
Western Washington University Western Washington University

Western CEDAR Western CEDAR

WWU Honors College Senior Projects WWU Graduate and Undergraduate Scholarship

Spring 2021

Reflections on setting up the Cyber Range Intrusion Detection Reflections on setting up the Cyber Range Intrusion Detection

System System

William Pearson
Western Washington University

Follow this and additional works at: https://cedar.wwu.edu/wwu_honors

 Part of the Information Security Commons, and the Mathematics Commons

Recommended Citation Recommended Citation
Pearson, William, "Reflections on setting up the Cyber Range Intrusion Detection System" (2021). WWU
Honors College Senior Projects. 476.
https://cedar.wwu.edu/wwu_honors/476

This Project is brought to you for free and open access by the WWU Graduate and Undergraduate Scholarship at
Western CEDAR. It has been accepted for inclusion in WWU Honors College Senior Projects by an authorized
administrator of Western CEDAR. For more information, please contact westerncedar@wwu.edu.

https://cedar.wwu.edu/
https://cedar.wwu.edu/wwu_honors
https://cedar.wwu.edu/grad_ugrad_schol
https://cedar.wwu.edu/wwu_honors?utm_source=cedar.wwu.edu%2Fwwu_honors%2F476&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1247?utm_source=cedar.wwu.edu%2Fwwu_honors%2F476&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/174?utm_source=cedar.wwu.edu%2Fwwu_honors%2F476&utm_medium=PDF&utm_campaign=PDFCoverPages
https://cedar.wwu.edu/wwu_honors/476?utm_source=cedar.wwu.edu%2Fwwu_honors%2F476&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:westerncedar@wwu.edu

William Pearson

Reflections on setting up the Cyber
Range Intrusion Detection System

Over the past year, I worked in a team of four students to set up and configure an Intrusion Detection
System (IDS) for Western Washington University Poulsbo’s Cyber Range. This was a group project
composed of two Computer Science students and two Cybersecurity students and mentored by the
Cyber Range master (Vipul Kumar). The goal of the project was to set up an IDS to detect and notify
on attempts at intrusion.

We set up the project using an ELK stack (Elasticsearch, Logstash, and Kibana). Suricata is used as the
IDS; the Cybersecurity students were involved in configuring it (and I was not); Suricata receives data
from a firewall. Data from Suricata is put into a Redis keystore, and then Logstash transfers it into an
Elasticsearch cluster which acts as the database. Kibana is used to create user-/administrator-facing
dashboards.

We used Microsoft Teams for meetings and coordination. We had a weekly meeting with our advisor
early in the week (usually Monday or Tuesday), and then had a second weekly meeting where we
worked on the project itself. During those meetings we mostly worked individually; the three other
group members, for the most part, each worked on one of the three parts of the ELK stack. My role
was more general; I had a basic understanding of all parts of the stack and worked to resolve blocking
issues and on any other component where I would be the most useful, but did not “own” any individual
component. When we were blocked, we actively communicated and troubleshooted together on Teams,
but otherwise we worked individually (but with the ability to ask questions together). All work was
done remotely due to the pandemic, but this setup did work similarly to everyone meeting up at the
same table and working individually.

We had some issues getting everything to work. For instance, getting the various nodes in our
Elasticsearch cluster to talk to each other properly proved challenging, and then getting that to work
with encryption enabled also took a while. Furthermore, although our setup does support email and
Microsoft Teams notifications, that functionality could not be enabled due to not having the appropriate
license for Kibana; that issue should be easy to fix in the future when a license is purchased.

Overall, this project was definitely interesting. I went into it feeling like we might have had too much
time – it seemed odd to me that it would take a whole year to configure existing software – but it ended
up being about the right amount of time. Various technical issues, along with needing to actually learn
the details of the ELK stack, resulted in it taking longer than I personally had expected (but matching
the actual budgeted amount of time for a senior project). This was also my first time working directly
(I would say “in person”, but that does not exactly apply with the pandemic) with an organized group
for a full year, which was a neat experience. I got to meet interesting people and learn neat
technologies, so overall, I consider it a success.

Project Deliverables/Final Report
Matthew Jackson, William Pearson, Niall O’Rourke, and Rowena Tchao

Product Summary
Western Washington University’s Cyber Range required an Intrusion Detection System (IDS) to
safeguard the private network from intrusion and potential abuse. Vipul Kumar, our client and
advisor, implemented an IDS using Suricata on the range's firewall. Our team developed the
underlying to store, index and visualize the network traffic that flows through the range. For this,
we used the ELK stack (Elasticsearch, Logstash, and Kibana).

The architecture our team developed consisted of 4 components using virtual machines as our
hardware: A Redis server which received the data from the IDS, Logstash that processed and
indexed the data, Elasticsearch that stores the data, and Kibana that visualizes the data. Redis
was the least touched component of the data pipeline, as it just receives data from Suricata and
pushes it to Logstash. The rest of the architecture is all part of ELK stack and was the primary
focus of our project. All 3 components have security enabled. This means that all
communications are encrypted, prevents unauthorized access to the local cluster, prevents
unauthorized nodes from joining the Elasticsearch cluster, and TLS communication enabled
between nodes and HTTPS interface for Elasticsearch and Kibana.

Features
The ELK stack came with predefined features out of the box so that is what we used to
implement the stack. Any additional features required a Gold license which we currently don’t
have.

Starting with the first service, Logstash, we formatted the index so that the data pattern matched
the Suricata logs and the SN dashboard templates in Kibana.

For Elasticsearch, to increase reliability and availability, we created a single node Elasticsearch
cluster on 3 separate virtual machines and 3 separate Docker containers.

In Kibana, we implemented dashboards that allow a user to visualize and analyze the network
traffic with greater ease. An additional feature we implemented for Kibana is the ability to map
the location of the traffic entering the range. With this, you can see the last location where traffic
originated from. In Kibana, we used built in roles as well as a few of our own created roles to
manage user privileges in Kibana.

Finally, the last feature we enabled for the entire stack, was ELK stack’s x-pack security. This
feature is specifically for securing the ELK stack and its HTTP traffic. This is to ensure that all
communications in and out of the cluster were secure.

Sprints
Under the advice of our mentor/client, we implemented the crawl, walk, run approach to our
project. While they are similar to sprints, the spacing between these objectives were greater
than agile sprints.

In our first quarter, the crawl phase, we had to learn what the ELK stack was (Elasticsearch,
Logstash, Kibana) and how to use Docker. We built our own personal testing environment to
practice with these services. The last part was building the stack out on our own testing
environment.

In the second quarter, the walk phase, we built our first complete ELK stack. In this setup, we
used a single virtual machine for Logstash, Elasticsearch and Kibana. Next, we split all 3
services onto their own virtual machine. Following this, we worked on creating additional
Elasticsearch nodes and getting them to cluster, both on a single virtual as well as spread
across 3 separate virtual machines. During this same period of time, we started to develop the
first of our Kibana visualizations/dashboards.

In the final quarter, the run phase, we had four primary goals: build remaining visualizations,
deploying pipeline on production servers, enabling security on the stack and finalizing
documentation. We had two plus goals: setting up the Kibana alert system and automating
deployment using Ansible. We completed all three of these tasks but failed to hit our plus goals.

The vast majority of our time was spent, enabling security. This task turned out to be incredibly
challenging.

This image displays the evolution of
our stack. We started with each
service in a single virtual machine
(not shown). After this we created it
so all services were running on
separate virtual machines. The
squares around ES (Elasticsearch)
represent the service being run on a
single virtual machine. The last two
images show the roadblocks we
encountered during our last ELK
stack test. The second to last image
shows Logstash not connecting and
authenticating to the ES cluster. The
last image shows our final pipeline
successfully implemented with TLS
enabled.

Testing
We have created a script called test_online.py where it checks if Elasticsearch and Kibana
servers are online based on a list of IP addresses stored in the script and a username and
password to authenticate with. Apart from that, there is little testable code that was written for
this project. However, we still tested for ELK stack functionality throughout each development
phase.

For overall testing, each ELK stack piece was tested based on its effectiveness in the stack.
Since our goal is to implement a secure ELK stack structure with single node multicluster
Elasticsearch, we had to test the ELK stack separately from the security piece to ensure the
stack was in working order before laying security on top of it. By any chance that Elasticsearch

was not clustering or Kibana and Logstash were not authenticating to the Elasticsearch cluster
properly, workflow halted to dissect and troubleshoot the problem.

Bugs/Errors
In the ELK stack itself, there were little bugs to be found. Currently, Logstash is slightly out of
date causing indices to be labeled incorrectly. Outside the ELK stack, the Redis database used
to store network traffic is notorious for having memory problems. Once memory runs out, Redis
becomes unstable and the machine crashes.

Product Maintenance
The ELK stack itself is very low maintenance. Functionality works great overall and there are
very few bugs to work through. However, the ELK stack is configured to only work with Cyber
Range Poulsbo IP addresses. Any IP address changes will break the ELK stack and it will no
longer be in working order. Furthemore, security certificates should be changed from self-signed
to using a service such as Let’s Encrypt so it will be more secure. In addition, the current ELK
stack is using a trial license. It is set to expire on May 31, 2021. The license should be upgraded
to Gold.

Regarding users and passwords, a separate file containing all the created users and their
passwords has been created and handed over to our client.

Results

Discover page of Kibana, this an overview of all the data coming into Kibana

These two images cover all the users and some of the roles created for Kibana.

This is one of the dashboards that was created. It shows the incoming data based on their geoip
location.

This is the output of our script that tests if Elasticsearch and Kibana services are running
correctly.

This shows the difference between curling to the Elasticsearch cluster with and without security
features. Without providing the username and password, the user cannot access the
Elasticsearch API.

Documentation
https://gitlab.cyberrangepoulsbo.live/william.pearson/cyberrange-intrusion-detection
Gitlab Cyber Range Poulsbo was used to document the IDS project. It contains a number of
resources, including configuration files and pertinent instructions on how to build the ELK stack.
Additionally, Elasticsearch and Kibana security certificates for Western Washington University’s
production environment are also bundled into the repo.

https://gitlab.cyberrangepoulsbo.live/william.pearson/cyberrange-intrusion-detection

A supplemental guide is added to the repo to further explain the exact steps that we took to
build the ELK stack referencing specific instructions from the Elastic guide. A command list was
also included to help reference key steps in building a secure ELK stack. These guides will
assist future developers in creating new opportunities to extend the project and enhance it.

Future Extensions
Two key extensions to elevate this project are Microsoft Teams alerting and Ansible
orchestration.

Currently, the ELK stack is using the trial license where it restricts certain features of the
product. In order to enable Microsoft Teams and email alerting, the Elasticsearch license needs
to be upgraded to Gold. Please note that Microsoft Teams exhibited peculiar behavior where it
will not allow administrators to create incoming webhooks on one team. A separate team needs
to be created for the new incoming webhook to work. This bug is specific to Microsoft Teams
and is not a problem with Kibana itself. As far as we are aware, creating alerts is a fairly easy
process that can be done through the Kibana dashboards.

Ansible is an automation engine used for configuration management, application deployment,
and service orchestration. This is the perfect open source tool to orchestrate the IDS and ELK
stack in the Cyber Range environment without additional overhead costs and operating
expenses. If the project were to ever expand with additional clusters in the ELK stack, it will help
with a seamless and efficient deployment. Another note is that we are unfamiliar with this
product, so we don’t know the complexity of adding it onto our secure ELK stack.

	Reflections on setting up the Cyber Range Intrusion Detection System
	Recommended Citation

	William Pearson
	William Pearson_Cyberrange IDS documentation

