalysts.14,18 The rhodium-promoted In2O3 was found to significantly improve the 

methanol yield similarly to the effects of gold-promotion. 

 To better compete with the cost of current methanol production catalysts, transition metal 

promotion is being actively researched.7,19 While nickel-promoted indium-oxides have not yet matched 

the yields of palladium-promoted indium oxides, nickel-promoted catalysts still have better methanol 

yields than most indium-oxide based catalysts.19 Nickel-promoted In2O3, like palladium-promoted In2O3, 

is prone to deactivation by CO.7 Unlike, palladium however, the deactivation is more complete, 

matching the activity of unpromoted In2O3, and no lost activity is recovered in the absence of CO.7 

4c. Indium-Gallium Oxides 

Though not directly considered as a Fischer-Tropsch catalyst, there is active research in 

integrating the CO2 to methanol activity of indium oxide-based catalysts into lower-olefin production 

schemes.  Fischer-Tropsch catalysts for hydrocarbon production from CO and H2 have optimal yields at 

higher temperature ranges than those of indium oxide-based CO2 to CO catalysts. While lower 

temperatures are more feasible for photothermal catalysis, increasing the optimal yield temperature of 

CO2 to CO conversion could enable the design of a bifunctional CO2 to CO to hydrocarbon catalyst. A 

higher optimal yield temperature of CO2 to CO conversion was achieved by synthesizing a mixed indium-

gallium oxide (In2-xGaxO3).20 This finding is potentially convergent with the substitution of gallium into 

indium-oxide to shift the band-gap and allow tunability of the light absorption. 

Alternately, an indium-zirconium oxide was used to catalyze CO2 to C2-C4 olefin production, 

where the indium-zirconium oxide was found to be a more stable catalyst than indium oxide alone.21 

This result is especially interesting when compared with the use of zirconia as a support in the work of 

Araújo et al. where monoclinic zirconia had higher yields and better CO tolerance than In2O3 alone.7 
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4d. Supported Indium Oxides 

Supporting the active phase of a catalyst has long been used to increase active surface area 

using a less costly material such as silica. Though at times considered inert, supports in indium oxide-

based catalysis allows more efficient use of indium and can increase the functionality of the indium 

oxide over bulk indium-oxide. 

Inert supports such as alumina (Al2O3) and SBA-15 are not expected to directly influence the 

behavior of the In2O3 active phase, and they only contribute by spreading out the active phase. If the 

support fails to increase the surface area of the active phase, no improvement is observed. This is the 

case in Araújo et al. for 5wt% In2O3/Al2O3, which was observed to have the same or worse activity when 

compared to that of bulk In2O3 when normalized for mass of In2O3.7 

Other types of supports, such as monoclinic zirconia (m-ZrO2) are observed to greatly increase 

the activity of indium oxide.7 5wt% In2O3/ m-ZrO2 has 25% better activity than bulk phase In2O3 while not 

suffering from CO-induced deactivation.7 Unexpectedly, triclinic ZrO2 shows almost no improvement 

over bulk indium oxide when normalized for mass of In2O3.7 Zeolites which are themselves active 

catalysts can be incorporated into indium oxide-based catalysts as supports for the design of 

bifunctional catalysts. These bifunctional catalysts can be designed for more complex reactions as was 

attempted with SAPO-34 for CO2 to methanol to olefin production.21 

5. Process Design 

Though reduction from stoichiometric indium oxides is found to be catalytically beneficial, over-

reduction has been observed, reducing the activity of the catalyst. Carbon monoxide has also been 

observed to reduce indium oxide-based catalysts under catalytically relevant conditions. The pure CO2 

feeds most often studied are not a perfect analog of industrial applications, where the feed is likely to 

be contaminated by CO.7 Reduction of several indium oxide-based catalysts was observed with CO-TPR 

as CO2 was evolved from bulk phase indium oxide as low as 370 K.7 The effects of different supports 
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likely bring this CO-induced reduction temperature even lower as the oxidation state of indium in the 

two most effective catalysts in the study of CO2-CO mixed feeds was observed to change over the 44-

hour and 24-hour cycles. The reduction state of the indium oxide is by no means fixed over the course of 

catalysis, and considerations must be made to maintain an optimal reduction state. 

6. Summary and Outlook 

Active research in the field of indium oxide-based catalysts is progressing towards viable 

methods of producing C1 feedstocks. Availability of these industrially relevant compounds will be 

instrumental in the transition away from a reliance on petroleum for energy and consumer goods. 

Indium oxide-based catalysts may find early applications in CO2 emission reduction by converting CO2 

from carbon industrial capture technologies into valuable compounds, and therefore providing 

economic incentive to further develop carbon capture.  

Further development of indium oxide-based catalysts to improve activity their economic and 

energetic feasibility. The simpler synthesis and greater stability of c-In2O3 suggest that it will be more 

relevant than h-In2O3 for scalable applications. The cubic phase is further favored by greater RWGS 

activity at lower temperatures which are more achievable for solar-powered reactions. Maintaining a 

balanced surface reduction of the indium oxide to create oxygen vacancies will be essential to 

optimizing catalyst performance. This reduction can be performed with H2 or CO as a pre-treatment and 

then maintained under feed conditions. The use of promoter metals not only facilitates the creation of 

oxygen vacancies but also improves the overall adsorption behavior of the catalyst for CO2 reduction. 

Eventual wide-scale adoption of these catalysts would likely require independence from costly and rare 

noble metals. Transition metal promoters such as nickel-phosphides may provide added stability on-

stream over nickel promoted catalysts without the cost of metals such as palladium. 

The rate of development of indium oxide-based catalysts has increased over the last decade and 

will likely continue towards their eventual application in CO2 utilization. Contingent upon the availability 
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of a renewable source of H2, indium oxide-based catalysts are positioned to have an important role in 

the realization of a carbon-neutral energy economy. 
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