Life-history diversity and productivity of Puget Sound Chinook salmon

Joseph H. Anderson
Washington (State). Department of Fish and Wildlife, joseph.anderson@dfw.wa.gov

Peter Topping
Washington (State). Department of Fish and Wildlife

Clayton Kinsel
Washington (State). Department of Fish and Wildlife

Matthew Klungle
Washington (State). Department of Fish and Wildlife

Kelly Kiyohara
Washington (State). Department of Fish and Wildlife

See next page for additional authors

Follow this and additional works at: https://cedar.wwu.edu/ssec

Part of the Terrestrial and Aquatic Ecology Commons

Anderson, Joseph H.; Topping, Peter; Kinsel, Clayton; Klungle, Matthew; Kiyohara, Kelly; and Weinheimer, Joshua, "Life-history diversity and productivity of Puget Sound Chinook salmon" (2014). *Salish Sea Ecosystem Conference*. 20.

This Event is brought to you for free and open access by the Conferences and Events at Western CEDAR. It has been accepted for inclusion in Salish Sea Ecosystem Conference by an authorized administrator of Western CEDAR. For more information, please contact westerncedar@wwu.edu.
Speaker
Joseph H. Anderson, Peter Topping, Clayton Kinsel, Matthew Klungle, Kelly Kiyohara, and Joshua Weinheimer

This event is available at Western CEDAR: https://cedar.wwu.edu/ssec/2014ssec/Day3/20
Life-history diversity and productivity of Puget Sound Chinook salmon

Joseph H. Anderson, Peter Topping, Clayton Kinsel, Matthew Klungle, Kelly Kiyohara, Joshua Weinheimer

Science Division, Fish Program

Washington Department of Fish and Wildlife

Salish Sea Ecosystem Conference
May 2, 2014
Life-history diversity

Why is diversity important?

Similar to a diverse portfolio of financial assets, life-history diversity confers stability to salmon and steelhead populations given uncertain future environmental conditions.

General patterns of Chinook salmon life-history diversity

- **Subyearling juvenile migrants or ocean-type life-history**
- **Yearling juvenile migrants or stream-type life-history**
WDFW smolt trap sites

Map: Dale Gombert
WDFW smolt trap sites

Skagit River

Nisqually River

Green River

Dungeness River
Subyearling Chinook abundance

- Skagit
- Nisqually
- Green
- Dungeness
Chinook salmon migration timing

Skagit 2005 - 2012

Nisqually 2009 - 2013

Green 2005 - 2013

Dungeness 2005 – 2013
Subyearling Chinook salmon body size

[Graphs showing the average fork length (mm) from Jan 11 to Aug 16 for Skagit, Nisqually, Green, and Dungeness from 2009 to 2013.]
Subyearling Chinook salmon body size

Skagit

- Fry
- Parr

Nisqually

- Fry
- Parr

Green

- Fry
- Parr

Dungeness

- Fry
- Parr
Chinook productivity

Which model best describes patterns of productivity for each migrant life-history?

Ricker density dependent

\[\log \left(\frac{J}{S} \right) = a - \frac{a}{b} S \]

Density independent

\[\log \left(\frac{J}{S} \right) = a \]

<table>
<thead>
<tr>
<th>Population</th>
<th>Migrant life-history</th>
<th>Best model</th>
<th>ΔAICc</th>
</tr>
</thead>
<tbody>
<tr>
<td>Skagit</td>
<td>Fry</td>
<td>Density independent</td>
<td>2.7</td>
</tr>
<tr>
<td>Green</td>
<td>Fry</td>
<td>Density independent</td>
<td>2.6</td>
</tr>
</tbody>
</table>
Chinook productivity

Which model best describes patterns of productivity for each migrant life-history?

Ricker density dependent

\[\log \left(\frac{J}{S} \right) = a - \frac{a}{b} S \]

Density independent

\[\log \left(\frac{J}{S} \right) = a \]

<table>
<thead>
<tr>
<th>Population</th>
<th>Migrant life-history</th>
<th>Best model</th>
<th>ΔAICc</th>
</tr>
</thead>
<tbody>
<tr>
<td>Skagit</td>
<td>Fry</td>
<td>Density independent</td>
<td>2.7</td>
</tr>
<tr>
<td>Green</td>
<td>Fry</td>
<td>Density independent</td>
<td>2.6</td>
</tr>
<tr>
<td>Skagit</td>
<td>Parr</td>
<td>Ricker density dependent</td>
<td>7.4</td>
</tr>
<tr>
<td>Green</td>
<td>Parr</td>
<td>Ricker density dependent</td>
<td>6.0</td>
</tr>
</tbody>
</table>
Yearling Chinook
Nisqually

Graphs showing fork length (mm) over time from January 11 to August 23 for each year.

- 2010: Data points for subyearling and yearling Chinook.
- 2011: Similar data as 2010.
- 2012: Data points for yearling Chinook only.
- 2013: Data points for yearling Chinook only.
Yearling Chinook migration timing

Skagit
Yearling median catch 2005 – 2013 = 148

Nisqually
Yearling median catch 2009 – 2013 = 242

Dungeness
Yearling median catch 2005 – 2013 = 37
Conclusions

Life history diversity
• Distinct bimodal subyearling Chinook migration: early small fry followed by later larger parr
• Yearling Chinook observed in Skagit, Nisqually and Dungeness, likely related to colder temperatures from snowmelt/glacial influence

Productivity
• In Skagit and Green, fry production increases consistently with spawners, but parr production shows evidence for density dependent capacity limits
• By inference, freshwater productivity limited by rearing not spawning habitat

Restoration implications
• Efforts to create and maintain juvenile rearing habitat will provide the greatest benefit to Chinook freshwater productivity
• Diverse habitats promote diverse life-histories

Unanswered question
• What is the relative marine survival of fry vs parr subyearling migrants?
Acknowledgements

Dave Seiler Lars Swartling Shannon Vincent
Mara Zimmerman Devin West Phil Aurdal
Steve Newhauser Justin Miller Dan Estell
Greg Volkhardt Jim Repoz Ben Nelson
Mike Ackley Erik Kummerow Paul Lorenz
Brett Barkdull Dean Toba Bob Green
Andrew Fowler Matt Pollack Aaron Bosworth